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Abstract 

The concern of this study focuses on constructing a new classes of separation axioms 

by using the notion of Regular**− open set of ideal topological space. Using the 

concept of regular-open sets and Regular-local functions with *R-closure operator in 

an ideal topological space (X, T, I), analogous to the usual separation axioms. A few 

characteristics and attributes are investigated. Like separation axioms works. 
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1- Introduction and Preliminaries. 

Velicko [1] first presented the concepts of θ-

open, closed, and closure subset to examine 

the significant class of H-closed space in 

terms of arbitrary filter bases. The definition 

of the I-open set notion by Tankovic and 

Hamlett [2, 3] in 1990 used 

Vaidyanathaswamy's local function like a 

starting point. In just an ideal topological 

space, Kuratowski [4] established the 

concept of the local function.  A high 

number of mathematicians, including 

Hayashi [2], Three researchers Natakaniec 

[5], Modak, and Bandyopadhyay [6] have 

examined this area and demonstrated some 

novel findings. The idea of a regular-local 

function is introduced in this work, and 

some of its aspects are investigated. 

The notation that is used is as follows. The 

family of open neighborhoods at point x will 

be T(x) if (X, T) is a topological Space. 

cl(A) is the set closure, and Int(A) is the 

set interior. Asset A is referred to as clopen 

if it is both open and closed. If each point in 

set A contains the closure of an open 

Neighborhood in A, then A is said to be θ- 

open [ 7]. (There is a V ∈ T(x) such that 

cl(v) ⊆ A). It's fine knowledge that the 

collection of all θ-open subsets of (X, T) are 

topologies on X that we will designate by 

Tθ. What is immediately obvious according 

to the definitions, Tθ ⊂ T. Then Tθ = T, 

consequently, and only when the space (X, 

T) is regular. If we have cl(u) ∩ A ≠ ∅ for 

any open Neighborhood u of X, then a point 

x ∈ X is said to be in the θ-closure of a 

subset A ⊆ X [ 8]. We'll use clθ to refer for 

θ-closure(A). If A = clθ then a subset A ⊆ X 

is said to be θ-closed (A). A set need not be 

a θ-closed set for its θ- closure. A non - 

empty set collection of X subsets that fulfills 

the condition is an ideal I on a topological 

space (X, T). 
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i. ∅ ∈ I. 

ii. A∈ I, and B ⊆ A imply B ∈ I. 

iii. A ∈ I and B ∈ I imply A ∪ B ∈ I. 

 

Some writers include a fourth requirement 

that X by itself is not in I. Proper ideals are 

ideals that have additional properties. The 

term ideal topological space and the symbol 

are used to refer to a topological space (X, 

T) having an ideal I on X. (X, T, I). The 

local function of A regarding I and T is 

defined as A*(l) = {x ∈ X:  U ∩ A ∉ I for 

any U ∈ T(x)} for a subset A⊆ X [9]. To 

avoid any misunderstanding, we just write 

A*. For a topology T*(I) known as the T*-

topology finer than T, cl* (A) = A ∪ A* is 

defined as a Kuratowski[4] closure operator. 

A subset A of an ideal space (X, T, I) is T*-

closed [10] (resp. *-dense in itself [10]), and 

∗-perfect [10] if A* ⊂ A (resp. A* ⊂ A, A = 

A*). There is no doubt that A is only *-

perfectly formed if and only if it is internally 

T*-closed and *-dense. 

Definition 1.1 Let (X, T) be a topological 

space. And A⊂ X. Then a subset A of X is 

said to be Regular-open If A = Int(cl(A)), 

[11]. Regular-closed is the term used to 

describe a Regular -open set's counterpart 

[12]. The term RO(X) (or RC(X)) stands for 

the collection of all Regular-open (or 

Regular-closed) sets in X. 

 Remark 1.1 We denote all Regular-open 

sets forms a topology TR or TR.  

Definition 1.2 Let (X, T) be a topological 

space. Then the Regular-interior and the 

Regular-closure of A in X defined as IntR 

(A) = ∪ { U : U ⊆ A, U ∈ TR } and clR (A) 

= ∩ { F : A ⊆ F, X – F ∈ TR }.From 

definition, IntR (A) is a Regular-open set 

and clR (A) is a Regular-closed set [12]. 

