The relation ships Between contra t-continuous functions

> Zainab Aodia Athbanaih University of Al-Qadissiya College of Education Assistant Teacher

Abstract:-

In this paper we use the concept of $(\delta, g\delta)$ -sets [4], α -sets [11], Semi-sets [7], pre-sets [1], β -sets [6] and regular sets [11].

To study the relation ships of the functions contra t-continuous, contra continuous with anew class of functions called contra $(\delta, g\delta)$ -continuous[12], where t meaning the type of these functions that depending on these sets.

1. Introduction

In 1996 Dontchev[3] introduced anew class of functions called contracontinuous functions, in 1999 Dontchev and Noiri introduced and studied ,among others anew weaker form of this class of functions called contra –semi continuous[2],also in the semi year Jafari and noiri introduced and studied anew class of functions called contra Super-continuous[8] ,in 2001 Jafari and noiri introduced and studied anew class of functions called contra-precontinuous[10] , contra α continuous[9] and contra β -continuous [11],where the function contra α -continuous is weaker than contra continuous and stronger than contra –semi continuous and contraprecontinuous,in (2008)the researcher introduced and investigated strong form of this class of functions called contra (δ ,g δ)- continuous [12] .

2.Preliminaries

Through the present note (x,t_x) and (y,t_y) (or simply x,y) alwayes topological space.

Aset Ais called regular open or (prif.R-O) (resp. regular closed or (prif.R-C) if A=into(cl(A))(resp. A=cl(int(A))).

Let A be asub set of the topological space (x,t_x) ,apoint $x \in X$ is called a δ -cluster point of A [4] if $A \cap u \neq \emptyset$, for every regular open set u containing x. The set of all δ -cluster points of A form the δ -closure of A and is denoted by $cl_{\delta}(A)$.

Aset A is called δ -closed or(prif. δ -C) if A=cl_{δ}(A). Aset A is called δ -open or(prif. δ -O) if it is a union of regular open sets, The complement of δ -open set is said to be δ -closed and aset A is called α -open or (prif. α -open) [1]if A \subset int(cl(int(A))), The complement of α -open set is said to be α -closed.

Recall that the reguler open sets in agiven topological space (x,t_x) form abase for anew topology T_s on X called Semi-regularzation,the collection of all δ -open sets forms atopology on X.which is finer than any topology t denoted by T_{δ} [12], it wellknown that $T_s = T_{\delta}$ and the collection of all α -open sets forms atopology on X ,Stronger than any topology t denoted by T^{α} (or $\alpha(X)$)(Nejastad,1965).It is abvious that $T \subset T^{\alpha}$ and $T_{\delta} \subset T$ as a consequence of definitions we have $T_{\delta} \subset T \subset T^{\alpha}$, also a $\alpha cl(A) \subset cl_{\delta}(A)$.

3.properties of Sets

Definitions 3.1

1- A sub Set A of aspace X is called pre-open or(prif.pre-O.) [1](resp. Semi-open or(prif. S-O.) [7], β -open or (prif. β -O.)) if A \subset int(cl(A))(resp. A \subset cl(int(A)), A \subset cl(int(cl(A)))). The complement of preopen (resp. Semi-open, β -open) set is said to be preclosed (resp.Semi-closed-closed).

2-Afunction $f:X \rightarrow Y$ is called contra-super continuous or(prif. C.-Su.C.)[8] (resp. contra α - continuous or(prif. C. α -C.) [9],contra-semi continuous or(prif. C.-S.)[2]) if $f^{-1}(v)$ is regular-closed (resp. α -closed,Semi- closed) sub set in X,for every open sub set v of Y.

3- Afunction $f:X \rightarrow Y$ is called contra-precontinuous or(prif. C.-pre.C.)[10] (resp. contra continuous or(prif. C. -C.) [3],contra β -continuous or(prif. C. β -C.) [11], contra δ -continuous or(prif. C. δ -C.) [12]) if $f^{-1}(v)$ is preclosed (resp.closed, β -closed, δ -closed) sub set in X,for every open sub set v of Y.

Lemma 3.2

Let Abe asub set of aspace X.

1- If A is closed ,then \hat{A} is α -closed(resp. Semi-closed,preclosed).

2- If A is δ -closed, then A is closed (resp. α -closed, β -closed).

Proof

2-Let A be a δ-closed set ,A=cl_{δ}(A),by part (2) A= cl_{δ}(A)=cl(A),so by part(1) A is α-closed.

