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Abstract

In this work we have introduced a new method for solving fuzzy differential
equations .This method based on the fully fuzzy neural network to find the
numerical solution of the first order fuzzy differential equations . The fuzzy
trial solution of the fuzzy initial value problem is written as a sum of two
parts . The first part satisfies the fuzzy condition, it contains no fuzzy adjustable
parameters. The second part involves fully fuzzy feed-forward neural networks
containing fuzzy adjustable parameters. Under some conditions the proposed
method provides numerical solutions with high accuracy .

Keywords : Fuzzy Differential Equation ,Fully Fuzzy Neural Network , Fuzzy
Trial Solution, Minimized Error Function, Hyperbolic Tangent Activation
Function .
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1. Introduction

Many methods have been developed so far
for solving fuzzy differential equations
(FDEs) since it is utilized widely for the
purpose of modeling problems in science and
engineering. Most of the practical problems
require the solution of the FDE which
satisfies fuzzy initial conditions or fuzzy
boundary conditions, therefore, the FDE
must be solved .Many FDE could not be
solved exactly, thus considering their
approximate solutions is becoming more
important

The theory of FDE was first formulated by
Kaleva and Seikkala Kaleva was
formulated FDE in terms of the Hukuhara
(H-derivative). Buckley and
feuring given a very general
formulation of a first-order initial
value problem. They first find the crisp
solution, make it fuzzy and then check if it
satisfies the FDE [1].

derivative
have
fuzzy

In 1990 researchers began using artificial
neural network (ANN) for solving ordinary
differential equation (ODE) and partial
differential equation (PDE) such as : lee,
Kang in [2]; Meade , Fernandez in [3,4]
;Lagaris , Likas , et al. in [5] ; Liu ,Jammes in
[6] ; Ali ,Ucar, et al. in [7] ; Tawfiq in [8]
;malek , shekari in [9] ; Pattanaik , Mishra in
[10]; Baymani ,Kerayechian , et al. in [11] ;
and other researchers.

In 2010 researchers began using ANN for
solving fuzzy differential equation such as :
Effati and pakdaman in [12] ; Mosleh ,Otadi in
[13] ;Ezadi ,Parandin, et al. [14].

In 2012 researchers began using partially
(non  fully) fuzzy
network(FANN) for solving fuzzy differential
equation Mosleh

artificial neural

such as

,0tadi in [15,16,17]. In (2016) Suhhiem[18]
developed and used partially FANN for
solving fuzzy and non-fuzzy differential
equations.

In this work, for solving FDE we present a
numerical
function approximation capabilities of fully
fuzzy FFNN and results in the construction of
a solution written in a differentiable, closed
analytic form. This method employs fully
fuzzy FFNN as the basic approximation
element, whose fuzzy parameters (weights
and biases) are adjusted to minimize an
appropriate error function. To train the fully
fuzzy FFNN which we have used, we employ
optimization techniques, which
require the computation of the gradient of
the error with respect to the network
parameters. The fuzzy trial solutionisa sum
of the two terms : the first term satisfies the
fuzzy initial conditions and contains no fuzzy
adjustable parameters. The second term can
be found by using fully fuzzy FFNN, which is
trained so as to satisfy the FDE.

method which relies on the

in turn

2. Basic Definitions

In this section, the basic notations which are

used in fuzzy calculus are introduced.

Definition (1), [18] : Ther - level (orr -
cut ) set of a fuzzy set A labeled by A, , is the
crisp set of all x in X(universal set) such that
Hz(x) =71 ;e

