On Regular-Open Separation Axioms In Ideal Topological Space**

Shatha Abd Alruda Attya, and Faik Jameel H. Mayah*

Department of Mathematics, College of Education for Pure Sciences, Wasit University. Department of Physics, College of Sciences, Wasit University, Iraq.

Abstract

The concern of this study focuses on constructing a new classes of separation axioms by using the notion of Regular**- open set of ideal topological space. Using the concept of regular-open sets and Regular-local functions with *R-closure operator in an ideal topological space (X, T, I), analogous to the usual separation axioms. A few characteristics and attributes are investigated. Like separation axioms works.

Keywords: Regular-local functions, *R-closure operator, R**-open, R**-closed sets.

1- Introduction and Preliminaries.

Velicko [1] first presented the concepts of θ open, closed, and closure subset to examine the significant class of H-closed space in terms of arbitrary filter bases. The definition of the I-open set notion by Tankovic and Hamlett [2. 31 in 1990 used Vaidyanathaswamy's local function like a starting point. In just an ideal topological space, Kuratowski [4] established the concept of the local function. A high of mathematicians, number including Hayashi [2], Three researchers Natakaniec [5], Modak, and Bandyopadhyay [6] have examined this area and demonstrated some novel findings. The idea of a regular-local function is introduced in this work, and some of its aspects are investigated.

The notation that is used is as follows. The family of open neighborhoods at point x will be T(x) if (X, T) is a topological Space.

cl(A) is the set closure, and Int(A) is the set interior. Asset A is referred to as clopen if it is both open and closed. If each point in set A contains the closure of an open Neighborhood in A, then A is said to be θ open [7]. (There is a $V \in T(x)$ such that $cl(v) \subseteq A$). It's fine knowledge that the collection of all θ -open subsets of (X, T) are topologies on X that we will designate by T θ . What is immediately obvious according to the definitions, $T\theta \subset T$. Then $T\theta = T$, consequently, and only when the space (X, T) is regular. If we have $cl(u) \cap A \neq \emptyset$ for any open Neighborhood u of X, then a point $x \in X$ is said to be in the θ -closure of a subset $A \subseteq X$ [8]. We'll use cl θ to refer for θ -closure(A). If A = cl θ then a subset A \subseteq X is said to be θ -closed (A). A set need not be a θ -closed set for its θ - closure. A non empty set collection of X subsets that fulfills the condition is an ideal I on a topological space (X, T).

i.	Ø	∈ I.
----	---	------

- ii. $A \in I$, and $B \subseteq A$ imply $B \in I$.
- iii. $A \in I$ and $B \in I$ imply $A \cup B \in I$.

Some writers include a fourth requirement that X by itself is not in I. Proper ideals are ideals that have additional properties. The term ideal topological space and the symbol are used to refer to a topological space (X, T) having an ideal I on X. (X, T, I). The local function of A regarding I and T is defined as $A^*(I) = \{x \in X: U \cap A \notin I \text{ for } d \in X\}$ any $U \in T(x)$ for a subset $A \subseteq X$ [9]. To avoid any misunderstanding, we just write A*. For a topology $T^*(I)$ known as the T*topology finer than T, $cl^*(A) = A \cup A^*$ is defined as a Kuratowski[4] closure operator. A subset A of an ideal space (X, T, I) is T*closed [10] (resp. *-dense in itself [10]), and *-perfect [10] if $A^* \subset A$ (resp. $A^* \subset A$, A =A*). There is no doubt that A is only *perfectly formed if and only if it is internally T*-closed and *-dense.

Definition 1.1 Let (X, T) be a topological space. And $A \subset X$. Then a subset A of X is said to be Regular-open If A = Int(cl(A)), [11]. Regular-closed is the term used to describe a Regular -open set's counterpart [12]. The term RO(X) (or RC(X)) stands for the collection of all Regular-open (or Regular-closed) sets in X.

Remark 1.1 We denote all Regular-open sets forms a topology T^R or TR.

