Fuzzy b-Compact Topological Spaces

Ahmad M. Rajab Math. Dept. The Mathematics and Computer Sciences College, Kufa Univ.

Abstract:-

The purpose of this paper is to introduce [6] and discuss the concept of bcompactness for fuzzy topological spaces .Also we introduce and discuss the concept of b-continuous function and b-irresolute function [6].

1-Introduction:-

The concept of fuzzy set introduced by L .A. Zadeh in [1].The discovery of fuzzy subsets lead to the Introduction of the basic concept of fuzzy topology which was introduced by C.L.Chang [2].D. Andrijevic[3] introduced the concept of b-open set .

In this paper, we introduce and discuss the concept of fuzzy b-open set, and fuzzy b-compact topological space.

2-Preliminaries

In this section, we recall the basic concepts needed in this work.

Definition 2-1 [2]

Let X be a non empty set, and let τ be collection of fuzzy sets in X satisfying:

1- $0, 1 \in \tau$,

- 2- If A and B belongs to τ , then $A \wedge B \in \tau$, and
- 3- If A_i belongs to τ , for each $i \in I$ then $\bigvee A_i \in \tau$.

Definition.2-2 []

For a set X we define a fuzzy set in X to be a function $A(x): X \to [0,1]$ here A(x) "represents the degree of membership of x in the fuzzy set A."

Then we say that τ is a fuzzy topology on X, and the pair (X, τ_f) is called a fuzzy topological space.

Members of τ are called fuzzy open set. Fuzzy sets of the form 1-A, where A is fuzzy open set are called fuzzy closed.

Definition 2-3 [4]

A fuzzy set A in a fuzzy topological space X is called Fuzzy semi-open set if $A \le cl$ (int A).

Definition 2-4 [5]

A fuzzy set A in a fuzzy topological space X is called Fuzzy pr-open set if $A \le int (cl A)$.

Definition 2-5[5]

A fuzzy set A in a fuzzy topological space X is called Fuzzy b-open set if $A \le [int (cl A) \lor cl (int A)]$.

The set of all fuzzy b-open subsets of X will be denoted by FB (X), The complement of fuzzy b-open set is called fuzzy b-closed set, A will be fuzzy b-closed set if $[int (cl A) \land cl (int A) \le A]$

Definition 2-6 [5]

Let (X, τ_f) be a fuzzy topological space, let *u* be a fuzzy set in *X*. A fuzzy set *A* in *X* is said to be a fuzzy b-neighborhood of *u* iff there exist a fuzzy b-open set *v* such that $u \le v \le A$.

Definition 2-7 [6]

The union (resp. intersection) of the fuzzy sets $\bigvee_{i \in I} A_i$, $i \in I$ ($\bigwedge_{i \in I} A_i(x)$, $i \in I$) is defined by $\bigvee_{i \in I} A_i(x) = \sup \{A_i(x) : i \in I\}$ (resp. $\bigwedge_{i \in I} A_i(x) = \inf \{A_i(x) : i \in I\}$

Definition 2-8 [6]

Let (X, τ_f) be a fuzzy topological space:

- 1- A fuzzy set *B* in *X* is fuzzy b-compact if whenever $\bigvee_{i \in I} B_i \ge A$ where $B_i \in \tau$ for all $i \in I$ and $\varepsilon > 0$, then there are finitely many B_i 's, say $B_{i_1,...,B_{i_n}}$ such that $\bigvee_{i \in I} B_{i_j} \ge A - \varepsilon$.
- 2- Is (X, τ_f) fuzzy b-compact iff each constant fuzzy set in X is fuzzy b-compact.

Definition 2-9 [3]

A fuzzy topological space (X, τ_f) is called fuzzy b-compact iff fuzzy b-open cover has a finite fuzzy sub cover.

Definition 2-10 [8]

Let $(X, \tau_f)(Y, \sigma_f)$ be fuzzy topological space, Let $f:(X, \tau_f) \to (Y, \sigma_f)$ be a function for a fuzzy set B in Y, the inverse image of B under f is the fuzzy set $f^{-1}(B)$ in X defined by $f^{-1}(B)(x) = B(f(x)) = (B \circ f)(x)$ for $x \in X$.