A={xeX:pz(x) 2r,ref0,1]} (1)
Definition(2),[18]:Extension Principle

Let X be the Cartesian product of universes X 1
, X2, .., Xm and A1 Az, ..., An bem - fuzzy
subset in X1, X2, ..., Xm respectively , with
Cartesian product A = A;xAzX ... X A and f
is a function from X to a universe Y, (y = f(x1
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,X2,..,Xm)) . Then , the extension principle y =f(x1,x2, ..., Xm), (X1,X2, ..., Xm) € X},
allows to define a fuzzy subset B =f(A) inY where

by B={(y.us(y)) :
" Sup(xl,...,xm YEf~1(y) Min{uﬁl (Xl) rreny H,T\m (Xm)} ’ lff_l(Y)'_'tw
ug(y)= :
0, otherwise.
(2)
and f~!is the inverse image of f.
For m = 1, the extension principle will be :
B=f(A)={(y,u5() : y=f), x € X},
Supy ef~1(y) UK(X) , if f_l(Y):/:(Z)

Where pg(y) = {

which is one of the definitions of a fuzzy
function, (Definition (4)) .

Definition (3), [18]: Fuzzy Number

A fuzzy number {i is completely determined
by an ordered pair of functions

(g(r) ,ﬁ(r)), 0<r <1, which satisfy the

following requirements :

1) u(r) is a bounded left continuous and
non decreasing function on [0,1].

2)u(r) is a bounded left continuous and
non increasing function on [0,1].

u@®<u(@®),0<r <1

The crisp number a is simply represented
by :

uM)=u(r)=a,0<r <1.

(3)

0, otherwise.

The set of all the fuzzy numbers is denoted
by EL

Remark (1), [12]: For arbitrary

i= (u,u) , ¥= (v,v) and KER , the
addition and multiplication by KFor all
r € [0,1]can be defined as:

1) (u+v)() =u(r)+v(r)
2) (u+v)(r) =u()+v(r)

3) (Kw() = Ku(®) , Kw() = Ku(r) , if
K=0

4) Kw() = Ku@® , K@) = Ku(@) , if
K<O0.

Remark (2), [18]: The distance between
two arbitrary fuzzy numbers 4 = (g,ﬁ)

and Vv = (Z,V) is given as :

1

D(ii,¥) = [fol (u(r) -v(r) )?dr + fol (u(r) -v(r) )zdr]g (4)

Remark (3) , [18]: (ELD) is a
complete metric space

Remark (4),[18]:In the following we
have described the operations of fuzzy



numbers (in parametric form) which can
be generalized from  the crisp
intervals. Va1, bi,az, b2 € R ,A = [a1,bi]
and B =[azbz].

Assume A and B are numbers expressed as
interval, then we have :

1) Addition :A + B = [a1, b1] + [az,bz] =
[a1 + a2, b1 + b2]

2) Subtraction :A - B =[a1, b1] -
[a1- b2, b1 - az]

[az,b2] =

3) Multiplication :

{a1az , aibz ,b1az f blbz}

A'B:[mm , max{alaz ’ aibz , biaz , b1b2}

4) Division A/B =[min{a; /az,a1/
bz,b1/az,b1/bz},max{a1/az, a1/

bz, b1/ az, b1 / b2}] excluding the case a; =
Oorb2=0.

[a;, bi]?* = [min{i,

5)Inverse Al = "

o max{s 2
excluding the casea; =0o0rb1 =0.

6)If 0 < az <b ,then the multiplication
operation can be described as:

min{aiaz, aib2}

AB=| hax{bias, bibs}

when previous sets A and B is defined in
the positive real number R+, the operations
of multiplication , division and inverse are
written as :

3 )Multiplication : A . B
= [a1az, bibz]

= [a1, b1] . [az, b2]

4)Division : A / B = [a1,b1] / [azb2] =
ai b1
5 2]

5)Inverse :Al = [ai,bi]?

! 1]
b1’ al
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Definition (4) , [18] : Fuzzy Function

The function F :R — E! is called a fuzzy
function

Definition (5) , [12]: The fuzzy function
F: R — E! is said to be continuous if :

for an arbitrary t1€ R and € > 0 there
exists & > 0 such that:

|t- t1| <6 = D(F (t),F(t1)) <€, where D
is the distance between two arbitrary fuzzy
numbers.