Definition 1.2 Let (X, T) be a topological space. Then the Regular-interior and the Regular-closure of A in X defined as Int_R (A) = $\cup \{ U : U \subseteq A, U \in T^R \}$ and cl_R (A) = $\cap \{ F : A \subseteq F, X - F \in T^R \}$.From definition, Int_R (A) is a Regular-open set and cl_R (A) is a Regular-closed set [12].

Remark 1.2

- 1. Every Regular-open is open.
- 2. Every Regular-closed is closed.

2- Regular-local functions

Definition 2.1 Assume that (X, T, and I) is an ideal topological space. We define the operator A (*R) (I, T) = { $x \in X$: for a subset A of X, where A $\cap U \notin I$ for every U T \in R (x)}. Just so there is no misunderstanding The Regular-local function of A with respect to I and T is indicated by A(*R) (I, T) and is denoted as A(*R). Also, A(*R) = A^{*R}

Remark 2.1 Assume that $A \subset X$ and that (X, T, I) is an ideal topological space. Then, cl(*R) $(A) = A \cup A(*R)$ is a *R-closure operator.

Remark 2.2 If $A \subset X$ and (X, T, I) is an ideal topological space, Then

 $T^{*R} = \{ X - A : cl^{*R}(A) = A \}.$

Example 2.1 Assume that (X, T, I) is an ideal topological space and that $A \subset X$. with $X = \{1, 2, 3\}, T = \{X, \{1, 2\}, \{2\}, \{1\}, \emptyset\},$ and $I = \{\emptyset, \{3\}\}.$

Α	A* ^R	cl*R
Ø	Ø	Ø
Х	Х	Х
{1}	{1,3}	{1,3}
{2}	{2,3}	{2,3}
{3}	{3}	{3}
{1,2}	Х	Х
{1,3}	{1,3}	{1,3}
{2,3}	{2,3}	{2,3}

Then $T^{*R} = \{ \emptyset, X, \{1, 2\}, \{2\}, \{1\} \}.$

Theorem 2.1. Given that I an ideal on X and (X, T) is a topological space.

Then B (I, T^R) = {V- i: V $\in T^*R$ and i $\in I$ } is a basis for T (*R).

Lemma 2.1 [13] In the event that (X, T, I) is a perfect topological space and $A \subset X$. $A^* = cl(A^*) = cl^*A$ if $A \subset A^*$ (A).

Lemma 2.2. Considering that $A \subset X$ and (X, T, I) is an ideal topological space, In the event where $A \subset A(*R)$, then A(*R) = cl R(A) = cl(*R) (A).

Theorem 2.2 Suppose that (X, T, I) is an ideal topological space. Then, the under characteristics are hold.

1. If $I = \emptyset$, then cl(*R)(A) = cl R((A).

2. If I = P(X), then cl(*R)(A) = A.

3. If $A \in I$, then cl(*R)(A) = A.

Obvious proof.

Theorem 2.3Assume that (X, T, and I) is an ideal topological space, A and B are subsets of X. As a result, the following characteristics are true for R-local functions:

1. $cl^{*R}(\phi) = \phi$.

2. If $A \subset B$, then $cl^{*R}(A) \subset cl^{*R}(B)$.

3. For an another ideal J ⊇ I on X, $cl^{*R}(A, T, J) \subset cl^{*R}(A, T, I)$.

4.
$$cl^*(A) \subset cl^{*R}(A)$$
.

5. $cl^{*R}(A) \subset cl_R(A)$.

6. $cl^{*R}(cl^{*R}(A)) ⊂ cl^{*R}(A)$ if A is Regular – closed.

7. $cl^{*R}(A) \cup cl^{*R}(B) = cl^{*R}(A \cup B).$

8. $cl^{*R}(A \cap B) \subset cl^{*R}(A) \cap cl^{*R}(B)$.

3- R**-closure and **R****-interior in ideal topological spaces.

Remark 3.1. In this study, we will consider the topological space is locally indiscrete.

Definition 3.1.[14]. A space X is called locally indiscrete if every open set is closed or verse.