For fuzzy set A in X, the image of A under f is the fuzzy set f(A) in Y defined for $y \in Y$ by

$$f(A)y = \begin{cases} \sup \{A(z) : z = f^{-1}(y)\} & \text{if } f^{-1}(y) \neq \phi \\ 0 & \text{if } f^{-1}(y) = \phi \end{cases}$$

Definition 2-11 [7]

Let $(X, \tau_f)(Y, \sigma_f)$ be fuzzy topological spaces, a function $f: X \to Y$ is fuzzy b-continuous if the inverse image under of any fuzzy b-open set in Y is fuzzy b-open set in X. than:

If $f^{-1}(B) \in \tau_f$ whenever $B \in \sigma_f$

Definition 2-12 [8]

Let $(X, \tau_f)(Y, \sigma_f)$ be fuzzy topological spaces, and let $\tau_{f\lambda}$ be fuzzy topology on X which has FB(X) as a subbase. Then:

- 1- A function $f: X \to Y$ is called fuzzy λ b-continuous if $f:(X, \tau_{f\lambda}) \to (Y, \sigma_f)$ is fuzzy b-continuous.
- 2- A function $f: X \to Y$ is said to be fuzzy λ' b-continuous if $f:(X, \tau_{i}) \to (Y, \sigma_{i})$ is fuzzy b- continuous.

Definition 2-13 [16]

A function $f: X \to Y$ is said to be fuzzy b-irresolute if the inverse image of every fuzzy b-open set in Y is fuzzy b-open in X.

3- <u>Results:-</u>

In this section we recalled and introduce new proportions.

Lemma 3-1

Let $f:(X,\tau_f) \to (Y,\sigma_f)$ be a fuzzy b-continuous function of fuzzy topological space:

- 1- If A is fuzzy b- compact fuzzy set in (X, τ_f) , then f(A) is fuzzy b- compact fuzzy set (Y, σ_f) .
- 2- If f a surjection and (X, τ_f) is fuzzy b-compact, then (Y, σ_f) is fuzzy b-compact.

Lemma 3-2

For a fuzzy b-open set A_i belongs to τ , for each $i \in I$

1.
$$B \land \left(\bigvee_{i \in I} A_i\right) = \bigvee_{i \in I} \left(B \land A_i\right);$$

2. $B \lor \left(\bigwedge_{i \in I} A_i\right) = \bigwedge_{i \in I} \left(B \lor A_i\right);$
3. $1 - \left(\bigvee_{i \in I} A_i\right) = \bigwedge_{i \in I} \left(1 - A_i\right);$ and
4. $1 - \left(\bigwedge_{i \in I} A_i\right) = \bigvee_{i \in I} \left(1 - A_i\right).$

Remark 3-3

The identity mapping $\operatorname{id}_X:(X,\tau_f) \to (X,\tau_f)$ on fuzzy topological space is fuzzy b – continuous.

Proposition 3-4

A compotation of fuzzy b-continuous functions is fuzzy b-continuous.

Proof

Let
$$(X, \tau_f)$$
, (Y, σ_f) , (Z, δ_f) and v fuzzy b-open set
 $f: (X, \tau_f) \rightarrow (Y, \sigma_f)$ And $g: (Y, \sigma_f) \rightarrow (Z, \delta_f)$ be fuzzy b-continuous. For $v \in \delta$
 $(g \circ f)^{-1}(v) = v \circ (g \circ f)$
 $= (v \circ g) \circ f$
 $= f^{-1}(v \circ g)$
 $= f^{-1}(g^{-1}(v))$

 $g^{-1}(v) \in \sigma$, since g is fuzzy b-continuous, and so $(g \circ f)^{-1}(v) = f^{-1}(g^{-1}(v)) \in \tau$ since g is fuzzy b-continuous. \Box

If A_i belongs to τ , for each $i \in I$ then $\bigvee_{i \in I} A_i = 1$.then there are a finite many

indices' $i_1, i_2, ..., i_n \in I$ such that $\bigvee_{j=1} A_{i_j} = 1$ (see,[2]).