Definition (6),[14]: Let I

interval .

be a real
The r-level set of the fuzzy

functiony : I - E! can be denoted by:

[y(®]" = [y1 (D), y2(D)]
€ [0,1]

tel,r

(5)

The Seikkala derivative y’(t)of the fuzzy
functiony(t) is defined by :

[y®O]" = [yD'®, (y2) (V]
€ [0,1]

telr

(6)

Definition (7), [12]: let u, veEL If
there exist w € Elsuch that

u = v+w then w is called the H-difference
(Hukuhara-difference) of u , v and it is
denoted by w= u@©v.

The sign © refers to H-difference, and we
must note that u©Gv#u+ (-1)v.

Definition (8), [15]: Fuzzy Derivative

Let F: (ab)> E! and t, € (ab).We say
that F is H-differential (Hukuhara-
differential) at t, if there exists an element
F'(t,) € E? that for all h>
0 (sufficiently small), 3 F(t, +h)OF(t),
F(ty)©F(ty- h) and the limits (in the
metric D)

such



F(to + h) OF(ty)

h-0 h
. F(t)) © F(ty — h)
= lim
h-0 h
= F'(to) (7)

Then F’(ty) is called fuzzy derivative (H-
derivative) of Fatt,.

where D is the distance between two

arbitrary fuzzy numbers .

3. Fuzzy Neural Network [8,18]

Artificial neural networks are learning
machines that can learn any arbitrary
functional mapping between input and
output. They are fast machines and can be
implemented in parallel, either in software
or in hardware. In fact, the computational
complexity of ANN is polynomial in the
number of neurons used in the network
Parallelism also brings with it the
advantages of robustness and fault
tolerance.

(i.e.) ANN is a simplified mathematical
model of the human brain. It can be
implemented by both electric elements and
computer software . It is a parallel
distributed processor with large numbers
of connections It is an information
processing that has
performance characters in common with

system certain

biological neural networks.

A fuzzy neural network or neuro - fuzzy
system is a learning machine that finds the
parameters of a fuzzy system (i.e., fuzzy set
, fuzzy rules) by exploiting approximation
techniques
Combining fuzzy systems with neural

from neural networks
networks . Both neural networks and fuzzy
systems have some things in common
They can be used for solving a problems
(e.g. fuzzy differential equations , fuzzy

integral equations, etc. ).
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Before 2005 a fuzzy neural network called
FWNN (fuzzy weight neural networks) was
developed by Pabisek , Jakubek and et al. .
Membership functions of FWNN were
formulated by the multi - layered
perceptron (MLP) network training |,
separately for each learning pattern and
then the interval arithmetic was applied to
process crisp or fuzzy data.

4, Fully Fuzzy Neural Network

[15,16,17]

Let us consider a fuzzy neural network
with n input units, m hidden units and s
output units. Target vector, connection
weights and biases are fuzzy numbers and
input vector is real
adjustable parameters(weights and biases)
are fuzzy numbers then the fuzzy neural
network is called fully fuzzy neural
network,otherwise it is called partially

numbers .If all the

fuzzy neural network

For convenience in this discussion ,fully
fuzzy neural network with an input layer,
a single hidden layer, and an output layer
in Fig. (1) is represented as a basic
structural architecture Here , the
dimension of fully fuzzy neural network is
denoted by the number of neurons in each
layer, thatis n X m X s, wheren, mands
are the number of the neurons in the input
layer, the hidden layer and the output layer
, respectively.

The architecture of the model shows how
fully fuzzy neural network transforms the n
inputs (x4 ,Xy, ..., Xj , ..., Xy) into the s fuzzy
OutpUtS ([y1]r ’ [y2]r » oty [Yk]r AR [YS]F)
throughout the m hidden fuzzy neurons
([Zl]r B 2 P ) [Zm]r) ., where
the cycles represent the neurons in
Let [b;], be the fuzzy

bias for the fuzzy neuron [z, , [ckl,

each layer .



be the fuzzy bias for the fuzzy neuron [yy],
,[wji]: be the fuzzy weight connecting crisp

