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Abstract 

        In this paper, the Bou-baker polynomial 

method is used to evaluate an approximate 

so1ution initia1 value problem of high-order 

of non1inear Vo1terra-Fredholm Integro-

Differential equation of the second kind. 

Three different examp1es and their graphics 

are displayed. 
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1.  Introduction 

Many biological, social, technical and 

physical issues were characterized using 

integral and Integro-differential equations. 

Analytically, nonlinear integral and Integro-

differential equations are employed, where 

precise solutions are difficult to acquire. 

Numerous numerical techniques have been 

investigated, including the differential 

transform (Behiry and Mohamed 2012) as 

well as a mechanization algorithm (Wang 

2006). 

Numerous authors have provided techniques  

for solving a nonlinear Integro-differential 

equation, for example, Deepa et al. (2000), 

Taylor polynomial solution (Maleknejad and 

Mahmoudi 2003), Numerical Solution by 

Approximate Methods in some mathematical 

models (Nasser and Hamid 2009), 

Chebyshev Polynomial (Behrooz and 

Mohammad 2013), Homotopy Perturbation 

Method, Rus et at. (2006). The nonlinear 

Volterra-Fredholm Differential equation of 

the second kind. 

𝑦(𝑥) = 𝑓(𝑥) + 𝜆1 ∫ 𝑘1
𝑥

𝑎
(𝑥, 𝑦)[𝑦(𝑡)]𝑟𝑑𝑡 +

𝜆2 ∫ 𝑘2
𝑏

𝑎
(𝑥, 𝑡)[𝑦(𝑡)]𝑠𝑑𝑡                    (1) 
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where 
1( , )k x t  , 

2 ( , )k x t  and ( )f x  represent 

known functions, 
1 ,

2 , a ,b  represent 

constant values, r , s are integers while 

( )y x  denotes an unknown function to be 

determined.   

Therefore, the high-order non-linear 

Volterra-Fredholm Integro-differential 

equation of the second kind is given by 

(Behiry and Mohamed 2012; Wang, 2006): 

∑ 𝜇𝑖

𝑚

𝑖=0

(𝑥)[𝑦(𝑖)(𝑥)] = 𝑓(𝑥) 

+ ∫ 𝑘(𝑥, 𝑡)

𝑥

𝑎

[𝑦(𝑡)]𝑟𝑑𝑡

+ ∫ 𝑘(𝑥, 𝑡)

𝑏

𝑎

[𝑦(𝑡)]𝑠𝑑𝑡                    (2) 

having the following initial conditions given 

by 𝑦(𝑎)𝑖 = 𝑦𝑖  , 𝑖 = 0,1,2, … … , 𝑚 − 1, 

In this research, we used the Bou-baker 

polynomials technique to propose the 

approximation method for solving the high-

order nonlinear Volterra Fredholm Integro-

differential equation of the second kind. 

 

2. Bou-baker Polynomials Method   

 The Bou-baker polynomials of n degree are 

expressed as (Handan and Ayşegül 2006), 

(Biazar and Eslami 2010). 

𝐵𝑛(𝑡) = ∑ [
(𝑛−4𝑝)

(𝑛−𝑝)
𝑐𝑛−𝑝

𝑝
]

𝜉(𝑛)
𝑝=0 (−1)𝑝𝑥𝑛−2𝑝,   (3)                                                                            

Where   𝜉(𝑛) = [
 𝑛 

2
] =

2𝑛+((−1)𝑛−1)

4
. 

Here, 𝜉(𝑛) = [
 𝑛 

2
] resembles the floor 

function. 