Proposition 3-5

Let $(X, \tau_f)(Y, \sigma_f)$ be fuzzy topological space, with (X, τ_f) be Fuzzy b-compact, and $f: X \to Y$ be a fuzzy b-continuous surjection. Then (Y, σ_f) is fuzzy b-compact.

Proof

Let $A_i \in \sigma_f$ for each $i \in I$, and suppose that $\bigvee_{j=1}^n A_{ij} = 1$ for each $x \in X$, $\bigvee_{i \in I} f^{-1}(A_i)(x) = \bigvee_{i \in I} A_i(f(x)) = 1$

So the fuzzy τ -b- open set $f^{-1}(A_i)$, $i \in I$ cover of X. Thus a finitely many indices $i_1, i_2, ..., i_n \in I$ such that $\bigvee_{i=1}^n f^{-1}(A_{i_j}) = 1$.

If v is fuzzy set in Y, and since f surjective function onto Y, implies that. For any $y \in Y$

$$f(f^{-1}(A_i))(y) = \sup \{f^{-1}(A)(z)\}$$

= $\sup \{v(f(z)): f(z) = y\} = A(y)$
So that $f(f^{-1}(A)) = A$, Thus, as a fuzzy set in Y
 $1 = f(1) = f\left(\sum_{j=1}^{n} f^{-1}(A_{i_j})\right)$

$$= \bigvee_{J=i}^{n} f\left(f^{-1}\left(A_{i_{J}}\right)\right)$$
$$= \bigvee_{J=1}^{n} A_{i_{J}}$$

Therefore (Y, σ_f) is fuzzy b-compact \Box

Proposition 3-6

Let $(X, \tau_f)(Y, \sigma_f)$ be fuzzy topological spaces and let $\tau_{f_{\lambda}}$ be fuzzy topology on X which has FB(X) as a subbase .let $f:(X, \tau_f) \to (Y, \sigma_f)$ is fuzzy b-continuous, then f is fuzzy λ -b-continuous.

Proof

Let f be fuzzy b-continuous and let $V \in \sigma_f$. Then $f^{-1}(V) \in FB(X)$ and so $f^{-1}(V) \in \tau_{f_\lambda}$. Thus f is fuzzy λ -continuous \Box

Proposition 3-7

Let $(X, \tau_f)(Y, \sigma_f)$ be fuzzy topological spaces. Let $\tau_{f\lambda}$ and $\sigma_{f\lambda}$ be the fuzzy topologies on X and Y respectively which have FB(X) and FB(Y) as a subbase. If $f:(X, \tau_f) \to (Y, \sigma_f)$ is fuzzy b-irresolute then f is fuzzy λ' -continuous.

Proof

Let *f* be fuzzy b- irresolute and $V \in \sigma_{f\lambda}$. Then

$$V = \bigvee_{i} \begin{pmatrix} n \\ \bigwedge_{J=1}^{n} \sigma_{i_{n_{J}}} \end{pmatrix} \text{ Where } \sigma_{i_{n_{J}}} \in FB(Y, \sigma_{f}) \text{ and}$$
$$f^{-1}(V) = f^{-1} \left(\bigvee_{i} \begin{pmatrix} n \\ \bigwedge_{J=1}^{n} \sigma_{i_{n_{J}}} \end{pmatrix} \right)$$
$$= \bigvee_{i} \begin{pmatrix} n \\ \bigwedge_{J=1}^{n} f^{-1}(\sigma_{i_{n_{J}}}) \end{pmatrix}$$

Since f is fuzzy b-irresolute. $f^{-1}(\sigma_{i_n}) \in FB(X, \tau_f)$.

The implies that $f^{-1}(V) \in \tau_{f\lambda}$ and that f is fuzzy λ' -continuous \Box

Proposition 3-8

A fuzzy topological space X is b-compact if and only if every family of fuzzy b-closed subsets of X with finite intersection property has non empty intersection.