Example 3.1. Let $X = \{a_1, a_2, a_3\},\$

T = {{ a_1, a_2 }, { a_3 }, X, Ø}. { a_1, a_2 } is open and closed { a_3 } is open and closed X and Ø is open and closed. **Proposition 3.1.** [14]. For a topological space X, If X is locally indiscrete then every dense open subset of X is regular-open. **Definition.3.2.** [15] Assuming that (X, T, I) an ideal topological space, A is a subset of X, and x is arbitrary point in X.

Then if A \cap (int (cl^{*} (w)) $\neq \emptyset$ for all open neighborhoods w of x, then x is termed a δ -I-cluster point of A. The [A] δ – I symbol designates the family of each, δ – I cluster point of A.

If $[A]\delta - I = A$, then a subset A is said to be, δ - I-closed. δ - I -closed set of X complement is referred to as be, δ - I-open.

Remark.3.2. [16] The family of regular open sets of (X, T) is recognized for a topology is weaker than T. This topology is designated by the symbol T_S and is known

as the semi-regularization of T. In reality, Ts is identical to the family of, δ -open sets of Т (X,). **Remark.3.3** We write $[A]\delta - 1 = \{x \in X :$ $int(cl^*(w) \cap A \neq \emptyset all w \in T \}$, It is written $\sigma cl(A)$ [A]δ as =1. _ Lemma 3.1 [15] A and B a subset of an ideal topological space (X, T, l). Then, the subsequent characteristics are satisfied: 1. А \subseteq $\sigma cl(A)$. 2. If $\sigma cl(A) \subset \sigma cl(B)$, then $A \subset B$. 3. σ cl(A) = \cap {G \subset X: A \subset G and G is, δ – 1 - closed $\}$.

Definition 3.3. Let (X, T, I) bean ideal topological space, and A a subset of X. Then $R\sigma cl^*R(A) = \{x \in X : A \cap int(cl^*R(w)) \neq \emptyset,$ for each open neighborhood w of X}. **Definition** 3.4. A subset A of an ideal topological space (X, T, I) is called R*closed if $R\sigma cl^*R \subset W$, whenever $A \subset W$ and W is open in (X, T, I). The complement of R*-closed set in (X, T, I) is called R*open set.

Remark 3.4. The collection of all R*-closed sets in (X, T, I) denoted by $R^{*-} C(X)$. The family of all R*-open sets in (X, T, I) denoted by $R^{*-} O(X)$.

Example 3.2. Let $X = \{e_1, e_2, e_3\}, T = \{X, \emptyset, \{e_3\}, \{e_1, e_2\}, I = \{\emptyset, \{e_1, e_2\}\}.$ RO(X) = {X, $\emptyset, \{e_3\}, \{e_1, e_2\}\}.$

Α	Rocl*R(A)
Х	X
Ø	Ø
$\{e_1\}$	$\{e_1, e_2\}$
$\{e_2\}$	$\{e_1, e_2\}$
$\{e_3\}$	$\{e_3\}$
$\{e_1, e_2\}$	$\{e_1, e_2\}$
$\{e_1, e_3\}$	X
$\{e_2, e_3\}$	X

Then $R^*-C(X) = \{X, \emptyset, \{e_1\}, \{e_2\}, \{e_3\}, \{e_1, e_2\}, \{e_1, e_3\}, \{e_2, e_3\}\}.$ $R^*-O(X) = \{X, \emptyset, \{e_2, e_3\}, \{e_1, e_3\}, \{e_1, e_2\}, \{e_3\}, \{e_2\}, \{e_1\}\}.$

Lemma.3.2. Every R σ cl*R(A) is closed in ideal topological space. Proof. If W \in T (x) and x \in cl(R σ cl*R(A)), then W \cap R σ cl*R(A)/= Ø. Since W \in T (y) and y \in R σ cl*R(A) for some y \in X, y \in W \cap R σ cl*R(A). We may deduce A \cap int(cl*R(w)) / = Ø. from the definition of R σ cl*R(A). Consequently, x \in R σ cl*R(A). R σ cl*R(A) is closed because cl(R σ cl*R(A)) \subset R σ cl*R(A).

