On Moduli of Smoothness of Bernstein's Polynomials in $L_p(\mu)$

Habeeb A. Kadhim

Email:hak_math77@yahoo.com

Department of mathematics, College of computer and mathematics sciences

University of Thi-Qar

Abstract.

Let f be bounded μ -measurable function, that is $f \in L_p(\mu)$, $1 \le p < \infty$. The main results of this paper describes some properties that defined on the weighted Ditzian-Totik modulus of smoothness on f by using Bernstein's polynomial.

1. Introduction and main results

Let $L_p(\mu)$, $1 \le p < \infty$ consists of all $\mu-$ measurable function f for which $\|f\|_{p,\mu} < \infty$, where

(1.1)
$$||f||_{p,\mu} = \left(\int |f|^p d\mu \right)^{\frac{1}{p}},$$

and let $f \in L_p(X)$, X = [0,1] , then we denote

(1.2)
$$L_{p}(X) = \left\{ f : \|f\|_{p} = \left(\int_{X} |f(x)|^{p} dx \right)^{\frac{1}{p}} < \infty \right\}$$

and f defined on X (a.e.).

Also , let f be bounded $\mu-$ measurable function , we denoted the Bernstein's polynomials of f by

(1.3)
$$B_n(f;x) = \sum_{k=0}^n f(\frac{k}{n}) P_{k,n}(x), \text{ where } P_{k,n}(x) = \binom{n}{k} x^k (1-x)^{n-k}$$

for all positive integers n, and μ be Lebsegue measure on X, see [9].

Key words: moduli of smoothness, Bernstein's polynomial, locally global norms

Let us consider the family of locally global norms in the forms for $\delta > 0$ and $1 \le p < \infty$, then

also ,if $f \in L_n(\mu)$,then we define the locally global norms of f by

Let ϕ be a function such that $,\phi(u,\delta) = \delta\varphi(x) + \delta^2$

(1.5)
$$||f||_{\delta,p,\mu} = \left\{ \int_{X} \left(\sup |f(u)| : u \in N(x,\delta) \right) \right)^{p} d\mu(x) \right\}^{\frac{1}{p}}$$

(1.6)
$$||f||_{\delta,p,\mu}^{\varphi} = \left\{ \int_{x} \left(\sup \left\{ f(u) \middle| : u \in N(x,\phi(x,\delta)) \right\} \right)^{p} d\mu(x) \right\}^{\frac{1}{p}}$$

where, $N(x,\delta) = \{ u \in X : |x-u| \le \delta \}$, $\delta \in \mathbb{R}^+$.

We will use the moduli of smoothness which are connected with difference of higher order, that is the rth symmetric difference of f is given by

(1.7)
$$\Delta_{h}^{k}(f,x) = \begin{cases} \sum_{i=0}^{k} {k \choose i} (-1)^{k-i} f(x - \frac{kh}{2} + ih), & x \mp \frac{kh}{2} \in X \\ 0, & \text{o.w.} \end{cases}$$

Then the *rth* usual modulus of smoothness of $f \in L_n(\mu)$ is defined by

(1.8)
$$\omega_{k}(f,\delta)_{p,\mu} = \sup_{0$$

and the Ditzian-Totik modulus of smoothness of f is defined by

(1.9)
$$\omega_k^{\varphi}(f,\delta)_{p,\mu} = \sup_{0$$

where ,in this applications the φ usually used $\varphi(.) = \varphi(x) = (x(1-x))^{\frac{1}{2}}$ for $x \in [0,1]$. The weighted Ditzian-Totik modulus of smoothness of f is defined by

(1.10)
$$\omega_{k,r}^{\varphi}(f,\delta)_{p,\mu} = \sup_{0$$

where , k, r denoted nonnegative integers and k + r > 0.

By [5] For a function $f \in L_p(X)$, $1 \le p < \infty$, then we have

(1.11)
$$\omega_{k,r}^{\varphi}(f,\delta)_{p} \approx \widetilde{K}_{k,r,\varphi}(f,\delta)_{p}$$

where , $\ \widetilde{K}_{k,r,\sigma}$ is the weighted Ditzian-Totik $\ \widetilde{K}$ -functional defined by

$$\widetilde{K}_{k,r,\varphi}(f,\delta)_p = \inf_{P_n \in \Pi_n \atop n = \begin{bmatrix} 1 \\ 1 \end{bmatrix}} \left\{ \left\| \varphi^r(x)(f - P_n) \right\|_p + \delta^k \left\| \varphi^k P_n^{(k)} \right\|_p \right\}.$$

Let $C^{\ell}(X)$ denoted the set of ℓ – times continuously differentiable functions on [0,1].