Remark 1.2 

1. Every Regular-open is open. 

2. Every Regular-closed is closed. 

 

2- Regular-local functions 

Definition 2.1 Assume that (X, T, and I) is 

an ideal topological space. We define the 

operator A (*R) (I, T) = {x ∈ X: for a subset 

A of X, where A ∩ U ∉ I for every U T∈ R 

(x)}. Just so there is no misunderstanding 

The Regular-local function of A with respect 

to I and T is indicated by A(*R) (I, T) and is 

denoted as A(*R). Also, A(*R) = A∗R  

Remark 2.1 Assume that A ⊂ X and that 

(X, T, I) is an ideal topological space. Then, 

cl(*R) (A) = A ∪ A(*R) is a *R-closure 

operator. 

Remark 2.2 If A ⊂ X and (X, T, I) is an 

ideal topological space, Then  

T∗R  = { X − A ∶ cl∗R(A) = A}. 

Example 2.1 Assume that (X, T, I) is an 

ideal topological space and that A ⊂ X. with 

X = {1, 2, 3}, T = {X, {1, 2}, {2}, {1}, ∅ }, 

and I = { ∅, {3}}. 

𝐀 A∗R cl∗R 

∅ ∅ ∅ 

X X X 

{1} {1, 3} {1, 3} 

{2} {2, 3} {2, 3} 

{3} {3} {3} 

{1, 2} X X 

{1, 3} {1, 3} {1, 3} 

{2, 3} {2, 3} {2, 3} 
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Then T∗R  =  { ∅, X, {1, 2 }, {2}, {1} }. 

Theorem 2.1. Given that I an ideal on X and 

(X, T) is a topological space.  

Then B (I, TR) = {V- i: V ∈T*R and i∈ I} is 

a basis for T (*R). 

 Lemma 2.1 [ 13] In the event that (X, T, I) 

is a perfect topological space and A ⊂X. A* 

= cl(A*) = cl*A if A ⊂A* (A). 

Lemma 2.2. Considering that A⊂ X and (X, 

T, I) is an ideal topological space, In the 

event where A ⊂A(*R), then A(*R) = cl 

R(A) = cl(*R) (A).  

Theorem 2.2 Suppose that (X, T, I) is an 

ideal topological space. Then, the under 

characteristics are hold. 

1. If I = ∅, then cl(*R) (A) = cl R((A). 

2. If I = P(X), then cl(*R) (A) = A. 

3. If A ∈ I, then cl(*R) (A) = A. 

Obvious proof. 

Theorem 2.3Assume that (X, T, and I) is an 

ideal topological space, A and B are subsets 

of X. As a result, the following 

characteristics are true for R-local functions: 

1.  cl∗R ( ∅) =  ∅. 

2.  If A ⊂  B, then cl∗R(A)  ⊂  cl∗R(B).  

3. For an another ideal J ⊇

 I on X, cl∗R(A, T, J )  ⊂  cl∗R(A, T, I).  

4. cl∗(A)  ⊂  cl∗R(A).  

5. cl∗R(A)  ⊂ clR(A). 

6. cl∗R(cl∗R(A))  ⊂  cl∗R(A) if A  

is Regular − closed. 

7.  cl∗R(A) ∪ cl∗R(B) = cl∗R(A ∪ B).  

8.  cl∗R(A ∩ B) ⊂ cl∗R(A) ∩ cl∗R(B). 

3- R**-closure and R**-interior in 

ideal topological spaces. 

Remark 3.1. In this study, we will consider 

the topological space is locally indiscrete. 

 

Definition 3.1.[ 14]. A space X is called 

locally indiscrete if every open set is closed 

or verse. 

Example 3.1. Let X = {𝑎1, 𝑎2, 𝑎3},  

T = {{𝑎1, 𝑎2}, {𝑎3}, X, ∅}. {𝑎1, 𝑎2} is open 

and closed {𝑎3} is open and closed X and ∅ 

is open and closed. 