Hidden units : [z], = F([net;], ) ,

neuron x; to fuzzy neuron [z, , and [wy], j=1,2,3,...,m, €))
be the fuzzy weight connecting fuzzy where
neuron [z], to fuzzy neuron [yy] .
[net;],=Xi 1 Xi[wjilr +[bj]; (10)
When an n - dimensional input vector
(X1,X, e, Xj, ...,Xy) IS presented to our Output units :
fully fuzzy neural network , its input -
=F txle),k=1,2,3,....s, 11
output relations can be written as follows, Yidr=F([nety].) s (D
where F:R" — ES: where
Inpl'It units : Xi =X, [netk]r:ergl[ij]r[Zj]r'i_ [Ck]r (12)
i=1,2,3,..,n, (8)
Input units Hidden units Output units

X1 > [?1]I‘

Xi > [yi]r

Xn > [15"'5] r

Bias unit

Bias unit

Fig.(1) Fully fuzzy feed forward neural network .

The architecture of our fully fuzzy neural
network is shown in Fig. (1) , where
connection weights , biases , and targets
are fuzzy numbers and inputs are real
numbers .

From the operations of fuzzy numbers
(which we have described in section two) ,
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the above relations are rewritten as
follows when the inputs x;’s are non -
negative , i.e, x; =0 :



Input units: x;=x; (13)
Hidden units :

[z]: = F([net],) [[Zi]:' [Zi]f]:
[F ([netj]:) ,F ([netj]f)] (14)
where

[netj]: :2?=1Xi[wji]: +[b]-]: (15)
[net] =i x[wyl, +[55]]  (16)

Output units :

[yl drl=
(17)

[Yk]r:F([netk]r) =
[F([nety]) , F([net,])]
where

[neti]r = Ziea[wkj]llj[zj]: + ZiEb[Wki]: 7]

+ [eulr (18)

U

r

[net, ] = Zjec[ijEJ [Zj]iJ t Zied[ij]f[Zj]i

+ [ekl? (19

For [Z]]U > [Z]]: >0 where

a= {] [Wk]]: = 0} b= {], [Wk]]ll: < 0}
e={j; [wygl, 2 0},d={j; [wg] <o}
aub = {1,2,3 mjland cud =
{1,2,3 ,m}

5. Solution of FDEs by Fully Fuzzy
Neural Network

To solve any fuzzy ordinary differential
equation we consider a three - layered
fully fuzzy neural network with one unit
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entry x , one hidden layer consisting of m
activation functions and one unit output
N(x). The activation function for the hidden
units of our fully fuzzy neural network is

the hyperbolic  tangent  function

(s(x) = tanh(e)) . The dimension of our
fully fuzzy neural network in this research
is(1:m:1) (Fig.2) .

For every entry x (where x > 0) equations
(13-19) will be :

Input unit : x = x, (20) Hidden
units :

(2] = [[Zj]:' [Zj]f] =
[s ([netj]:) S ([netj]f)] (21)
where

[“etj]: = X[Wi]: +[b,—]: (22)

[“Mi][rJ = X[Wj]iJ "f[bj]iI (23)
Output unit :

[N]. = [[N]¢, [NI¥] (24)

where

[N]]F:ZiEa[Vj]];[Zi]];+Zieb[vj]];[zi]f (25)
[N]9=Z'-ee["j]f[zj]f+Zjed["j]?[zi]: (26)
For [Z]]E > Z]-]]; =0 where :a =

a
(@
[N
I



Hidden units

Input unit

QOutput unit
[N]r

Bias unit

Fig. (2) (1: m: 1) Fully fuzzy feed forward neural network .

Fully fuzzy neural network with crisp set
inputs , fuzzy number weights and fuzzy
number output solution to the fuzzy
ordinary differential equations is given in

Fig. (2).

6. Description of The Proposed
Method

For illustration the proposed method , we

will  consider the first order fuzzy
differential equation :

dy®)

EXX = f(XIY)r XE [al !aZ] Y Y(al) = A
(27)

where A is a fuzzy number in E! under
the r - cut sets :

39

[Al: = [[Alx, [AlF] ,r€[0,1].