Also , for $1 \leq p < \infty$,then the Sobolev space W_p^ℓ is a collection of all functions f denoted on X ,such that , $f^{(\ell-1)}$ is absolutely continuous and $f^{(\ell-1)} \in L_p(X)$.

Our main results are the following:

Theorem 1.1

Let f be bounded μ – measurable function defined on X ,and k+r>0 .then we have

$$(1.12) \omega_{k,r}^{\varphi}(f,\delta)_{p,\mu} \leq C \delta^{k} \left\| f^{(k)} \right\|_{p,\mu},$$

with the equivalence constants depending only on r and p.

Theorem 1.2

Let $f \in L_p(\mu)$, $1 \le p < \infty$, $\delta > 0$, then we have

with the constants depending only on r and p.

Theorem 1.3

For every $r,n\in N$ and $f\in L_p(\mu)\cap C^\ell(X)$,with $1\le p<\infty$, $0<\ell< r$ and $k\ge 1$, $\delta>0$,we have

(1.14)
$$\omega_{k+r-\ell,\ell}^{\varphi}(f^{(\ell)},\delta)_{p,\mu} \leq C 2^{-\ell} \omega_{k,r}^{\varphi}(f,\delta)_{p,\mu},$$

with the constants depending only on r, k and p.

Theorem 1.4

Let $k \ge 1$, $n \ge 1$, $0 \le \delta \le 1/n$ and $1 \le p < \infty$, for any Bernstien's polynomials $B_n(f)$, then we have

(1.15)
$$\omega_{k,r}^{\varphi}(B_n(f),\delta)_{p,\mu} \le C \delta^k \|\varphi^k P_{k,n}(x)\|_{p,\mu},$$

with the constants depending only on r, k and p.

2.Basic Results

In this section we mention some basic results ,which will be used to prove the main results.

Lemma 2.1 [6]

Let
$$f \in L_p(X)$$
 , $1 \le p < \infty$, $\alpha, \beta > 0$, $h \in R$,then we have

i.
$$\Delta_h^{\alpha}(\Delta_h^{\beta}(f,x)) = \Delta_h^{\alpha+\beta}(f,x)$$
 for almost every α ,

ii.
$$\left\|\Delta_h^{\alpha+\beta}(f,x)\right\|_p \le C(\alpha) \left\|\Delta_h^{\beta}(f,x)\right\|_p$$
.

Lemma 2.2 [1]

Let f be a bounded μ – measurable function and $1 \le p < \infty$, then we have

(2.1)
$$||f||_p \le C(p)||f||_{p,\mu}$$
.

Lemma 2.3 [2]

For $k \in N$ and $1 \le p < \infty$, there exists constant C with depends only on k, so that ,for any $f \in L_n[-1,1]$ and $n \ge k-1$ there exists a polynomial $P_n \in \Pi_n$, such that

(2.2)
$$\|f - P_n\|_p \le C(k) \, \omega_k^{\varphi}(f, n^{-1})_p,$$

Lemma 2.4 [7]

Let $n,r\in N$, $n\in N_0$, $0<\ell\le r$ and let $f\in C^{\ell-1}[-1,1]$, then for any $1\le p<\infty$ and $\delta>0$, we have

(2.3)
$$\omega_{k+r}^{\varphi}(f,\delta)_{p} \leq C(\ell,k,p) \, \omega_{k,r}^{\varphi}(f^{(\ell)},\delta)_{p},$$

in particular, in case k = 0, then

(2.4)
$$\omega_{\ell}^{\varphi}(f,\delta)_{p} \leq C(\ell,p) \delta^{\ell} \left\| \varphi^{\ell} f^{(\ell)} \right\|_{p,\mu}.$$

Lemma 2.5 [1]

Let f be a bounded μ -measurable function then for $1 \le p < \infty$, we have:

(i)
$$||f||_{\delta,p} \le C(p) ||f||_{\delta,p,\mu}$$
,

(ii)
$$||f||_{\delta,p,\mu} \le C(p)||f||_{p,\mu}$$

Lemma 2.6 [2]

Let $B_n(f)$ be a Bernstein's polynomial and $k \ge 0$, then

(2.5)
$$\Delta_h^k(B_n(f), x) = \sum_{i=0}^k \frac{P_{k,n}}{(2i)!} h^{k+ih} \alpha_{k+2i}^{2i},$$