Proposition 3.1. [ 14]. For a topological 

space X, If X is locally indiscrete then every 

dense open subset of X is regular-open. 

Definition.3.2. [15] Assuming that (X, T, I) 

an ideal topological space, A is a subset of 

X, and x is arbitrary point in X. 

 Then if A ∩ (int (cl∗ (w)) ≠∅ for all open 

neighborhoods w of x, then x is termed a δ- 

I-cluster point of A. The [A]δ − I symbol 

designates the family of each, δ − I cluster 

point of A. 

 If [A]δ − I = A, then a subset A is said to 

be, δ − I-closed. δ – I -closed set of X 

complement is referred to as be, δ − I-open. 

Remark.3.2. [16] The family of regular 

open sets of (X, T) is recognized for a 

topology is weaker than T. This topology is 

designated by the symbol TS and is known 
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as the semi-regularization of T. In reality, Ts 

is identical to the family of, δ-open sets of 

(X, T ). 

Remark.3.3 We write  [A]δ − l = {x ∈ X : 

int(cl*(w) ∩ A ≠ ∅ all w ∈T } , It is written 

as σcl(A) = [A]δ − l. 

Lemma 3.1 [ 15 ] A and B a subset of an 

ideal topological space (X, T, l).Then, the 

subsequent characteristics are satisfied: 

1. A ⊆ σcl(A). 

2. If σcl(A) ⊂ σcl(B), then A ⊂ B. 

3. σcl(A) = ∩ {G ⊂ X: A ⊂ G and G is, δ − l 

− closed}. 

Definition 3.3. Let (X, T, I) bean ideal 

topological space, and A a subset of X. Then 

Rσcl*R(A) = {x ∈ X: A ∩ int(cl*R(w)) ≠ ∅, 

for each open neighborhood w of X}. 

Definition 3.4. A subset A of an ideal 

topological space (X, T, I) is called R*-

closed if Rσcl*R ⊂ W, whenever A ⊂ W 

and W is open in (X, T, I). The complement 

of R*-closed set in (X, T, I) is called R*-

open set. 

Remark 3.4. The collection of all R*-closed 

sets in (X, T, I) denoted by R*− C(X). The 

family of all R*-open sets in (X, T, I) 

denoted by R*− O(X). 

Example 3.2. Let X = {e1, e2, e3}, T = {X, 

∅, {e3}, {e1, e2}, I = {∅, {e1, e2}}. 

RO(X) = {X, ∅, {e3}, {e1, e2}}. 

A Rσcl*R(A) 

X X 

∅ ∅ 

{e1} {e1, e2} 

{e2} {e1, e2} 

{e3} {e3} 

{e1, e2} {e1, e2} 

{e1, e3} X 

{e2, e3} X 

Then R*− C(X) = {X, ∅, {e1}, {e2}, {e3}, 

{e1, e2}, {e1, e3}, {e2, e3}}. 

R*− O(X) = {X, ∅, {e2, e3}, {e1, e3}, {e1, 

e2}, {e3}, {e2}, {e1}}. 

Lemma.3.2. Every Rσcl*R(A) is closed in 

ideal topological space. 

Proof. If W ∈ T (x) and x ∈ cl(Rσcl*R(A)), 

then W ∩ Rσcl*R(A) ̸ = ∅. 

Since W ∈ T (y) and y ∈ Rσcl*R(A) for 

some y ∈ X, y ∈ W ∩ Rσcl*R(A). 

We may deduce A∩ int(cl*R(w))  ̸  =  ∅. 

from the definition of Rσcl*R(A). 

Consequently, x ∈ Rσcl*R(A). Rσcl*R(A) 

is closed because cl(Rσcl*R(A)) ⊂ 

Rσcl*R(A). 

 Theorem.3.1. Assume that (X, T, l) is an 

ideal space and that A ⊆ X. Hence, 

Rσcl*R(A) = Rσcl*R(B) if A ⊆ B ⊆ 

Rσcl*R(A). 