Moreover, the standard Bou-baker 

polynomials are expressed as follows: 

𝐵0(𝑥) = 1 

𝐵1(𝑥) = 𝑥 

𝐵2(𝑥) = 𝑥2 + 2 

𝐵3(𝑥) = 𝑥3 + 𝑥 

           ¦ 

𝐵𝑚(𝑥) = 𝑥𝐵𝑚−1(𝑥) − 𝐵𝑚−2(𝑥) for 𝑚 > 2    

 

3.  Bou-baker Polynomial’s 

approximation Method   

This section discusses Bou-baker 

polynomials approximation solution of the 

following form: 

𝑦(𝑥) = ∑ 𝑐𝑛𝐵𝑛
𝑁
𝑛=0 (𝑥), −∞ < 𝑥 ≤ 𝑏 ≤ ∞.   (4) 

Here,  𝐵𝑛(𝑥) 𝑛 = 0,1,2, … denotes the Bou-

baker polynomials, 𝑎𝑛  , 0 ≤ 𝑛 ≤ 𝑁  

represents the unknown Bou-baker 

coefficients, while N represents some 

positive integers provided that 𝑁 ≥ 𝑚. We 

employ the collocation points described as 

following to obtain a numerical solution of 

eq. (4). 

𝑥𝑖 = 𝑎 +
 𝑏 − 𝑎 

𝑁
  𝑖 ,        

 𝑖 = 0,1,2, … … . , 𝑁 .                  (5) 

Substituting eq. (4) into eq. (2) gives 
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∑ 𝜇𝑖

𝑚

𝑖=0

(𝑥) [∑ 𝑐𝑛𝐵𝑛(𝑥)

𝑁

𝑛=0

]

𝑖

= 𝑓(𝑥) + ∫ 𝑘(𝑥, 𝑡)

𝑥

𝑎

[∑ 𝑐𝑛𝐵𝑛(𝑡)

𝑁

𝑛=0

]

𝑟

𝑑𝑡

+ ∫ 𝑘(𝑥, 𝑡)

𝑏

𝑎

[∑ 𝑐𝑛𝐵𝑛(𝑡)

𝑁

𝑛=0

]

𝑠

𝑑𝑡        (6) 

Eq. (6) can be written in a simpler form such 

that 

∑ 𝜇𝑖(𝑥)

𝑚

𝑖=0

[𝑐0𝐵0(𝑥) + 𝑐1𝐵1(𝑥) + 𝑐2𝐵2(𝑥)

+ 𝑐3𝐵3(𝑥) + ⋯ ]𝑖 = 𝑓(𝑥) 

+ ∫ 𝑘(𝑥, 𝑡)

𝑥

𝑎

[[𝑐0𝐵0(𝑡) + 𝑐1𝐵1(𝑡) + 𝑐2𝐵2(𝑡)

+ 𝑐3𝐵3(𝑡)

+ ⋯ ]]
𝑟

𝑑𝑡                    (7) 

                 + ∫ 𝑘(𝑥, 𝑡)

𝑏

𝑎

[[𝑐0𝐵0(𝑡) + 𝑐1𝐵1(𝑡)

+ 𝑐2𝐵2(𝑡) + 𝑐3𝐵3(𝑡)

+ ⋯ ]]
𝑠
𝑑𝑡   

∑ 𝜇𝑖

𝑚

𝑖=0

(𝑥)[𝑐0 + 𝑐1 ∗ 𝑥 + 𝑐2(𝑥2 + 2)

+ 𝑐3(𝑥3 + 𝑥) + ⋯ ]𝑖  = 

= 𝑓(𝑥)                                           

+ ∫ 𝑘(𝑥, 𝑡)

𝑥

𝑎

[[𝑐0 + 𝑐1 ∗ 𝑥 + 𝑐2(𝑥2 + 2)

+ 𝑐3(𝑥3 + 𝑥)

+ ⋯ ]]
𝑟

𝑑𝑡              (8) 

∫ 𝑘(𝑥, 𝑡)

𝑏

𝑎

[[𝑐0 + 𝑐1 ∗ 𝑥 + 𝑐2(𝑥2 + 2)

+ 𝑐3(𝑥3 + 𝑥)

+ ⋯ ]]
𝑠
𝑑𝑡                  

The right-hand side of eq (8) is integrated and 

simplified, resulting in the collocation points 

of eq. (5). The initial condition and 

collocation points resulted in a (N+1) linear 

algebraic equation with (N+1) unknown 

constants. The unknown constants are then 

inserted in eq. (4) once this is solved. I to 

obtain the numerical solution to eq. (2) with 

the help of the MATLAB program. 