Theorem.3.1. Assume that (X, T, 1) is an ideal space and that $A \subseteq X$. Hence, $R \sigma cl^*R(A) = R \sigma cl^*R(B)$ if $A \subseteq B \subseteq$ $R \sigma cl^*R(A)$. **Proof.** Let $A \subseteq B$, $R \sigma cl^*R(A) \subseteq R \sigma cl^*R(B)$, and $B \subseteq R \sigma cl^*R(A)$, $R \sigma cl^*R(B) \subseteq R \sigma cl^*R(R \sigma cl^*R(A)) =$ $R \sigma cl^*R(A)$. Consequently, $R \sigma cl^*R(A) = R \sigma cl^*R(B)$.

Definition 3.5. Let (X, T, I) be an ideal topological space, and A a subset of X is called R**-closed if $R\sigma cl^*R \subset W$ whenever $A \subset W$, and W is Regular-open in (X, T, I). The complement of R**-closed in (X, T, I)is called R**-open set. **Remark** 3.5. The collection of all R**closed sets and R*-open set in (X, T, I)denoted by (respectively R**- C(X). and R**-open) sets

Example 3.3. Let $X = \{1, 2, 3\}, T = \{X, \emptyset, \{1\}, \{2\}, \{1, 2\}, I = \{\emptyset, \{3\}\}.$

Then $RO(X) = \{X, \emptyset, \{1\}, \{2\}\}.$

Α	Rocl*R(A)
X	X
Ø	Ø
{1}	{1, 3}
{2}	{2, 3}
{3}	{3}
{1, 2}	{1, 2, 3}
{1, 3}	{1,3}
{2, 3}	{2, 3}

Proposition 3.2. Every R*-closed set is R**-closed set.

Proof. Let A be any R*-closed set, and W be any open set in ideal locally indiscrete topological space (X, T, I), such that $A \subseteq W$, and $R\sigma cl^*R(A) \subseteq W$ (by Def.), then every open set is closed (by Def.), therefor W is Regular-open, Hence, A is R*-closed.

Remark 3.6. The opposite of proposition (3.2) is not true. It is clear from the following example.

Example 3.4. Let $X = \{a_1, a_2, a_3\}$, $T = \{X, \emptyset, \{a_1\}, \{a_2\}, \{a_1, a_2\}\}$, $I = \{\emptyset, \{a_3\}\}$. $RO(X) = \{X, \emptyset, \{a_1\}, \{a_2\}\}$, if $A = \{a_1, , a_2\}$. $Rocl^*R(A) = \{a_1, a_2, a_3\}$.

Then A is R^{**-} closed but not R^{*-} closed.

Remark.3.7.

- 1- Every Regular-open is R**-closed set.
- 2- Every Regular-open is R*-closed set. The opposite of Remark (3.5) is not always true,

Theorem.3.2. $R \sigma cl^*R(A)$) is always R^{**-} closed for any subset A of X if (X, T, I) is an ideal space. **Proof.** Let $R \sigma cl^*R(A) \subseteq W$, where W is Regular-open set. Since $R \sigma cl^*R(R \sigma cl^*R(A)) = R \sigma cl^*R(A)$. We have $R \sigma cl^*R(A)(R \sigma cl^*R(A)) \subseteq W$. Whenever $R \sigma cl^*R(A) \subseteq W$ and W Regular-

open set. Hence Rσcl*R(A) is R**-closed set.

Theorem.3.3. where A and B are R^{**} -closed sets in a topological ideal space (X, T, and I), then A \cup B is a R^{**} -closed set in (X, T, I). **Proof.** Suppose that A \cup B \subseteq W, where W

is any Regular-open set in (X, T, I). Then A \subseteq W and B \subseteq W. Given that A and B are R**-closed sets in (X, T, I), R σ cl*R(A) \subseteq W and R σ cl*R(B)) \subseteq W. Whenever R σ cl*R (A \cup B) = R σ cl*R(A) \cup R σ cl*R(B) As a result. R σ cl*R (A \cup B) \subseteq W. Thus, A \cup B is a R**- closed sets.