Remark 3-9

Let (X, τ_f) be a fuzzy topological space and τ_{λ} a fuzzy topology on X which has FB(X) as a subbase .Then (X, τ_f) is b-compact iff $(X, \tau_{f\lambda})$ is b-compact .

Proof

 $(X, \tau_{f\lambda})$ be compact Then, since $FB(X) \subset \tau_{f\lambda}$. It follows that (X, τ_f) is b-compact \Box

Proposition 3-10

Let (X, τ_f) be a fuzzy topological space which is b-compact. Then each $\tau_{f\lambda}$ - closed fuzzy set in X is b-compact.

Proof

Let *U* be any $\tau_{j\lambda}$ -closed fuzzy set in *X*. Let $\{V_{\beta_i}: \beta_i \in I\}$ be $\tau_{j\lambda}$ an open cover of *U*. Since X - U is $\tau_{j\lambda}$ -open $\{V_{\beta_i}: \beta_i \in I\} \lor (X - U)$ is $\tau_{j\lambda}$ an open cover of *X*. Since *X* is $\tau_{j\lambda}$ -compact, by proposition 3-9, there exists a finite subset $I_0 \subseteq I$ such that $X = \{V_{\beta_i}: \beta_i \in I\} \lor (X - U)$ This implies that $U \leq \{V_{\beta_i}: \beta_i \in I_0\}$.

Hence U is b-compact relative to X.

Proposition 3-11

Let (X, τ_f) be a fuzzy b-compact topological space. Then every family of $\tau_{f\lambda}$ -closed fuzzy subsets of X with finite intersection property has non-empty intersection.

Proof

Let *X* be b-compact. Let $U = \{B_{\beta_i} : \beta_i \in I\}$ be any family of τ_{fi} -closed fuzzy subsets of X with finite intersection property. Suppose $\land \{B_{\beta_i} : \beta_i \in I\} = \phi$. Then $\{X - B_{\beta_i} : \beta_i \in I\}$ is a τ_{fi} -open cover of *X*. Hence it must contain a finite subcover $\{X - B_{\beta_{ij}} : j = 1, 2, 3, ..., n\}$ for *X*. This implies that $\land \{B_{\beta_{ij}} : j = 1, 2, 3, ..., n\} = \phi$ and contradicts with hypothesis that *U* has finite intersection property. \Box

Proposition 3-12

Let $(X, \tau_f)(Y, \sigma_f)$ be fuzzy topological spaces and let $f: X \to Y$ be fuzzy λ' -b-continuous. If a fuzzy subset G of X is b-compact relative to X, then f(G) is b-compact relative to Y.

Proof

Let $\{V_{\beta_i}: \beta_i \in I\}$ be a cover of f(G) by $\sigma_{f\lambda}$ -open fuzzy sets in Y. Then $f^{-1}\{V_{\beta_i}: \beta_i \in I\}$

is a cover of *G* by $\sigma_{f^{\lambda}}$ -open fuzzy sets in *X*. *G* is b-compact relative to *X*. Hence by remark 3-9. *G* is $\tau_{f^{\lambda}}$ -compact .So there exists a finite subset $I_0 \subseteq I$ such that $G \leq \bigcup \{f^{-1}(V_{\beta_i}): \beta_i \in I_0\}$ and so $f^{-1}(G) \leq \bigcup \{V_{\beta_i}: \beta_i \in I_0\}$. Hence $f^{-1}(G)$ is $\tau_{f^{\lambda}}$ -compact relative to *Y*. Thus $f^{-1}(G)$ is b-compact relative to *Y* \Box

Corollary 3-13

If $f:(X, \tau_f) \to (Y, \sigma_f)$ is a fuzzy λ' -b-continuous surjective function and X is b-compact, then Y is b-compact.

Corollary 3-14

If $f:(X, \tau_f) \to (Y, \sigma_f)$ is a fuzzy b-irresolute surjective function and X is b-compact then Y is b-compact.

Proposition 3-15

Let *A* and *B* be fuzzy subsets of a fuzzy topological space *X* such that *A* is b-compact relative to *X* and *B* is $\tau_{f\bar{A}}$ -closed in *X*. Then $A \wedge B$ is b-compact relative to *X*.