For this problem we can write the fuzzy
trial solution as :

[Yt(X)]r:[A]r+(X - al)[N(X)]r (28)

It is clear that the fuzzy initial condition in
(27)is satisfied by the fuzzy trial solution
in (28).

The error function that must be
minimized for the problem (27) is in the

form :
E=3%,(Ef; + Eqf (29)

where



[[dYt(X')] [f(Xuyt(xl))]] (30)

Ep=[[252] -

where {x;}lL; are discrete points in the
interval [a;,a,] (training set) and in the

[f (xiye (xi))]f] (31)

error function (29) , EX and EV represent
the square errors of the lower and upper

limits of the r - level sets , respectively .

We can find the first lower and upper
derivative of the [N(x)], in terms of the
derivative of the activation function, i.e.,

I L
2] . 0 [netj] |

] r 0 net ox I
cﬁ[net]-][rJ
el 5t U (32

]U 2 [z] |, alney]
J

T
r 0 net Ox

L L
[z ]r i) [netj]r

Zalvl, 5 Tt (33)
a[“;:’] =[w;]" (34)
9z]
6[net] ([ ]] ) (35)
Aol )" (36)
a [z]
a[ne’t] 1-([5]) 37)
Note  that  ifs(o) = tanh(ex) then

s'(x) = 1 —s%(x)

From the lower and upper derivative of
the fuzzy trial function [y.(x)], in (28),
we can obtain :

a [N (0]
ox

DO - NGO T+ (x — 2y) (38)

40

[Yt (X)

G [NGOTL+(x — a) L (39

Now , by substituting eq. (25), eq. (26), eq.
(28) and eqs(32 - 39) in eq. (30) and eq.
(31), we obtain :

EL
= (Il Tal+ ) ol Tl + s
~a) Q. il wla

- ([21)) + ) Wl wl} @
-~ (1)

— f(x;, [AlY +(x;
~a) Q. [l T+ ), MLzl )

(40)

By
ARG WONCISE
—a) Q) [l Il @

- (1)) + Y Wl @
—@W

- f(xv +(X1
—wQMaHZMkD

(41)

Then we substitute (40) and (41) in (29)
to find the error function that must be
minimized for problem (27).

7. Numerical Examples

To show the behavior and properties of
proposed method, two problem will be
solved in this section. We have used a multi
layer perceptron having one hidden layer
with ten hidden units and one output unit.
The activation function of each hidden



unit is the hyperbolic tangent function
. The analytical
solution [y,(x)]* and [y,(x)]Y has been
known in advance. Therefore, we test the
accuracy of the obtained solutions by

computing the deviation (absolute error ):

e(x, N=lyaIY — [y 17| :
e(x, N=ly.x = [y:Ir|

To minimize the error function we have
used BFGS quasi-Newton method (For
more details, see [18]) . The computer
programs used in this work are coded in
MATLAB 2015.

Examplel: Consider the following fuzzy
initial value problem:

y =-y+x+1,withx€[0, 1]

y(0)=1[0.96 + 0.04r,1.01 - 0.01r], where
re|o,1].

41

The analytical solutions for this problem
are:

[y.()]k =x + (0.96 + 0.04r)e™*
[y.()1V=x+ (1.01 — 0.01r)e™*

The trial solutions for this problem are:
[ye(x)]%=(0.96 + 0.04r)+ x[N(x)]*
[ye(x)]V=(1.01 — 0.01r) +x[N(x)]VY

The ANN trained using a grid of ten
equidistant pointsin [0, 1].

