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Abstract:- 
 

The purpose of this paper is to introduce [6] and discuss the concept of b-

compactness for fuzzy topological spaces .Also we introduce and discuss the concept 

of b-continuous function and b-irresolute function [6].   

. 

 

1- Introduction:- 
 

The concept of fuzzy set introduced by L .A. Zadeh in [1].The discovery of fuzzy 

subsets lead to the Introduction of the basic concept of fuzzy topology  which was 

introduced by C.L.Chang [2].D. Andrijevic[3] introduced the concept of b-open set . 

In this paper, we introduce and discuss the concept of fuzzy b-open set, and fuzzy 

b-compact topological space. 

 

2-Preliminaries 

  

 In this section, we recall the basic concepts needed in this work. 

Definition 2-1   [2] 

 Let X be a non empty set, and let be collection of fuzzy sets in X satisfying: 

1-   1 , 0  , 

2- If BA  and  belongs to , then        BA  , and  

3- If Ai  belongs to , for each Ii  then    i 


A
Ii

. 

Definition.2-2 [  ] 

 For a set X  we define a fuzzy set in X  to be a function    1,0: XxA here 

 xA  “represents the degree of membership of x in the fuzzy set A.” 

 

Then we say that  is a fuzzy topology on X , and the pair   f,X  is called a fuzzy 

topological space. 

Members of   are called fuzzy open set. Fuzzy sets of the form  A1  , where 

A is fuzzy open set are called fuzzy closed. 

 

 

 

Definition 2-3 [4] 
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  A fuzzy set A in a fuzzy topological space X is called Fuzzy semi-open set 

if ) (int  cl  AA . 

 

Definition 2-4  [5] 

  A fuzzy set A in a fuzzy topological space X is called Fuzzy pr-open set 

if )  (clint   AA . 

 

Definition 2-5[ 5 ] 

  A fuzzy set A in a fuzzy topological space X is called Fuzzy b-open set 

if )  int  ( cl  )  (cl[int    AAA  . 

  

The set of all fuzzy b-open subsets of X  will be denoted by FB ( X ) ,The 

complement of fuzzy b-open set   is called fuzzy b-closed set, A will be fuzzy b-

closed set if  AAA   )  int  ( cl  )  (cl[int     

 

Definition 2-6 [ 5 ] 

Let   f,X  be a fuzzy topological space, let u be a fuzzy set in X .A fuzzy 

set A in X is said to be a fuzzy b-neighborhood of u iff there exist a fuzzy b-open set 

v such that Avu  . 

 

Definition 2-7 [ 6 ] 

The union (resp. intersection) of the fuzzy sets   iA
Ii



, Ii  (  (x)iA
Ii



, Ii ) is 

defined by    : sup   (x)Ai IixAi
Ii




(resp.    : inf   (x)i IixAA i

Ii




 

   

Definition 2-8 [6] 

 Let  τX, f  be a fuzzy topological space:  

1- A fuzzy set B in X is fuzzy b-compact if whenever    i AB
Ii




where   iB for 

all Ii   and 0 , then there are finitely many  iB ’s, say B Bii
n

,...,1
 such 

that    Bi j




A
Ii

. 

2- Is  τX, f  fuzzy b-compact iff each constant fuzzy set in X is fuzzy b-compact. 
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Definition 2-9 [ 3] 

A fuzzy topological space  τX, f  is called fuzzy b-compact iff fuzzy b-open 

cover has a finite fuzzy sub cover. 

 

Definition 2-10 [ 8] 

Let    σY,,τX, ff  be fuzzy topological space, Let    σY,τX,f: ff   be a function 

for a fuzzy set B  inY , the inverse image of B under f is the fuzzy 

set  Bf
1

in X defined by    XxxfBxfBxBf 


for           ))(())((
1  . 

 

For fuzzy set A  in X , the image of A under f is the fuzzy set )(Af inY defined  

for Yy by  

 
 


























)( if                                               0

)( if              )(:)( sup

1

11

yf

yfyfzzA
yAf

 

Definition 2-11 [ 7 ] 

Let    σY,,τX, ff  be fuzzy topological spaces, a function YXf : is fuzzy                    

b-continuous if the inverse image under of any fuzzy b-open set in Y is fuzzy b-open 

set in X . than:  

If    σB τBf ff 


ver          whene
1

 

Definition 2-12 [8] 

Let    σY,,τX, ff be fuzzy topological spaces, and let τ fλ be fuzzy topology 

on X which has FB(X)as a subbase. Then:  

1- A function YXf : is called fuzzy - b-continuous 

if    σY,τX,f: ffλ  is fuzzy b-continuous. 