 

4.  Examples and Results 

    The following examples of nonlinear high 

order Fredholm Integro-differential 

equations will be presented in this section. 

Let's have a look at the Fredholm Integro-

differential equations once again. These 

examples were chosen from (Behiry and 

Mohamed 2012; Wang 2006).  

Examp1e 1: 

𝑦(3)(𝑥) + 𝑦(𝑥)

= −
 𝑥5

5
+

2𝑥3

3
+

5𝑥2

6

−
113𝑥

105
− 1 + ∫ 𝑦2

𝑥

0

(𝑡)𝑑𝑡

+ ∫ 𝑥𝑡(𝑥 + 𝑡)𝑦2

1

0

(𝑡)𝑑𝑡 
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           0 ≤ 𝑥 ≤ 1 

with respect to initial conditions 

 𝑦(0) = −1, 𝑦′(0) = 0 and 𝑦′′(0) = 2 

having 𝑦(𝑥) = −1 + 𝑥2as the exact solution. 

Figure 1 and Tab1e 1 compares between 

approximate and exact solutions for several 

values of N in Example 1. 

 

Figure 1:  Comparison of the solutions of 

example 1. 

Examp1e 2: 

𝑥4𝑦(6)(𝑥) + 𝑦(3)(𝑥) + 𝑦′(𝑥)

= −𝑥4 cos(𝑥) +
1

 2 
sin(2𝑥)

+ 3𝑥 + 0.4     

−0.1 𝑒{[cos(1)+sin(1)]𝑥[cos2(1)+3𝑒]}   

  −2 ∫[1 + 𝑦2(𝑡)]

𝑥

0

𝑑𝑡 + ∫ 𝑒𝑡𝑦3(𝑡)𝑑𝑡

1

0

,

0 ≤ 𝑥 ≤ 1             

having initial condition           

  𝑦(0) = 1, 𝑦′(0) = 0 , 𝑦′′(0) = −1 

𝑦′′′(0) = 0 , 𝑦(4)(0) = 1 𝑎𝑛𝑑 𝑦(5)(0) = 0    

Here, 𝑦(𝑥) = cos (𝑥) is the exact solution. 

The numerical results of this problem is 

shown in Table 2 and Fig (2). 

 

Figure 2:  Comparison of the solutions of 

example 2. 

Examp1e 3: 

𝑦(8)(𝑥) − 𝜋8𝑦(𝑥)

=
 𝑥 

2
− ∫ 𝑦2

𝑥

0

(𝑡)𝑑𝑡

+
 sin 2𝜋𝑥 

2𝜋
∫[cos(𝜋𝑡)

1

0

− 𝑦(𝑡)] 𝑑𝑡 ,             0 ≤ 𝑥 ≤ 1 

With initial condition 

𝑦(0) = 0, 𝑦′(0) = 𝜋, 𝑦′′(0) = 0,  

𝑦′′′(0) = −𝜋3, 𝑦(4)(0) = 0,  

𝑦(5)(0) = −𝜋5, 𝑦(6)(0) = 0 and 𝑦(7)(0) =

−𝜋7 

Here,𝑦(𝑥) = 𝜋𝑥 −
 𝜋3

3!
𝑥3 +

 𝜋5

5!
𝑥5 −

 𝜋7

7!
𝑥7 is 

the exact solution. 

Numerical results of this problem are shown 

in Table 3 and Fig (3). 
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Figure 3:  Comparison of the solutions of 

example 3. 

5. Conclusion 

    Most nonlinear Volterra Fredholm Integro-

Differential equations are difficult to solve 

analytically, necessitating the use of 

approximate solutions in many situations. 

For this reason, we provide the solution of 

high-order nonlinear Volterra Fredholm 

Integro-Differential equations. Our technique 

uses Bou-baker polynomials to convert a 

high-order non-linear Volterra Fredholm 

Integro-Differential equation to a collection 

of linear algebraic equations that MATLAB 

Program can easily solve. The final outcome 

demonstrates that the approach employed can 

effectively handle such problems, as shown 

in the tables. 