Proof. Let A ⊆ B, Rσcl*R(A) ⊆ Rσcl*R(B), 

and B ⊆ Rσcl*R(A), 

Rσcl*R(B) ⊆ Rσcl*R(Rσcl*R(A)) = 

Rσcl*R(A). 

Consequently, Rσcl*R(A) = Rσcl*R(B). 

 

Definition 3.5. Let (X, T, I) be an ideal 

topological space, and A a subset of X is 

called R**-closed if Rσcl*R ⊂ W whenever 

A ⊂ W, and W is Regular-open in (X, T, I). 

The complement of R**-closed in (X, T, I) 

is called R**-open set. 

Remark 3.5. The collection of all R**-

closed sets and R*-open set in (X, T, I) 

denoted by (respectively R**− C(X). and 

R**-open) sets  

Example 3.3. Let X = {1, 2, 3}, T = {X, ∅, 

{1}, {2}, {1, 2}, I = {∅, {3}}. 
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Then RO(X) = {X, ∅, {1}, {2}}. 

 

A Rσcl*R(A) 

X X 

∅ ∅ 

{1} {1, 3} 

{2} {2, 3} 

{3} {3} 

{1, 2} {1, 2, 3} 

{1, 3} {1, 3} 

{2, 3} {2, 3} 

 

Proposition 3.2. Every R*-closed set is 

R**-closed set. 

Proof.  Let A be any R*-closed set, and W 

be any open set in ideal locally indiscrete 

topological space (X, T, I), such that A ⊆ 

W, and Rσcl*R(A) ⊆ W (by Def.), then 

every open set is closed (by Def.), 

therefor W is Regular-open, Hence, A is R*-

closed. 

Remark 3.6. The opposite of proposition 

(3.2) is not true. It is clear from the 

following example. 

Example 3.4. Let X = {a1, a2, a3}, 

T = {X, ∅, {a1}, {a2}, {a1, a2}}, I = {∅, 

{a3}}. 

RO(X) = {X, ∅, {a1}, {a2}}, if A = {a1, , 

a2}. 

Rσcl*R(A) = {a1, a2, a3}. 

Then A is R**− closed but not R*− closed. 

 Remark.3.7. 

1- Every Regular-open is R**-closed set. 

2-  Every Regular-open is R*-closed set. 

The opposite of Remark (3.5) is not 

always true,  

Theorem.3.2. Rσcl*R(A)) is always R**-

closed for any subset A of X if (X, T, I) is an 

ideal space. 

Proof. Let Rσcl*R(A) ⊆ W, where W is 

Regular-open set. 

Since Rσcl*R(Rσcl*R(A)) = Rσcl*R(A). 

We have Rσcl*R(A)(Rσcl*R(A)) ⊆ W . 

Whenever Rσcl*R(A) ⊆ W and W Regular-

open set. Hence Rσcl*R(A) is R**-closed 

set. 

Theorem.3.3. where A and B are 

R**−closed sets in a topological ideal space 

(X, T, and I), then A ∪ B is a R**−closed 

set in (X, T, I). 

Proof. Suppose that A ∪ B ⊆ W, where W 

is any Regular-open set in (X, T, I). Then A 

⊆ W and B ⊆ W. Given that A and B are 

R**-closed sets in (X, T, I), Rσcl*R(A) ⊆ 

W and Rσcl*R(B)) ⊆ W. Whenever Rσcl*R 

(A ∪ B) = Rσcl*R(A) ∪ Rσcl*R(B) As a 

result. Rσcl*R (A∪ B) ⊆ W. Thus, A ∪ B is 

a R**- closed sets. 

Remark 3.8. the intersection of two R**-

closed sets are not necessarily R**-closed 

set as show in the following example.  

Example.3.5. If X = {1, 2, 3}, T = {X, ∅, 

{1}, {2}, {1, 2}}, I = {∅, {3}}. 

RO(x) = {X, ∅, {1}, {2}}. 

Then A = {1, 2}, B = {1, 3} are R**-closed 

set. 

But {1, 2} ∩ {1, 3} = {1} is not R**-closed 

set. 