(2.6)
$$\Delta_{h\varphi(.)}^{k}(B_{n}(f),x) = \sum_{i=0}^{k} \frac{\varphi^{k+2i}(x)P_{k,n}(x)}{(2i)!}h^{k+ih}\alpha_{k+2i}^{2i}.$$

Lemma 2.7 [3]

For $p \ge 1$ and $\alpha_i > 0$ then we have

(2.7)
$$\left| \sum_{i=0}^{n} \alpha_{i} \beta_{i} \right|^{p} \leq \sum_{i=0}^{n} \alpha_{i} \left| \beta_{i} \right|^{p} \text{, where } \sum_{i=0}^{n} \alpha_{i} = 1.$$

Lemma 2.8 [1]

Let μ be a non-decreasing function on R, satisfying: $\mu(y) - \mu(x) = \text{constant}$, and $1 \le p < \infty$, We put: $\omega_{\mu}(\delta) = \sup_{0 < y - x \le \delta} \left(\mu(y) - \mu(x) \right), \delta > 0$, and

$$\left(\frac{1}{n}\sum_{k=0}^{n-1}\max_{x\in I_k}\left|P_n\right|^p\right)^{\frac{1}{p}}\leq C(p)\|P_n\|_p, \text{ where }P_n \text{ is algebraic polynomials of degree at most }n$$
 and $I_k=\left[\frac{k}{n},\frac{k+1}{n}\right].$ then:

(2.8)
$$\|P_n\|_{p,\mu} \le C(p) \left(n\omega_\mu \left(\frac{1}{n}\right)\right)^{\frac{1}{p}} \|P_n\|_p$$

Lemma 2.9 (Minkowsk's Inequality) [8]

If $p \ge 1$ and $f, g \in L_p(\mu)$, then $f + g \in L_p(\mu)$ and

(2.9)
$$\left[\int_{X} |f + g|^{p} d\mu \right]^{1/p} \leq \left[\int_{X} |f|^{p} d\mu \right]^{1/p} + \left[\int_{X} |g|^{p} d\mu \right]^{1/p}.$$

Lemma 2.10 [4]

For $f \in L_p$, $1 \le p \le \infty$ then we have

(i)
$$||f||_p \le ||f||_{\delta,p} \le ||f||_{\delta,\infty} \le ||f||_{\infty},$$

(ii)
$$||f||_{p} \le ||f||_{\delta,p}^{\Phi} \le ||f||_{\delta,\infty}^{\Phi} \le ||f||_{\infty}.$$

Lemma 2.11 [10]

For $k, n \in \mathbb{N}, 0 \le k \le n$ then we have

(2.10)
$$\|P_{k,n}\|_{1/n,1}^{\varphi} \le \frac{c}{n}$$
, where $P_{k,n} = \binom{n}{k} x^k (1-x)^{n-k}$, $x \in X$.

Lemma 2.12 [1]

For $f \in L_n(\mu)$, $1 \le p < \infty$ and $n \in N$, then we have

(i)
$$||f||_{1/n,p,\mu} \le ||f||_{1/\sqrt{n},p,\mu}^{\Phi}$$

(ii)
$$||f||_{1/n,p,\mu}^{\Phi} \le ||f||_{1/\sqrt{n},p,\mu}^{\Phi}.$$

Lemma 2.13

Let f be a bounded $\mu-$ measurable function on X ,and $g_n\in\Pi_n\cap L_p(\mu)$,then we have

Proof:

By using Lemma 2.5(ii) and equations (2.8), (2.2),(1.9) and since $\varphi^r(x) < \frac{1}{2^r}$, and

for $g_{k,n} \in W_p^k(X)$, then we have

$$\|f - g_{k,n}\|_{\delta,p,\mu} \le \|f - g_{k,n}\|_{p,\mu} \le C(p)n^{1/p} \|f - g_{k,n}\|_{p}$$

$$\leq C(k,p)n^{1/p} \omega_{k}^{\varphi}(f,\delta)_{p}
= C(k,p)n^{1/p} \sup_{0< h \leq \delta} \left\| \Delta_{h\varphi(.)}^{k}(f,x) \right\|_{p}
\leq C(k,p)n^{1/p} 2^{r} \sup_{0< h \leq \delta} \left\| \varphi^{r} \Delta_{h\varphi(.)}^{k}(f,x) \right\|_{p}
\leq C(r,k,p)n^{1/p} 2^{r} \sup_{0< h \leq \delta} \left\| \varphi^{r} \Delta_{h\varphi(.)}^{k}(f,x) \right\|_{p,\mu}
\leq C(r,k,p)n^{1/p} 2^{r} \omega_{k,r}^{\varphi}(f,\delta)_{p,\mu}$$