Or let A is δ -closed,(A)^c=B is δ -open,B= $\bigcup_{i \in I} U_i$, where U_i are regular open sets for every $i \in I$,since $\bigcup_{i \in I} U_i$ open set ,so B is open set ,B \subset cl(B),int(B) \subset cl(int(B)),int(int(B)) \subset int(cl(int(B))),int(int(B))=B, So B \subset int(cl(int(B))) is α -open ,thus (B^c)=(A^c)^c=A is α -closed.

To prove that A is β -closed, let A is δ -closed,(A)^c=B is δ -open,B= $\bigcup_{i \in I} U_i$, where U_i are regular open sets for every $i \in I$,since $\bigcup_{i \in I} U_i$ open set ,so B is open set ,B \subset cl(B),int(B) \subset int (cl(B)),cl(int(B)) \subset cl(int(cl(B))),since B \subset cl(int(B)),therefore B \subset cl(int(cl(B))) is β -open, thus (B^c)=(A^c)^c=A is β -closed.

Remark 3.3

The converse of the above Lemma is not true in general to see this ,we give the following counter Examples.

Examples 3.4

1- Let X={a,b,c,d} be aset and t_x={ \emptyset ,X,{a},{b},{a,b},{a,b,c},{a,b,d}} is atopologe defined on X.let A={d}⊂X,A is closed (resp. α -closed, β -closed).)but not δ -closed set.

2-Let R be the real line with the usuall topology ,the set $A=[a,b) \subset R$ is Semi-closed but not closed.

Lemma 3.5

- Let A be asub set of aspace X.
- 1- If A is δ -closed,then A is Semi-closed(resp. preclosed).
- 2- If A is α -closed, then A is Semi-closed(resp.preclosed).
- 3- If A closed, then A is β -closed.
- 4- If A Semi-closed, then A is β -closed.

Proof

1- To prove that A is Semi-closed, let A is δ -closed, (A)^c=B is δ -open, B= $\bigcup_{i \in I} U_i$, where U_i are regular open sets for every $i \in I$, since $\bigcup_{i \in I} U_i$ open set, so B is open set, B \subset cl(B), B \subset cl(int(B)) is Semi-open, thus (B^c)=(A^c)^c=A is Semi-closed.

To prove that A is preclosed, let A is δ -closed,(A)^c=B is δ -open,B= $\bigcup_{i \in I} U_i$, where U_i are regular open sets for every $i \in I$,since $\bigcup_{i \in I} U_i$ open set, so B is open set, B \subset cl(B), int(B) \subset int(cl(B)),since B=int(B),so B \subset int(cl(B)) is preopen ,thus (B^c)=(A^c)^c=A is preclosed.

2- Let A is α -closed set, A^c=B is α -open, so B \subset int(cl(int(B))), since int(cl(int(B))) \subset cl(int(B)). Thus B \subset cl(int(B)), hence B is Semi-open, so B^c=(A^c)^c=A is Semi-closed.

To prove that A is preclosed, Let A be an α -closed set, A^c=B is α -open, so $B \subset int(cl(int(B)))$, since $int(cl(int(B))) \subset int(cl(B))$, so $B \subset int(cl(B))$. Thus B is preopen, $B^c = (A^c)^c = A$ is appreclosed.

Remark 3.6

The converse of the above Lemma is not true in general to see this ,we give the following counter Examples.

Examples 3.7

1- Let X={1,2,3} be aset and t_x={ \emptyset ,X,{1},{2},{1,2}} be atopology defined on X. Let A={3} \subset X is Smi-closed β -closed α -closed but not δ -closed.

2- Let X={1,2,3} be aset and t_x={ \emptyset ,X,{2},{1,2}} be atopology defined on X.Let A={1} \subset X is preclosed but not closed and not δ -closed. 3- See Example 3.5(2),A=[a,b) is Semi-closed but not α -closed.

Lemma 3.8

Let A be asub set of aspace X.

1- If A is regular closed, then A is δ -closed(resp. closed , preclosed , β -closed).

2- If A is preclosed, then A is Semi-closed(resp. β -closed).

Proof

1-To see that A is δ -closed see[12], clearly that A is closed , preclosed and β -closed.

To prove that A is preclosed, let A be aregular closed, $A^c=B$ is regular open, B=int(cl(B)), so $B\subset int(cl(B))$. Thus B is preopen, $B^c=(A^c)^c=A$ is appreclosed.