Definition.3.6. The intersection of all R**-

closed sets containing A is known as the 

R**-closure of a subset A of X, indicated by 

R**− cl(A). Therefore, 
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R** − cl(A) = ∩ {F ⊆ X: A ⊆ F and F is 

R**-closed set}. 

𝑅∗∗-open ⟸ Regular open ⟹ open 

  ⇓   

  𝑅∗-open   

Digrame 3.1. Relationships among the Regular-

open, Regular**-open and Regular*-open. 

Definition.3.7. The Regular **-interior of 

subset A of X denotes the union of all 

Regular**-open sets contained within subset 

A and is known as R**-int(A). Therefore, 

R**-int(A) = ∪ {G ⊆ X: G ⊆ A and G is 

R**-open set}. 

Theorem 3.3. Let A and B be any two subsets 

of (X, T, I) then the following properties are 

true. 

1. A is R**-open set if and only if R**− 

int(A) = A. 

2. R**-int(A) is the bigger R**-open set 

subset of X contained in A. 

3. R**-int (∅) = ∅ and R**-int(X) = X. 

4. R**-int(A) is a R**-open set. 

5. If A ⊆ B, then R**-int(A) ⊆ R**-int(B). 

6. R**-int (A ∪ B) ⊇ R**-int(A) ∪ R**-

int(B). 

7. R∗∗-int (A ∩ B) = R**-int(A) ∩ R**-

int(B). 

8. R**-int(R**-int(A)) = R**-int(A). 

Proof. 

1. We know that A ⊆ R**-int(A) for any 

subset A of X. Let A be a R**-open set in 

(X, T, I). 

Also A ⊆ A and A ∈ {O ⊆ X: O ⊆ A and O 

is R**-open set}. It means that A = ∪ {O ⊆ 

X: O ⊆ A and O is R**-open set} ⊆ A. 

Then, R**-int(A) ⊆ A. Hence, A = R**-

int(A). Converse is true from the direct 

definition. 

2. By the definition of R**-int(A) the union 

of all sets is open there- fore R**-int(A) is 

open. Also, if B is any R**-open set 

contained in A then R**-int(A) ⊆ B. 

Therefore, R**-int(A) is the biggest R**-

open set in (X, T, I). 

 (3) and (4) it follows from. 

5. We know that B ⊆ R**-int(B) for every 

B. If A ⊆ B, then A ⊆ R**-int(B). So, R**-

int(B) is the R**-open set containing A. But 

R**-int(A) is biggest open set contained A. 

Therefore, R**-int(A) ⊆ R**-int(B). 

6. We know that A ⊆ A ∪ B and B ⊆ A ∪ 

B, we get R**-int(A) ⊆ R**-int (A ∪ B) and 

R**-int(B) ⊆ R**-int (A ∪ B). Then, R**-

int(A) ∪ R**-int(B) ⊆ R**-int (A ∪ B). 

7. We know that A∩B ⊆ A and A ∩ B ⊆ B 

by using (5) we have R**-int (A ∩ B) ⊆ 

R**-int(A) and R**-int(A ∩ B) ⊆ R**-

int(B).Then R**-int(A ∩ B) ⊆ R**-int(A) ∩ 

R**-int(B). On the other hand. R**-int(A) is 

R**-open set contained A and R**-int(B) is 

R**-open 

set contained B. Therefore, R**-int(A) ∩ 

R**-int(B) is R**-open set contained A ∩ B 

therefore R**-int(A) ∩ R**-int(B) ⊆ R**-

int (A ∩ B). Hence, R**-int (A ∩ B) = R**-

int(A) ∩ R**-int(B). 

8. We know that R**-int(A) is R**-open set 

in (X, T, I). Let R**-int(A) = O then O is 

R**-open set in (X, T, I). From (1) R**-

int(O) = O. It means that R**-int(R**-

int(A)) = R**-int(A). 
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4- Regular** Separation Axioms. 

 Definition.4.1 [17, 18]. The ideal 

topological space is called 

Regular*−𝕋0 −space (briefly. R*− 𝕋0 

space), if for each pair of distinct point x, y 

∈ X there exist an R*− open set containing 

only one of them. 