Lemma 2.14

Let f be a bounded μ -measurable function on X, for $1 \le p < \infty$, then we have (2.12) $\|B_n(f)\|_{\delta,p,\mu} \le C\|f\|_{\delta,p,\mu}$

Proof:

From using (1.5) ,Lemma 2.11(i), (2.9),(2.7),(1.4),(2.10) and Lemma 2.5(i) ,then we have

$$\begin{split} & \|B_{n}(f)\|_{\delta,p,\mu} \leq \left[\int_{X} \left(\sup \left\{ \sum_{k=0}^{n} f\left(\frac{k}{n}\right) P_{k,n}(t) \right| : t \in N(x,\delta) \right\} \right)^{p} d\mu(x) \right]^{1/p} \\ & \leq \left[\int_{X} \left(\sup \left\{ \sum_{k=0}^{n} \left| f\left(\frac{k}{n}\right) \right| P_{k,n}(t) : t \in N(x,\delta) \right\} \right)^{p} d\mu(x) \right]^{1/p} \\ & \leq \left(\sum_{k=0}^{n} \left| f\left(\frac{k}{n}\right) \right|^{p} \right)^{1/p} \left(\int_{X} \left(\sup \left\{ P_{k,n}(t) : t \in N(x,\delta) \right\} \right)^{p} d\mu(x) \right)^{1/p} \\ & \leq \left(\sum_{k=0}^{n} \left| f\left(\frac{k}{n}\right) \right|^{p} \right)^{1/p} \left\| P_{k,n} \right\|_{1/\sqrt{n},p,\mu}^{\varphi} \leq \left(\sum_{k=0}^{n} \left| f\left(\frac{k}{n}\right) \right|^{p} \right)^{1/p} \left\| P_{k,n} \right\|_{1/n,p,\mu}^{\varphi} \\ & \leq \left(\sum_{k=0}^{n} \left| f\left(\frac{k}{n}\right) \right|^{p} \right)^{1/p} \left\| P_{k,n} \right\|_{1/n,p,\mu}^{\varphi} \leq \frac{c(p)}{n} \left(\sum_{k=0}^{n} \left| f\left(\frac{k}{n}\right) \right|^{p} \right)^{1/p} \\ & \leq C(p) \|f\|_{\delta,p} \leq C(p) \|f\|_{\delta,p,\mu} \triangleq \end{split}$$

Lemma 2.15

Let f and g be bounded μ -measurable functions for $1 \le p < \infty$, then we have (2.13) $\omega_{k,r}^{\varphi}(f,\delta)_{p,\mu} \le \omega_{k,r}^{\varphi}(f-g,\delta)_{p,\mu} + \omega_{k,r}^{\varphi}(g,\delta)_{p,\mu}$.

Proof:

By using (1.10), (1.1), (1.7) and (2.9), then
$$\omega_{k,r}^{\varphi}(f,\delta)_{p,\mu} = \omega_{k,r}^{\varphi}(f-g+g,\delta)_{p,\mu}$$

$$= \sup_{0 < h \le \delta} \left\| \varphi^{r}(.) \Delta_{h\varphi(.)}^{k}(f-g+g,x) \right\|_{p,\mu}$$

$$= \sup_{0 < h \le \delta} \left\{ \int_{X} \left| \varphi^{r}(.) \sum_{i=0}^{k} {k \choose i} (-1)^{k-i} (f-g+g)(x - \frac{kh\varphi}{2} + ih\varphi) \right|^{p} d\mu(x) \right\}^{1/p}$$

$$\leq \sup_{0 < h \le \delta} \left\{ \int_{X} \left| \varphi^{r}(.) \sum_{i=0}^{k} {k \choose i} (-1)^{k-i} (f-g)(x - \frac{kh\varphi}{2} + ih\varphi) \right|^{p} d\mu(x) \right\}^{1/p}$$

$$+ \sup_{0 < h \le \delta} \left\{ \int_{X} \left| \varphi^{r}(.) \sum_{i=0}^{k} {k \choose i} (-1)^{k-i} g(x - \frac{kh\varphi}{2} + ih\varphi) \right|^{p} d\mu(x) \right\}^{1/p}$$

$$\leq \sup_{0 < h \le \delta} \left\{ \int_{X} \left| \varphi^{r}(.) \Delta_{h\varphi(.)}^{k}(f-g,x) \right|^{p} d\mu(x) \right\}^{1/p} + \sup_{0 < h \le \delta} \left\{ \int_{X} \left| \varphi^{r}(.) \Delta_{h\varphi(.)}^{k}(g,x) \right|^{p} d\mu(x) \right\}^{1/p}$$