2- A function YXf : is said to be fuzzy - b-continuous if 

   σY,τX,f: fλfλ   is fuzzy b- continuous. 

 

Definition 2-13 [16] 

A function YXf : is said to be fuzzy b-irresolute if the inverse image of 

every fuzzy b-open set in Y is fuzzy b-open in X . 

 

 

 

 

 

 

 

3- Results:- 
  

In this section we recalled and introduce new proportions.   
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Lemma 3-1  

Let    σY,τX,f: ff   be a fuzzy b-continuous function of fuzzy topological 

space: 

1- If  A is fuzzy b- compact fuzzy set in  τX, f , then  Af  is fuzzy b- compact 

fuzzy set  σY, f . 

2- If f a surjection and  τX, f  is fuzzy b-compact, then  σY, f is fuzzy b-

compact. 

 

Lemma 3-2  

 For a fuzzy b-open set Ai  belongs to , for each Ii  

1.  ABAB i
Ii

i
Ii












 ; 

2.  ABAB i
Ii

i
Ii












 ; 

3.  AA i
Ii

i
Ii












1 1 ; and  

4.  AA i
Ii

i
Ii












1 1 . 

 

Remark 3-3  

 The identity mapping    τX,τX,: ffX id on fuzzy topological space is fuzzy  

b – continuous . 

 

Proposition 3-4   

  A compotation of fuzzy b-continuous functions is fuzzy b-continuous. 

 

Proof 

Let    σY,,τX, ff ,  δZ, f  and    v fuzzy b-open set  

   σY,τX,f: ff   And    δZ,σY,g: ff   be fuzzy b-continuous. For      v    

   

 

 

  vgf

gvf

fgv

fgvvfg

11

1

1

                  

                  

                  

)(





















 

  


vg
1

, since  g is fuzzy b-continuous, and so      


vgfvfg
111

 )( since  g  is 

fuzzy b-continuous. 􀀀 
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If Ai  belongs to , for each Ii  then 1 i 


A
Ii

.then there are a finite many 

indices' Iiii n,...,, 21  such that 1 
i j

1




A
n

j

 (see,[2]).  

Proposition 3-5  

Let    σY,,τX, ff  be fuzzy topological space, with  τX, f  be Fuzzy b-compact, 

and YXf : be a fuzzy b-continuous surjection. Then  σY, f   is fuzzy b-compact. 

 

Proof  

 Let σA fi  for each Ii , and suppose that 1 
i j

1




A
n

j

 for each Xx , 

      1
1

Ii








xfAxAf i
Ii

i  

 

So the fuzzy  -b- open set    I i  ,
1




Af i  cover of X . 

Thus a finitely many indices' Iiii n,...,, 21  such that   1 
1

1





Af i j

n

j

. 

If v is fuzzy set inY , and since f surjective function ontoY , implies that. 

For any Yy  

       zAfyAff i

11
 sup 


  

                                yAyzfzfv  : sup   

So that    AAff 
1

,Thus, as a fuzzy set in Y  

         

   

  

A

Aff

Afff

i

i

i

J

J

j

n

J

n

iJ

n

J
























1

1

1

1

           

           

11

 

Therefore  σY, f  is fuzzy b-compact 􀀀 

 

Proposition 3-6  

Let    σY,,τX, ff  be fuzzy topological spaces and let


f be fuzzy topology 

on X which has FB(X)as a subbase .let    σY,τX,f: ff  is fuzzy b-continuous, 

then f  is fuzzy  -b-continuous. 

 

 

 

 

Proof 
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 Let f  be fuzzy b-continuous and let σV f . Then  XVf  FB  )(
1




and so 




fVf   )(
1




. Thus f  is fuzzy -continuous 􀀀 

 

Proposition 3-7  

Let    σY,,τX, ff  be fuzzy topological spaces. Let τ fλ andσ fλ  be the fuzzy 

topologies on X andY respectively which have FB(X)and FB(Y) as a subbase. If 

   σY,τX,f: ff  is fuzzy b-irresolute then f  is fuzzy -continuous. 