Remark 3.8. the intersection of two R**closed sets are not necessarily R**-closed set as show in the following example.

Example.3.5. If $X = \{1, 2, 3\}$, $T = \{X, \emptyset, \{1\}, \{2\}, \{1, 2\}\}$, $I = \{\emptyset, \{3\}\}$. RO(x) = $\{X, \emptyset, \{1\}, \{2\}\}$. Then A = $\{1, 2\}$, B = $\{1, 3\}$ are R**-closed set. But $\{1, 2\} \cap \{1, 3\} = \{1\}$ is not R**-closed set.

Definition.3.6. The intersection of all R**closed sets containing A is known as the R**-closure of a subset A of X, indicated by R**- cl(A). Therefore, $R^{**} - cl(A) = \cap \{F \subseteq X: A \subseteq F \text{ and } F \text{ is } R^{**}\text{-closed set}\}.$

 R^{**} -open \Leftarrow Regular open \Rightarrow open \downarrow R^{*} -open

Digrame 3.1. Relationships among the Regularopen, Regular**-open and Regular*-open.

Definition.3.7. The Regular **-interior of subset A of X denotes the union of all Regular**-open sets contained within subset A and is known as R**-int(A). Therefore,

 $R^{**}\text{-int}(A) = \bigcup \{G \subseteq X : G \subseteq A \text{ and } G \text{ is } R^{**}\text{-open set} \}.$

Theorem 3.3. Let A and B be any two subsets of (X, T, I) then the following properties are true.

1. A is R**-open set if and only if R**int(A) = A.

2. R**-int(A) is the bigger R**-open set subset of X contained in A.

3. R**-int (\emptyset) = \emptyset and R**-int(X) = X.

4. R**-int(A) is a R**-open set.

5. If A ⊆ B, then R**-int(A) ⊆ R**-int(B).
6. R**-int (A ∪ B) ⊇ R**-int(A) ∪ R**-

int(B).

7. $R^{**-int}(A \cap B) = R^{**-int}(A) \cap R^{**-int}(B)$.

8. R^{**} -int(R^{**} -int(A)) = R^{**} -int(A).

Proof.

1. We know that $A \subseteq R^{**}$ -int(A) for any subset A of X. Let A be a R**-open set in (X, T, I). Also $A \subseteq A$ and $A \in \{O \subseteq X: O \subseteq A \text{ and } O$ is R**-open set}. It means that $A = \cup \{O \subseteq$

X: $O \subseteq A$ and O is R**-open set} $\subseteq A$. Then, R**-int(A) $\subseteq A$. Hence, A = R**-int(A). Converse is true from the direct definition. 2. By the definition of R^{**} -int(A) the union of all sets is open there- fore R^{**} -int(A) is open. Also, if B is any R^{**} -open set contained in A then R^{**} -int(A) \subseteq B. Therefore, R^{**} -int(A) is the biggest R^{**} open set in (X, T, I).

(3) and (4) it follows from.

5. We know that $B \subseteq R^{**}$ -int(B) for every B. If $A \subseteq B$, then $A \subseteq R^{**}$ -int(B). So, R^{**} int(B) is the R**-open set containing A. But R**-int(A) is biggest open set contained A. Therefore, R^{**} -int(A) $\subseteq R^{**}$ -int(B). 6. We know that $A \subseteq A \cup B$ and $B \subseteq A \cup B$ B, we get R^{**} -int(A) $\subseteq R^{**}$ -int (A \cup B) and R^{**} -int(B) $\subseteq R^{**}$ -int (A \cup B). Then, R^{**} $int(A) \cup R^{**}-int(B) \subseteq R^{**}-int(A \cup B).$ 7. We know that $A \cap B \subseteq A$ and $A \cap B \subseteq B$ by using (5) we have R^{**} -int (A \cap B) \subseteq R^{**} -int(A) and R^{**} -int(A \cap B) \subseteq R^{**} int(B). Then R^{**} -int(A \cap B) $\subseteq R^{**}$ -int(A) \cap R**-int(B). On the other hand. R**-int(A) is R**-open set contained A and R**-int(B) is R**-open set contained B. Therefore, R^{**} -int(A) \cap R^{**} -int(B) is R^{**} -open set contained $A \cap B$ therefore R^{**} -int(A) $\cap R^{**}$ -int(B) $\subseteq R^{**}$ int (A \cap B). Hence, R**-int (A \cap B) = R** $int(A) \cap R^{**}-int(B).$ 8. We know that R**-int(A) is R**-open set in (X, T, I). Let R^{**} -int(A) = O then O is R**-open set in (X, T, I). From (1) R**int(O) = O. It means that R^{**} -int(R^{**} int(A) = R**-int(A).