3.Proof of Theorems

Proof of Theorem 1.1

We may assume the Bernstein's polynomial $B_n(f) \in W_p^k(X)$, and we introduce a $\widetilde{K}_{k,r,\varphi}$ -functional, by using (1.11) then

$$\widetilde{\mathbf{K}}_{\mathbf{k},\mathbf{r},\boldsymbol{\varphi}}(f,\boldsymbol{\delta})_{p} = \inf_{P_{n} \in \Pi_{n} \atop n = \left[\frac{1}{\delta}\right]} \quad \left\{ \left\| \boldsymbol{\varphi}^{r}(\boldsymbol{x})(f - P_{n}) \right\|_{p} + \boldsymbol{\delta}^{k} \left\| \boldsymbol{\varphi}^{k} P_{n}^{(k)} \right\|_{p} \right\}$$

also, since $\varphi^k(x) \le \frac{1}{2^k}$, $\forall x \in X$, and by (1.10)

 $\leq \omega_{k,r}^{\varphi}(f-g,\delta)_{p,\mu} + \omega_{k,r}^{\varphi}(g,\delta)_{p,\mu}$

$$\omega_{k,r}^{\varphi}(f,\delta)_{p} \approx \widetilde{K}_{k,r,\varphi}(f,\delta)_{p}$$

then we have

$$\omega_{k,r}^{\varphi}(f,\delta)_{p} \leq C(r) \Big(\| (f-B_{n}(f)) \|_{p} + \delta^{k} \| \varphi^{k}(.) B_{n}^{(k)}(f) \|_{p} \Big)$$

also, by (2.2) and (2.4), then

$$\begin{aligned} \left\| f - B_n(f) \right\|_p &\leq C(k) \omega_k^{\varphi}(f, \delta)_p \\ &\leq C(k, p) \delta^k \left\| \varphi^k f^{(k)} \right\|_p \\ &\leq C(k, p) 2^{-r} \delta^k \left\| f^{(k)} \right\|_p \end{aligned}$$

hence by using (2.1)

$$\omega_{k,r}^{\varphi}(f,\delta)_{p} \leq C(k,p)2^{-r}\delta^{k} \|f^{(k)}\|_{p}$$

$$\leq C(k,p)2^{-r}\delta^{k} \|f^{(k)}\|_{p,\mu}$$

so that ,by using (2.8),then we have

$$\omega_{k,r}^{\varphi}(f,\delta)_{p,\mu} \leq \omega_{k,r}^{\varphi}(f,\delta)_{p}$$

hence, we complete proof of Theorem 1.1 &

Proof of Theorem 1.2

Suppose that any polynomial $g_n \in \Pi_n \cap L_p(\mu), 1 \le p < \infty, \delta > 0$ then we have

$$\begin{split} \left\| B_{n}(f) - f \right\|_{\delta, p, \mu} &= \left\| B_{n}(f) - f - B_{n}(g_{n}) + B_{n}(g_{n}) - g_{n} + g_{n} \right\|_{\delta, p, \mu} \\ &\leq \left\| B_{n}(f) - B_{n}(g_{n}) + \right\|_{\delta, p, \mu} + \left\| B_{n}(g_{n}) - g_{n} \right\|_{\delta, p, \mu} + \left\| f - g_{n} \right\|_{\delta, p, \mu} \\ &\leq \left\| B_{n}(f - g_{n}) + \right\|_{\delta, p, \mu} + \left\| B_{n}(g_{n}) - g_{n} \right\|_{\delta, p, \mu} + \left\| f - g_{n} \right\|_{\delta, p, \mu} \end{split}$$

hence, by using (2,12), then we have

$$\|B_n(f) - f\|_{\delta, p, \mu} \le C(p) \|f - g_n\|_{\delta, p, \mu} + \|B_n(g_n) - g_n\|_{\delta, p, \mu}$$