Proof

Let $\{V_{\beta_i}: \beta_i \in I\}$ be a cover of $A \wedge B$ by τ_{β} -open fuzzy subsets of X.

Since X - B is a $\tau_{f\lambda}$ -open fuzzy set, $\{V_{\beta_i} : \beta_i \in I\} \lor (X - B)$ is a cover of A. A is bcompact and thus $\tau_{f\lambda}$ -compact relative to X. Hence there exists a finite subset $I_0 \subseteq I$ such that

$$A \leq \bigvee \{ V_{\beta_i} : \beta_i \in I \} \lor (X - B)$$

Therefore

 $A \wedge B \leq \bigvee \left\{ V_{\beta_i} : \beta_i \in I \right\}$

Hence $A \wedge B$ is $\tau_{f\lambda}$ -compact. Therefore $A \wedge B$ is b-compact \Box

References:-

- 1. L. A. Zadeh, (1965), Fuzzy Sets, Information and Control 8, p.p.338-353
- 2. C. L. Chang, (1968), Fuzzy Topological Spaces. J. Math. Anal.24, pp.182-190
- 3. D. Andrijevic, (1996), on b-Open Set, Math. Vesnik ,48,pp. 59-64,
- 4. K. K. Azad, (1981), on Fuzzy Semi Continuity, Fuzzy Almost Continuity and Fuzzy Weakly a Continuity, J. Math. Anal. Appl., 82, pp.14-32,
- G. Balasubramanian and P. Sundaram, (1997), on Some Generalizations of Fuzzy Continuous Functions, Fuzzy Sets and Systems, 86, pp. 93–100.
- 6. R.Lowen, (1976), Fuzzy Topological Spaces and Fuzzy Compactness, J. Math. Anal. Appl .56, pp. 621-633
- M.E. El-Shafei and A. Zakari,(2006) ,θ-Generalized Closed Sets in Fuzzy Topological Space. The Arabian Journal for Science and Engineering, 31, No; 2A. July
- 8. Erdal Ekici,(2004), on Some Types of Continuous Fuzzy Functions, Applied Mathematics E-Notes, 4, pp.21-25.
- 9. Y.C. Kim, A. A. Ramadan and S. E. Abbas, (2003), r- Fuzzy Strongly Preopen Sets in Fuzzy Topological Spaces ,Matematiqki Vesnik, 55, pp.1-13.
- 10. N. Levine,(1970),Generalized Closed Sets in Topology, Rend. Circ. Math. Palermo, 19, pp. 89–96.
- 11. U. HÄohle and A. P. Sostak, (1995), A General Theory of Fuzzy Topological Spaces, Fuzzy Sets and Systems 73, pp. 131-149.

- 12. K. C. Chattopadhyay and S. K. Samanta, (1993), Fuzzy Topology, Fuzzy Closure, Fuzzy Compactness and Fuzzy Connectedness, Fuzzy Sets and Systems 54, pp. 207-212.
- 13. Y.M Liu and M. K. Luo, 1997, Fuzzy Topology, World Scientific Publishing Co. Singapore
- 14. S.S. Thakur and R.K. Saraf ,Jabalpur ,(1995), α-Compact Fuzzy Topological Spaces ,Mathematica Bohemicano ,2,120 pp. 299-303.
- A.A. Ramadan, S.E. Abbas, Yong Chan Kim, (2001), Fuzzy Irresolute Mappings in Smooth Fuzzy Topological Spaces, J. Fuzzy Math., 9(4),pp. 865-877.

amrejab200a@yahoo.uk.com

الفضاءات التبولوجية الضبابية المرصوص من النوع b

أحمد محمد رجب قسم الرياضيات كلية الرياضيات وعلوم الحاسبات، جامعة الكوفة

الخلاصة: الهدف من هذا البحث هو تقديم ودر اسة مفهوم التر اص من النوع b في الفضاءات التبولوجية الضبابية من النوع b . ، وكذلك قدمنا ودرسنا مفهوم الدوال المستمرة من النوع b والدوال المحيرة من النوع b .