4- Regular** Separation Axioms.

Definition.4.1 [17, 18]. The ideal topological space is called Regular^{*}– \mathbb{T}_0 –space (briefly. R^{*}– \mathbb{T}_0 space), if for each pair of distinct point x, y $\in X$ there exist an R^{*}– open set containing only one of them.

Example.4.1. If $X = \{a, b, c\}, T = \{\emptyset, X, \{b, c\}, \{a, c\}, \{a\}, \{c\}\}, I = \{\emptyset, \{c\}\}.$ T R = $\{X, \emptyset, \{a\}, \{b, c\}\}.$

Α	Rocl*R(A)
Х	Х
Ø	Ø
{a}	{a}
{b}	{b}
{c}	{b, c}
{a, b}	{a, b}
{a, c}	Х
{b, c}	{b, c}

 $R^{*-} C(X) = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}.$ $R^{*-} O(X) = \{X, \emptyset, \{a, c\}, \{a, c\}, \{c\}, \{a\}\}.$ Then (X, T, I) is a R^{*-} T₀ space. **Definition.4.2.** [17, 18]. The ideal topological space is called Regular^{**} -T₀ space (briefly. R^{**-} T[°] space), if for each pair of distinct point x, y \in X there exist an R^{**-} open set containing only one of them.

As in the previous example then $R^{**-}C(X) = \{X, \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$. $R^{**-}O(X) = \{X, \emptyset, \{b, c\}, \{a, c\}, \{a, b\}, \{c\}, \{b\}, \{a\}\}$.

Then (X, T, I) is a $R^{**}-\mathbb{T}_0$ space.

Theorem.4.1. The ideal topological space (X, T, I) is a $R^{**}-\mathbb{T}_0$ space if and only if for each elements x/= y there is a R^{**} -closed set containing only one of them.

Proof. Let x and y are two distinct elements

in X. Since X is a $R^{**}-\mathbb{T}_0$ -space, then there is a R**- open set U containing only one of them, then $X \setminus U$ is R^{**-} closed set containing the other one. Conversely. Let x and y are two distinct elements in X. And there is an R*- closed set V containing only one of them. Then, X / V is a R**open set containing the other one. **Proposition**.4.1. If (X, T, I) is a R^* - \mathbb{T}_0 space then (X, T, I) is a R**- \mathbb{T}_0 space. **Proof**. Let x and y are two distinct elements in X. Since (X, T, I) is a $\mathbb{R}^* - \mathbb{T}_0$ space, then, there is a R**- open set U containing only one of them. Since every R*- open set is a R^{**-} open set, then (X, T, I) is a $R^{**-}T_0$

Definition.4.3. [17] The ideal topological space (X, T, I) is called Regular^{*}-T₁ – space (briefly R^{*} – T₁ – space) if for each elements x, y \in X such that x / = y, there is two R^{*}- open sets U, V, satisfies x \in U, y / \in U and x / \in V, y \in V. **Definition**.4.4. The ideal topological space (X, T, I) is called Regular^{**}-T₁ – space (briefly R^{**}- T₁-space) if for each elements x, y \in X such that x / = y, there is two such that x / = y, there is two R^{**}- open sets U, V, satisfies x \in U, y / \in U and x / \in V, y \in V.

Definition.4.5. The ideal topological space (X, T, I) is called Regular^{*}- T_2 -space (briefly R^{*}- T_2 - space) if for each elements x, y \in X such that x / = y, there is two R^{*}- open sets U, V, satisfies x \in U, y / \in U and x / \in V, y \in V, then U \cap V / = \emptyset .

space.