2- To prove that A is Semi-closed Let A be apreclosed set, $A^c=B$ is preopen $B\subset int(cl(B))$, since $int(cl(B)) \subset cl(int(B))$, so $B\subset cl(int(B))$. Thus B is Semi-open $B^c=(A^c)^c=A$ is Semi-closed.

The interrelation of the Seventh Sets are decided the refore, we obtain the following diagram $\hfill \Box$

Diagram (1)

4- Relation ships

Proposition 4.1

If $f: X \rightarrow Y$ is contra δ -continuous, then f is contra t-continuous.

Proof

By definition 3.1, and Lemma 3.2 part(2),Lemma 3.5 part (1). Where t meaning closed, α -closed,Semi-closed, preclosed and β - closed.

Remark 4.2

The converse of the above Proposition is not true in general, to see this we give the following counter Examples.

Examples 4.3

Let $X=Y=\{a,b,c\}$ be aset.

1-Let $t_X = \{\emptyset, X, \{a\}, \{a, b\}\}$ and $t_Y = \{\emptyset, y, \{c\}, \{b, c\}\}$ are topological spaces defined on X,Y respectively, let $f: X \rightarrow Y$ is the identity function.

Note that f is contra continuous and contra β -continuous but not contra δ -continuous.

2- Let $t_X = \{\emptyset, X, \{a\}\}$ and $t_Y = \{\emptyset, Y, \{b\}, \{c\}, \{b, c\}\}$ are topological spaces defined on X, Y respectively, let $f: X \rightarrow Y$ is the identity function. Note that f is contra α -continuous but not contra δ -continuous.

3- Let $t_X = \{\emptyset, X, \{a\}, \{a, c\}\}$ and $t_Y = \{\emptyset, Y, \{b\}, \{c\}, \{b, c\}\}$ are topological spaces defined on X,Y respectively, let $f: X \rightarrow Y$ is the identity function. Note that f is contra –Semi continuous but not contra δ -continuous.

4- Let $t_X = \{\emptyset, X, \{b, c\}\}$ and $t_Y = \{\emptyset, Y, \{b\}, \{c\}, \{b, c\}\}$ are topological spaces defined on X, Y respectively, let $f: X \rightarrow Y$ is the identity function. Note that f is contra –precontinuous but not contra δ -continuous.

Proposition 4.4

If $f: X \rightarrow Y$ is contra continuous, then f is contra t-continuous.

Proof

By definition 3.1, Lemma 3.2 part(1) and Lemma 3.5 part(3). Where t in this Proposition meaning α -closed,Semi-closed,preclosed and β -closed.

Remark 4.5

The converse of the above Proposition is not true in general, to see this we give the following counter Examples.

Examples 4.6

1- See Example 4.3(2),Note that f is contra α -continuous but not contra continuous. 2- Let X= {a,b,c,d} be aset ,let

 $t_X = \{\emptyset, X, \{b\}, \{c\}, \{a,b\}, \{b,c\}, \{a,b,c\}, \{b,c,d\}\}\$ be atopology defined on X, let $f: X \rightarrow X$ be afunction defined as follows : f(a)=c, f(b)=d, f(c)=b and f(d)=a.

Note that f is contra –Semi continuous and contra β –continuous but not contra continuous.

3- See Example 4.3(4), Note that f is contra –precontinuous but not contra continuous.

Proposition 4.7

If $f: X \rightarrow Y$ is contra α -continuous, then f is contra –Semi continuous.

Proof

By definition 3.1 and Lemma 3.5 part(2).

Proposition 4.8

Afunction $f:(X,t) \rightarrow (Y,\sigma)$ is contra α -continuous (resp. contra –precontinuous, contra Semi–continuous if and only if $f_{\alpha}(X,t) \rightarrow (X,\tau)$ is contra continuous.

 $f:(X,t^{\alpha}) \rightarrow (Y,\sigma)$ is contra continuous.

Proof

 \rightarrow By definition 3.1 and since X is t^{α}-space. \leftarrow By Lemma 3.5 part(2). Where t in this Proposition meaning closed,Semi-closed, preclosed and β -closed set.

Proposition 4.9

If $f: X \rightarrow Y$ is contra –Super continuous, then f is contra t-continuous.

Proof

By definition 3.1 and Lemma 3.8 part(1). Where t in this Proposition meaning δ -closed, closed, preclosed and β -closed set.

Remark 4.10

The converse of the above Proposition is not true in general, to see this we give the following counter Examples.