The that
minimized for this problem will be:

error function must be

E=y1 (EL + EJ (42)
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where

EiLr=[Xi(ZiEa[Vj]:[Wj]iS' (Xi [Wj]: +[bj]:) + Zjeb[vj]:[wj]fs, (Xi [Wj][: +
[b]-]f) )+ + %) Qliea [Vi]: s (Xi [Wj]: +[bj]:) + Zjeb["j]: s (Xi [Wj][rJ +
[b])) - x; + 0.04r - 0.04 ]

E3=[Xi(ZiEc[Vj]S[Wj]SS' (Xi [Wj][: +[bj][:) + Zjed["j]lrj[wj]:s' (Xi[wi]:

[b]-]:) )+ + Xi)(ZiEc[Vj];J s (Xi[Wj];J +[b]-][:) + Zjed["j];J s (Xi[Wj]:
[b]")) - x; -0.01r + 0.01 ]

+
+

Then we use (42) to update the [ye(x)]%=(0.75 + 0.25r)+ x[N(x)]&

weights and biases.
5 [y )]V =(1.25 — 0.25r)+x[N(x )]V

in table (1) we can found the

numerical solution for this problem The ANN trained using a grid of ten

equidistant points in [0, 1].
Example 2 :Consider the following

. The error function that must be
fuzzy initial value problem :

minimized for this problem will be

2
y ' =e*, with xe€[0,1
9. 1] B= Y11, (EL + EY (43)

y(0)= [0.75 + 0.25r,1.25- 0.25r] ,
wherer € [0, 1].

For this problem the trial solutions
are:

where
Bk =Daelvil, [wil,s (slw], +Doi,) + Bieolvil Tl s (ulwil, +
(o], )0+ Giea ], s (bl +[oi],) + Syl s (b, + 3], -7

V=[x jeclvi]. Wil 's" (xilw], +[bj]) + Biealvil [wi]'s" (xa[wy]. +

[b]-]:) )+ (ZiEC[Vi]:«J s (Xi[Wj]iJ +[b]-]f) + Zjea["j]? s (Xi[Wj]: + [b]-]:))_ eX’ ]2
Then we use (43) to update the weights and biases .

in table (2) we can found the numerical solution for this problem .
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Table (1):Numerical solution for example (1),r =0.5 .

X lyeGOlr e(x,1) [y GOIY e(x,r)
0 0.98 0 1.005 0

0.1 | 0986741141 4.72 e-7 1.009362248 6.43 e-7
0.2 | 1.002356525 3.87 e-7 1.022824322 0.85 e-7
0.3 | 1.026002061 2.05e-7 1.044523023 711 e-7
0.4 | 1.056913016 6.29 e-7 1.073671240 4.06 e-7
0.5 | 1.094399412 6.35 e-7 1.109563409 0.96 e-7
0.6 | 1.137835497 0.94 e-7 1.151555790 1.14 e-7
0.7 | 1.186653646 0.48 e-7 1.199068592 3.62 e-7
0.8 | 1.240342311 0.74 e-7 1.251574896 7.13 e-7
0.9 | 1.298438992 7.25e-7 1.308603048 0.54 e-7
1 1.360521344 5.08 e-7 1.369719666 8.28 e-7

Table (2):Numerical solution for example (2),r=0.5.

X [y: (0] 1]7 [y (0] E

0 0.875 1.125
0.1 | 0.975502508 1.225502508
0.2 | 1.078045555 1.328045555
0.3 | 1.184794808 1.434794808
0.4 | 1.298179066 1.548179066
0.5 | 1.421055880 1.671055880
0.6 | 1.556923622 1.806923622
0.7 | 1.710205904 1.960205904
0.8 | 1.886645759 2.136645759
0.9 | 2.093865202 2.343865202

1 2.342174693 2.592174693

8. Conclusion

In this work, we have introduced
numerical method based on fully
fuzzy neural network for solving first
order fuzzy initial value problems.
we have explained the efficiency of
the feed forward fully fuzzy neural
network
solution of the first order fuzzy
differential equations. In comparison

to find the numerical
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with the exact solutions and with
other numerical methods, we can
concludes that the proposed method
which we have used in this work
provides numerical solutions with
high accuracy . For future studies ,
one can apply and extend this
method to solve higher order fuzzy
differential equations
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