Definition.4.6. The ideal topological space (X, T, I) is called Regular^{**}– T_2 – space (briefly R^{**}– T_2 – space) if for each elements x, y \in X such that x / = y, there is two R^{**}– open sets U, V, satisfies x \in U, y / \in U and x / \in V, y \in V, then U \cap V / = Ø.

Proposition.4.2. If (X, T, I) is $R^* - T_2$ spaces in T, then (X, T, I) is $R^{**-} T_2$ spaces in T.

Proof. Take x and y to be two separate items in X. There exist two Regular*-open sets, U1 and U₂, because (X, T, I) is a R* – T₂space. ensure that $x \in U_1$, $y \in U_2$, and $U_1 \cap$ $U_2 = \emptyset$.

Since any Regular*-open set also contains a Regular**-open set. Then, U_1 and U_2 are set to Regular**-open. meet the conditions $x \in U_1$, $y \in U_2$, and $U_1 \cap U_2 = \emptyset$.

Proposition 4.3. R*–T₀-space if $R^{*}-T_{1}$ space is inferred. **Proof.** Let x and y be two separate components of X. (X, T, I) being a R*–T₁-space Then, if $x \in$ U_1 , x / \in U_2 , y \in U_2 and y / \in U_1 , there are R*-open sets U_1 , U_2 . After that, there is a R*-open set U that only has one of them in it. Following this, there is a $R^{*}-T^{\circ}$ -space. **Remark.4.1**. The following example generally shows why Proposition () meant opposite interpretation is untrue. Example.4.2. The ideal topological space (X, T, I) is a R*-T°-space, c}, {b, c}, with I = { \emptyset , {c}} Then, $T R = \{\emptyset, X, \{a\}, \{b, c\}\}.$ R^* - closed (A) = {Ø, X, {a}, {b}, {a, b}, {b, c}}. R^* -open(A) = {Ø, X, {b, c}, {a, c}, {c}, {a}}.

The ideal Topological space (X, T, I), there are two elements $b \neq c$, then, There is no R*-open set U containing c. But, not containing b. Then the ideal Topological space (X, T, I) is not R^*-T_1 -space. Theorem.4.2. Any ideal topological space (X, T, I) is a R**-T₁-space if and only if there are two R**-closed sets F_1 and F_2 such that $x \in F_1$ and $x \neq F_2$, and $y \neq F_1$ and $y \in F_2$ for all members $x \neq y$. Proof. Let x and y represent two separate X elements. There are two R^{**} -open sets U1, U₂ since X is a R**- T1-space. such that $x \in U_1$, $X \in U_2$ and $y \in U_2$, $y \in U_2$ U_1 . Then, there exist R^{**} -closed sets $X \setminus U_1$ and $X \setminus U_2$. such that $x \in X \setminus U_2 - X \setminus U_1$, $y \in X \setminus U_1 - X$ \setminus U₂, where F₁= X \setminus U₂ and F₂ = X \setminus U₁. Then, there exist two R^{**} - closed sets F_1 and F₂ satisfy. $x \in (F_1 \cap F_2^c)$ and $y \in (F_2 \cap F_1^c)$. Therefor, $x \in F_1 \setminus F_2$ and $y \in (F_2 \setminus F_1)$. Conversely, let x and y be two distinct elements in X and there exist two R**closed sets F1 and F₂ satisfy, $x \in (F_1 \cap F_2^{c})$ and $y \in (F_2 \cap F_1^c)$. Then there exists R^{**} -open set $(X \setminus F_1)$ and $(X \setminus F_2).$ When ever $x \in X \setminus F_2$ and $X \setminus F_1$, $y \in X \setminus F_1$ and $X \setminus F_2$. Where $U_1 = X \setminus F_2$ and $U_2 = X \setminus F_1$ **Proposition.4.4**. If the ideal topological space (X, T, I) is $R^{**-}T_2$ -space, then the space is a $R^{**}-T_1$ -space. Proof. Let there be two separate components in X, x and y. Since a $R^{**}-T_2$ -space is (X, T, I). Consequently, $R^{**-}T_2$ -open set U_1 and U_2 exist. Then the conditions $x \in U_1$, $y \in U_2$, and U_1

 \cap U₂ = Ø.