Examples 4.11

1- Let $X=Y=\{a,b,c\}$ be a set , let $t_X=\{\emptyset,X,\{a\},\{b\},\{a,b\},\{b,c\}\}$ and $t_Y=\{\emptyset,Y,\{c\},\{a,c\},\{b,c\}\}$ are topological spaces defined on X,Y respectively, let $f:X \rightarrow Y$ is the identity function. Note that f is contra δ -continuous but not contra – Super continuous function.

2- See Example 4.3(4).Note that f is contra –continuous(resp. contra –precontinuous but not contra –Super continuous.

Remark 4.12

The converse of the above Proposition is not true in general, See Example 4.6(2), Note that f is contra –Semi continuous but not contra α –continuous function.

Proposition 4.13

If $f: X \rightarrow Y$ is contra-precontinuous, then f is contra-Semi continuous.

Proof

By definition 3.1 and Lemma 3.8 part(2).

Remark 4.14

The converse of the above Proposition is not true in general, See Example 4.6(2), Note that f is contra–Semi continuous but not contra–precontinuous function. To make the converse of Proposition 4.1 and Proposition 4.8 for t= δ -closed set is true.we will give the sufficient condition.

Proposition 4.15

Afunction $f:(X,t)\rightarrow(Y,\sigma)$ is contra δ -continuous if and only if $f:(X,t_{\delta})\rightarrow(Y,\sigma)$ is contra t-continuous.

Proof

 \rightarrow By definition 3.1 and Proposition 4.1.

←By definition 3.1 and since X is T_{δ} -space.

Where t in this proposition meaning $closed,\alpha$ -closed,Semi-closed,preclosed and regular closed β -closed.

The interrelation of the Seventh Functions are decided the refore, we obtain the following diagram

Diagram (2)

References

1- A.S., Mashhour, M.E,Abd.El-Monsef, and S.N., El-deeb, On Precontinuous and weak Precontinuous Mappings,proc.math.Phys.Soci.Egypt 53(1982),47-53.

2- J., Dontchev, Contra-Semi Continuous Functions, Math.pannonica 10(1999), 159-168.

3- J.,Dontchev, Contra Continuous Functions and Strongly δ -closed space,internal,J.Math.sci.19(1996),303-310.

4- J.,Dontchev, On Generalized δ -closed Set and almost weakly Hausdorff Space in general Topology,vol 18(2000),17-30.

5- M., Caldas , and S., Jafari, Some properties of Contra β -Continuous Functions, Mem. Fac. Sci. Kochi Univ. Math. 22(2001), 19-28.

6- M.E., Abd El-Monsef , S.N.El-Deeb, and R.A., Mohmoud, β -Open Sets and β -Continuous Mapping, Bull. Fac. Sci. Assiut Univ. 12(1983), 77-90.

7- Levinc, N., Semi-Open Sets and Semi-Continuity in Topological Spaces, Amer. Math. Spaces, Amer. Math., 70(1963), 36-41.

8- Jafari,s.,and Noiri,T., On Contra –Super Continuous Functions,Annales,univ.sci..Budapest 42(1999),27-34.

9- Jafari,s.,and Noiri,T., Contra α-Continuous Functions between Topological Spaces,Iranian int,J.sci,2(2)(2001),153-167

10- Jafari, S. and Noiri, T., On Contra-Precontinuous Functions, Bull. Malays. Math .Sci. (2) 25(2001), 115-128.

11- Popa, Valer.and Noiri, T., Some properties of almost Contra -PreContinuous Functions, Malays, Math.Sci.(2)28(2005), 107-116.

12-Zaniab,A.A,On Contra $(\delta,g\delta)$ -Continuous Functions,Journal of Babylon univ.(18)1(2010)to appear.

العلاقة بين الدوال العكس مستمرة _ t

زينب عوده اثبينة جامعة القادسية كلية التربية مدرس مساعد

الملخص:-

في هذا البحث استخدمنا مفهوم المجموعات - $(g \in \beta)$ [4] المجموعه- α [11] ، المجموعات شبه[7]، المجموعات الأولية[1] ،المجموعات المنتظمة[11] ،المجموعات- β [6] ،لدراسة العلاقة بيين تلك المجموعات كتمهيد لأيجاد العديد من العلاقات بين الدوال العكس مستمرة (او الضد مستمرة)، العكس مستمرة-t مع نوع جديد من الدوال تسمى العكس مستمرة-($\delta,g\delta$) [12]حيث t تعني نوع هذه الدوال التي اعتمد تعريف كل واحدة منها على احدى انواع تلك المجموعات.