 

Proof 

Let f be fuzzy b- irresolute and σV fλ . Then  

)σi( V
nJ

n

Ji

1

   Where  σY,i f
nJ

 FB   and  

  











)( 

1i

11
 in J

n

J

fVf  

             











 in J

f
n

J

1

1i

  

Since f is fuzzy b-irresolute.    τX,if f
nJ

 FB 
1



  . 

The implies that   τ  Vf fλ
1

 and that f  is fuzzy -continuous 􀀀 

 

Proposition 3-8  

A fuzzy topological space X is b-compact if and only if every family of fuzzy 

b-closed subsets of X  with finite intersection property has non empty intersection. 

 

Remark 3-9  

Let  τX, f be a fuzzy topological space and τ λ a fuzzy topology on X which 

has )FB(X  as a subbase .Then  τX, f  is b-compact iff  τX, fλ  is b-compact  . 

 

 

Proof 

 τX, fλ  be compact Then, since τX fλ )FB(  . It follows that  τX, f  is b-

compact 􀀀 

 

Proposition 3-10  

Let  τX, f be a fuzzy topological space which is b-compact .Then each τ fλ -

closed fuzzy set in X  is b-compact.  

 

 

 

Proof  
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LetU be any τ fλ -closed fuzzy set in X . Let  IV ii
 : be τ fλ  an open cover 

ofU . Since UX   is τ fλ -open   UXIV ii
 :  is τ fλ  an open cover of X .  

Since X  is τ fλ -compact, by proposition 3-9, there exists a finite subset II 0 such 

that 

   UXIVX
ii

  :  

This implies that  IVU
ii 0:   . 

HenceU is b-compact relative to X . 

 

Proposition 3-11  

  Let  τX, f  be a fuzzy b-compact topological space. Then every family of τ fλ -

closed fuzzy subsets of X  with finite intersection property has non-empty 

intersection. 

 

Proof 

 Let X be b-compact. Let  IBU
i

i

  : be any family of τ fλ -closed 

fuzzy subsets of X with finite intersection property. Suppose     IB i
i

: . Then 

 IBX
i

i

  :  is a τ fλ -open cover of X . Hence it must contain a finite subcover 

 njBX
ij

,...,3,2,1:    for X . This implies that     njB
ij

,...,3,2,1:  and 

contradicts with hypothesis that U has finite intersection property. 􀀀 

 

Proposition 3-12  

 Let    σY,,τX, ff be fuzzy topological spaces and let YXf :  be fuzzy                     

 -b-continuous. If a fuzzy subset G of X is b-compact relative to X , then  Gf is b-

compact relative toY . 

 

Proof 

Let IV ii
 : be a cover of  Gf byσ fλ -open fuzzy sets inY  . 

Then   IVf
ii



 :

1
 

is a cover of G  byσ fλ -open fuzzy sets in X . G  is b-compact  relative to X . Hence 

by remark 3-9. G is τ fλ -compact .So there exists a finite subset II 0 such that 

  IVf ii 0

1
:  G 


  and so    IVf ii 0

1
:  G 


  . 

Hence  G
1

f


 is τ fλ -compact relative toY .Thus  G
1

f


is b-compact relative toY  􀀀 

 

Corollary 3-13  

If    σY,τX,f: ff   is a fuzzy -b-continuous surjective function and X is b-

compact, thenY  is b-compact. 
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Corollary 3-14  

 If    σY,τX,f: ff   is a fuzzy b-irresolute surjective function and X is b-

compact then Y is b-compact. 

 

 

Proposition 3-15  

Let A and B be fuzzy subsets of a fuzzy topological space X such that A is b-

compact relative to X and B is τ fλ -closed in X . Then  BA    is b-compact relative 

to X . 

 

 

Proof 

Let  IV ii
 :  be a cover of BA   by τ fλ -open fuzzy subsets of X . 

Since BX  is a τ fλ -open fuzzy set,    B-X :  IV ii
  is a cover of A . A  is b-

compact and thus f -compact relative to X . Hence there exists a finite subset 

II 0 such that 

   B-X :     IVA
ii

  

Therefore 

 IVBA
ii
  :    

Hence BA     is τ fλ -compact. Therefore BA    is b-compact 􀀀 
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 الخلاصة:
ية  الضبابية في الفضاءات التبولوج bالهدف من هذا البحث هو تقديم ودراسة مفهوم التراص من النوع 

 . bمن النوع والدوال المحيرة   bمن النوع ، وكذلك قدمنا ودرسنا مفهوم الدوال المستمرة 

 

 

 