Example.4.1. If X = {a, b, c}, T = {∅, X, 

{b, c}, {a, c}, {a}, {c}}, I = {∅, {c} }. 

T R = {X, ∅, {a}, {b, c}}. 

 

 

 

 

 

 

 

R*− C(X) = {X, ∅, {a}, {b}, {a, b}, {b, c}}. 

R*− O(X) = {X, ∅, {a, ̄c}, {a, c}, {c}, {a}}. 

Then (X, T, I) is a R*− 𝕋0 space. 

Definition.4.2. [17, 18]. The ideal 

topological space is called Regular** − 

𝕋0space (briefly. R**− T◦ space), if for 

each pair of distinct point x, y ∈ X there 

exist an R**− open set containing only one 

of them. 

As in the previous example then R**− C(X) 

= {X, ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, 

c}}. R**− O(X) = {X, ∅, {b, c}, {a, c}, {a, 

b}, {c}, {b}, {a}}. 

Then (X, T, I) is a R**−𝕋0 space. 

Theorem.4.1. The ideal topological space 

(X, T, I) is a R**−𝕋0 space if and only if for 

each elements x ̸ = y there is a R**−closed 

set containing only one of them. 

Proof. Let x and y are two distinct elements 

in X. Since X is a R**−𝕋0-space, then there 

is a R**− open set U containing only one of 

them, then X \ U is R**− closed set 

containing the other one. 

Conversely. 

Let x and y are two distinct elements in X. 

And there is an R*− closed set V containing 

only one of them. Then, X / V is a R**− 

open set containing the other one. 

Proposition.4.1. If (X, T, I) is a R*− 

𝕋0space then (X, T, I) is a R**− 𝕋0space. 

Proof. Let x and y are two distinct elements 

in X. 

Since (X, T, I) is a R* − 𝕋0 space, then, 

there is a R**− open set U containing only 

one of them. Since every R*− open set is a 

R**− open set, then (X, T, I) is a R**−𝕋0 

space. 

Definition.4.3. [17] The ideal topological 

space (X, T, I) is called Regular*−T1 − space 

(briefly R* − T1 − space) if for each 

elements x, y ∈ X such that x  ̸  = y,  there is 

two R*− open sets U, V , satisfies x ∈ U, y  / 

∈ U and x  / ∈ V, y ∈ V. 

Definition.4.4. The ideal topological space 

(X, T, I) is called Regular**−T1 − space 

(briefly R**− T1−space) if for each elements 

x, y ∈ X such that x  ̸  = y, there is two such 

that x  ̸  = y, there is two R**− open sets U, 

V , satisfies x ∈ U, y  / ∈ U and x  / ∈ V, y ∈ 

V. 

Definition.4.5. The ideal topological space 

(X, T, I) is called Regular*−T2−space 

(briefly R*− T2 − space) if for each elements 

x, y ∈ X such that x  ̸  = y, there is two R*− 

open sets U, V , satisfies x ∈ U, y  / ∈ U and 

x  / ∈ V, y ∈ V, then U ∩ V  ̸  =  ∅. 

A Rσcl*R(A) 

X X 

∅ ∅ 

{a} {a} 

{b} {b} 

{c} {b, c} 

{a, b} {a, b} 

{a, c} X 

{b, c} {b, c} 
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Definition.4.6. The ideal topological space 

(X, T, I) is called Regular**−T2 − space 

(briefly R**− T2 − space) if for each 

elements x, y ∈ X such that x  ̸  = y, there is 

two R**− open sets U, V , satisfies x ∈ U, y  

/ ∈ U and x  / ∈ V, y ∈ V, then U ∩ V  ̸  =  

∅. 

Proposition.4.2. If (X, T, I) is R* −T2 

spaces in T, then (X, T , I) is R**− T2 spaces 

in T . 

Proof. Take x and y to be two separate items 

in X. There exist two Regular*-open sets, 

U1 and U2, because (X, T, I) is a R* − T2-

space. ensure that x ∈ U1, y ∈ U2, and U1 ∩ 

U2 = ∅. 