There are R^{**} -open sets U_1 and U_2 , then. As to have $x \in U_1$ and $y \in U_2$. Therefore, Then, since R^{**} -open set U_1 , U_2 exists, (X, T, I) is $R^{**-} T_1$ space. Remark The following example shows that the opposite interpretation in Proposition (4.4), is not often true.

 $\begin{array}{cccc} R^{*} - T_{2} - \text{space} & \Longrightarrow & R^{**} - T_{2} - \text{space} \\ & & & & & \\ R^{*} - T_{1} - \text{space} & \Longrightarrow & R^{**} - T_{1} - \text{space} \\ & & & & & \\ & & & & & \\ R^{*} - T_{0} - \text{space} & \Longrightarrow & R^{**} - T_{0} - \text{space} \end{array}$

Figure 4.1 Relationships among the $-\mathbb{T}_i$ - $\mathbb{R}^{**-}\mathbb{T}_i$ -space and $\mathbb{R}^*-\mathbb{T}_i$ -space.

References

- 1. Velicko N.V., (1968). H-Closed Topological Spaces, American Mathematical Society, 78, 2,103-118.
- Hayashi, E. (1946). Topologies defined by local properties. Mathematische Annalen, 156, 205–215 (1964).
- Dragan Janković, and T. R. Hamlett (1990). New Topologies from Old via Ideals, The American Mathematical Monthly, 97, 4, 295-310.
- 4. Kuratowski. K., (1966). Topology, Academic Press, New York, Vol. I,
- 5. Tomasz Natkaniec. (1986). On *I*continuity and *I*-semi continuity points, Mathematica Slovaca, 36, 3, 297-312.
- Shyampada Modak, and Chhanda Bandyopadhyay. (2007). A note on ψoperator, BULLETIN of the Malaysian Mathematical Sciences Society. 2, 30 (1), 43-48.
- 7. Ahmad Al-Omari, Takashi Noiri. Local Closure Functions in Ideal Topological

Spaces, Novi Sad J. Math. 43, 2, 139-149.

- J. Cao, M. Ganster, I. Reilly and M. Steiner. (2005). δ-closure, θ-closure and generalized closed sets, Applied General Topology, 6, 1, 79-86.
- Bhavani. K. (2014). ψg-operator in ideal topological spaces. Journal of Advanced Studies in Topology, 5, 1, 47-49.
- V. Renuka Devi, D. Sivaraj and T. Tamizh Chelvam. (2005). Properties of topological ideals and Banach category theorem. Kyungpook Mathematical Journal. 45, 199-209.
- Njastad. O. (1965). On Some classes of Nearly Open Sets. Pacific Journal of Mathematics.15, 961-970.
- Ravi. O, Tharmar. S, Sangeetha. M, J. and Antony Rex Rodrigo. (2013). *gclosed sets in ideal topological spaces, Jordan Journal of Mathematics, and statistics. 6, 1, 1-13.
- Caldas. M, Jafari. S, and Kovar. M. M. (2004). Some Properties of θ-open sets, Divulgaciones Matematicas, 12, 2, 161-169.
- Tyagi. B. K, Manoj Bhardwaj, and Sumit Singh. (2019). Sα-Connectedness in topological spaces, Jordan Journal of Mathematics and Statistics, 12, 3, 409-429.
- 15. Muna Jabbar Mohammad, and Faik Jameel. H Mayah, (2023). On $Pre-\hat{\delta}$ -Separation Axioms in Ideal Topological Spaces. Journal of Wasit for science and medicine. 16, 1, 7-12.
- A. V. Arkhangel' skii, and V. I. Ponomarev. (1966). Fundamentals of general topology-problems and

exercises, Hindustan Pub. Corporation, Delhi.

17. Englking. R. 'Outline of general topology'', Amsterdam, (1989).