 

1. Using Bou-baker polynomials basis 

function to approximate when the nth 

degree of Bou-baker po1ynomia1s is 

increases then the error is decreases. 

We can see also from Fig (1), Fig (2) and Fig 

(3), tab (1), tab (2) and tab (3) that the 

approximation is good. when compare 

approximation with the exact so1ution.
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6. Appendix 

Table 1: Comparison between the approximate and the exact solutions for several values of N in 

Example 1. 

X 
Exact 

solution 

Differentia1 

transform method 

Bou baker po1ynomia1s method 1.S. E 

N=1 N=2 N=5  

0 -1.0000 -1.00000 -1.00000 -1.00000 1.00000 0.0000 

0.1 -0.9900 -0.9900 -1.00000 -0.9900 -0.9900 0.0000 

0.2 -0.9600 -0.9600 -1.00000 -0.9600 -0.9600 0.0000 

0.3 -0.9100 -0.9100 -1.00000 -0.9100 -0.9100 0.0000 

0.4 -0.8400 -0.8400 -1.00000 -0.8400 -0.8400 0.0000 

0.5 -0.7500 -0.7500 -1.00000 -0.7500 -0.7500 0.0000 

0.6 -0.6400 -0.6400 -1.00000 -0.6400 -0.6400 0.0000 

0.7 -0.5100 -0.5100 -1.00000 -0.5100 -0.5100 0.0000 

0.8 -0.36000 -0.36000 -1.00000 -0.36000 0.36000 0.0000 

0.9 -0.19000 -0.19000 -1.00000 -0.19000 0.19000 0.0000 

1 0 0 -1.00000 0 0 0 

Table 2:  Numerical comparison of results in Example 2. 

X 
Exact 

solution 

Differential 

transform method 

Bou-baker polynomia1s method L.S. E 

N=1 N=2 N=4 N=6  

0 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 0.0000 

0.1 0.9950 0.9950 1.00000 0.9950 0.9950 0.9950 0.0000 

0.2 0.9801 0.9801 1.00000 0.9800 0.9801 0.9801 0.0000 

0.3 0.9553 0.9553 1.00000 0.9550 0.9553 0.9553 0.0000 

0.4 0.9211 0.9211 1.00000 0.9200 0.9211 0.9211 0.0000 

0.5 0.8776 0.8776 1.00000 0.8750 0.8776 0.8776 0.0000 

0.6 0.8253 0.8253 1.00000 0.8200 0.8254 0.8253 0.0000 

0.7 0.7648 0.7648 1.00000 0.7550 0.7650 0.7648 0.0000 

0.8 0.6967 0.6967 1.00000 0.6800 0.6971 0.6967 0.0000 

0.9 0.6216 0.6216 1.00000 0.5950 0.6223 0.6216 0.0000 

1 0.5403 0.5403 1.00000 0.5000 0.5417 0.5403 0.0000 
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Table 3:  Numerical comparison of resu1ts in Example3. 

X Exact 

solution 

Differential transform 

method 

Bou-baker polynomia1s method L.S. E 

N=1 N=3 N=5 N=7  

0 0 0 0 0 0 0 0 

0.1 0.3090 0.3090 0.3142 0.3090 0.3090 0.3090 0.0000 

0.2 0.5878 0.5878 0.6283 0.5870 0.5878 0.5878 0.0000 

0.3 0.8090 0.8091 0.9425 0.8029 0.8091 0.8091 0.0000 

0.4 0.9511 0.9519 1.2566 0.9259 0.9520 0.9519 0.0000 

0.5 1.0000 1.0041 1.5708 0.9248 1.0045 1.0041 0.0000 

0.6 0.9511 0.9653 1.8850 0.7687 0.9670 0.9653 0.0000 

0.7 0.8090 0.8502 2.1991 0.4266 0.8552 0.8502 0.0000 

0.8 0.5878 0.6903 2.5133 -0.1326 0.7030 0.6903 0.0000 

0.9 0.3090 0.5370 2.8274 -0.9398 0.5660 0.5370 0.0000 

1 0.0000 0.4633 3.1416 -2.0261 0.5240 0.4633 0.0000 
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