Since any Regular*-open set also contains a 

Regular**-open set. Then, U1 and U2 are set 

to Regular**-open. meet the conditions x ∈ 

U1, y ∈ U2, and U1 ∩ U2 = ∅. 

Proposition 4.3. R*−T0-space if 

R*−T1space is inferred. 

Proof. Let x and y be two separate 

components of X. 

(X, T, I) being a R*−T1-space Then, if x ∈ 

U1, x / ∈ U2, y ∈ U2 and y /∈ U1, there are 

R∗-open sets U1, U2. 

After that, there is a R*-open set U that only 

has one of them in it. 

Following this, there is a R*−T◦-space. 

Remark.4.1. The following example 

generally shows why Proposition ( ) meant 

opposite interpretation is untrue. 

Example.4.2. The ideal topological space 

(X, T, I) is a R*−T◦-space, 

where X = {a, b, c}, T = {∅, X, {c}, {a}, {a, 

c}, {b, c}, with I = {∅, {c}} 

Then, 

T R = {∅, X, {a}, {b, c}}. 

R*- closed (A) = {∅, X, {a}, {b}, {a, b}, {b, 

c}}. 

R*-open(A) = {∅, X, {b, c}, {a, c}, {c}, 

{a}}. 

The ideal Topological space (X, T, I), there 

are two elements b  ≠ c, then, 

There is no R*-open set U containing c . 

But, not containing b. 

Then the ideal Topological space (X, T, I) is 

not R*− T1-space. 

Theorem.4.2. Any ideal topological space 

(X, T, I) is a R**−T1-space 

if and only if there are two R**-closed sets 

F1 and F2 such that x ∈ F1 

and x / ∈ F2, and y /∈ F1 and y ∈ F2 for all 

members x  ̸ = y. 

Proof. Let x and y represent two separate X 

elements. 

There are two R**-open sets U1, U2 since X 

is a R**− T1-space. 

such that x ∈ U1, X /∈ U2 and y ∈ U2, y / ∈ 

U1. 

Then, there exist R**-closed sets X \ U1 and 

X\U2. 

such that x ∈ X \ U2–X \ U1, y ∈ X \ U1 – X 

\ U2, where F1= X \ U2 and F2 = X \ U1. 

Then, there exist two R**- closed sets F1 

and F2 satisfy. 

x ∈ (F1 ∩ F2
c ) and y ∈ (F2 ∩ F1

c ). 

Therefor, x ∈ F1 \ F2) and y ∈ (F2 \ F1). 

Conversely, let x and y be two distinct 

elements in X and there exist two R**-

closed sets F1 and F2 satisfy, x ∈ (F1 ∩ F2
c) 

and y ∈ (F2 ∩ F1
c ). 

Then there exists R**-open set (X \ F1) and 

(X \ F2). 

When ever x ∈ X \ F2 and X \ F1, y ∈ X \ F1 

and X \ F2. 

Where U1 = X \ F2 and U2 = X \ F1 

Proposition.4.4. If the ideal topological 

space (X, T, I) is R**− T2-space, then the 

space is a R**− T1-space. 

Proof. Let there be two separate components 

in X, x and y. 

Since a R**− T2-space is (X, T, I). 

Consequently, R**− T2-open set U1 and U2 

exist. 

Then the conditions x ∈ U1, y ∈ U2, and U1 

∩ U2 = ∅. 
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There are R**-open sets U1 and U2, then. 

As to have x ∈ U1 and y ∈ U2. 

Therefore, Then, since R**-open set U1, U2 

exists, (X, T, I) is R**− T1- 

space. Remark The following example 

shows that the opposite interpretation in 

Proposition (4.4), is not often true. 

 

R∗-T2-space ⟹ R∗∗-T2-space 

⇓  ⇓ 

R∗-T1-space ⟹ R∗∗-T1-space 

⇓  ⇓ 

R∗-T0-space ⟹ R∗∗-T0-space 

 

Figure 4.1 Relationships among the -𝕋𝑖- 

R**− 𝕋𝑖-space and R*− 𝕋i-space.  
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