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Abstract 

In the present paper, we introduce a modification of the Summation Szãsz type 

operators denoted by     (     )  where       (,   )  ,   )) (the space of all 

continuous functions on the area (,   )  ,   ))and     ,   ) are two 

independent variables. First, we discuss the converges of this operator to the 

function (   )      . Then, we establish a Voronovskaja-type asymptotic formula 

for the operator     (     )  
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1. Introduction 

The approximation of functions by Szász-Mirakyan operators 
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e.g.( [8], [2], [3]). The above operators were modified by several authors e.g. ( [1], 

[7], [9]) which showed that new operators have similar or better approximation 

properties than   (   )  

Rempulska and Graczyk [6], introduced a modification of the Szãsz operators and 

studied some direct results in ordinary approximation as: 
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In this paper, we introduced a new sequence of linear positive operators     (     ) 

for       (,   )  ,   )) given as follows: 
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2.  Auxiliary Results: 

          We give some lemmas which  help us in the proofs of main theorems. 

 

Lemma 1: [5]  
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                                         terms  of  form      
( )(  )  where          

Definition 1: 

A function    is  of  smaller  order  than  function    as      , if        
 ( )

 ( )
   

 ( )    we indicate this by writing     ( ). 

 

Lemma 2: [6] 

          For         and    (   ), we get: 
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Lemma 3: [6] 

For each       and for all   ,   ) we get: 
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Definition 2: 

The norm of the space     ,   ) which is defined as:   

‖ ‖    
      ,   )| ( )|                

 

Our first theorem shows that the operators     (     ) converges to the function 

 (   ) as      . 

 

Theorem 1: 

 Let       . If for all     ,   ) the  following  conditions hold: 
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Proof: 

By using Lemmas 1 and 2, we get: 
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By the same way we can prove (3), as follows: 
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Then, by Korovkin's theorem [4] we get:  
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Finally, we  give  a Voronovskaja-type  asymptotic  formula for the operators 

    ( (   )    ). 

 

Theorem 2: 

For     (   )    (   )  such that,       , suppose that 
   (   )

   
,
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 and  

   (   )

    
 exist and are continuous at a point (   )  ((   )  (   )), then: 
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Proof: 

By Taylor
'
s formula for     (   )    (   ), about the point (   )  we have: 
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where  (   )   (       ) is function from the space   (   )    (   ), and 
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Using Lemma 3, we have: 
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To complete the proof, we must show that the term 
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By using Cauchy-Schwartz inequality, we get: 
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Now, by the properties  (   )     and Theorem 1, we have: 
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Then from Lemma 3, we get: 
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Then, the proof of the Theorem 2 is over.                                          
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 الخلاصة

الدالة , حيث أن  (     )    ونرمز له  Szãszن للمؤثر  من النمط مجموع يفي هذا البحث, نقدم تحس

      (,   - يكونان مستقلان. أولا, نناقش تقارب المؤثر إلى الدالة   (   ,    والمتغيرين  (-   , 

 (   ) ( Voronovskaja-type asymptotic formula سكي للتقارب )ڤرونوڤوبعد ذلك نثبت صيغة       

 (     )     للمؤثر 

 

 