So that

$$\begin{split} \left\| B_{n}(g_{n}) - g_{n} \right\|_{\delta, p, \mu} &= \left\| B_{n}(g_{n}) - f + f - g_{n} \right\|_{\delta, p, \mu} \\ &\leq \left\| B_{n}(g_{n}) - f \right\|_{\delta, p, \mu} + \left\| f - g_{n} \right\|_{\delta, p, \mu} \end{split}$$

also, by using (2.11) and Lemma 2.5(ii), then

$$||B_{n}(f) - f||_{\delta, p, \mu} \le C(p) ||B_{n}(g_{n}) - f||_{p, \mu} + ||f - g_{n}||_{p, \mu}$$

$$\le C(r, k, p) 2^{-r} n^{1/p} \omega_{k, r}^{\varphi}(f, \delta)_{p, \mu}$$

Proof of Theorem 1.3

Since $f \in L_p(\mu) \cap C^\ell(X)$ and $B_n(f)$ is Bernstein's polynomial defined on X, $0 < \ell < r$ and since $\varphi(x) \le \frac{1}{2}$, for all $x \in X$, also by using Lemma 2.1(ii), (2.8) and (1.10), then we have

$$\begin{split} \omega_{k+r-\ell,\ell}^{\varphi}(f^{(\ell)},\delta)_{p,\mu} &\leq \omega_{k+r-\ell,\ell}^{\varphi}(f^{(\ell)},\delta)_{p} \\ &= \sup_{0$$

now, by using Theorem 1.2, then we will finished the proof of this theorem &

Proof of Theorem 1.4

In view (2.5) and (2.6) ,we can assume $0 \le t \le t_0 = \min\left(\frac{1}{Dk^2n}, \frac{1}{\sqrt{D}k^2n}\right)$, where

$$D = 3^{1/n} p$$
, so that $\sum_{i=1}^{\infty} \frac{1}{D^{2ip}} = \frac{1}{2}$ and recalling $|\alpha_i| < \frac{k}{2}$ and by (1.3), then for any

 $0 \le h \le t \le t_0$ and since $\varphi^r(x) \le 2^{-r}$, then we have

$$\begin{split} \frac{\left\| \varphi^{k+i}(x) P_{k,n}(x) \right\|_{p,\mu} h^{k+i} \left| \alpha_{k+i} \right|^{i} \leq C n(k+i) \frac{\left\| \varphi^{k+i-1}(x) P_{k,n}(x) \right\|_{p,\mu} h^{k+i-1}}{D k^{2} n} \frac{k \left| \alpha_{k+i} \right|^{i-1}}{2} \\ &= \frac{\left\| \varphi^{k+i-1}(.) P_{k,n}(.) \right\|_{p,\mu}}{(i-1)! D} \frac{(k+i) h^{i-1} \left| \alpha_{k+i} \right|^{i-1}}{2 i k} \\ &\leq \frac{\left\| \varphi^{k+i-1}(.) P_{k,n}(.) \right\|_{p,\mu}}{(i-1)! D} h^{i-1} \left| \alpha_{k+i} \right|^{i-1}}{\leq \frac{\left\| \varphi^{k}(.) P_{k,n}(.) \right\|_{p,\mu}}{D}} \end{split}$$

where, we have used the fact $k+i \le 2ik$ for $i,k \ge 1$. Now, we have

$$\begin{split} \left\| \varphi^{r}(.) \Delta_{h\varphi(.)}^{k}(B_{n}(f), x) \right\|_{p,\mu} &\leq \frac{h^{k}}{2^{r}} \left[\sum_{i=0}^{k} \frac{\left\| \varphi^{k+2i}(x) P_{k,n}(x) \right\|_{p,\mu}}{(2i)!} h^{k+2i} \left| \alpha_{k+2i} \right|^{2i} \right] \\ &\leq \frac{h^{k}}{2^{r}} \left\| \varphi^{k}(x) P_{k,n}(x) \right\|_{p,\mu} \left(1 + \sum_{i=1}^{k} \frac{1}{D^{2ip}} \right) \\ &\leq \frac{3h^{k}}{2^{r+1}} \left\| \varphi^{k}(x) P_{k,n}(x) \right\|_{p,\mu} \leq C(r, k, p) h^{k} \left\| \varphi^{k}(x) P_{k,n}(x) \right\|_{p,\mu}. \end{split}$$

Therefore ,by (1.9),then

$$\sup_{0 < h \le \delta} \left\| \varphi^{r}(x) \Delta_{h\varphi(.)}^{k}(B_{n}(f), x) \right\|_{p, \mu} \le C(r, k, p) \sup_{0 < h \le \delta} \left\{ h^{k} \left\| \varphi^{k}(x) P_{k, n}(x) \right\|_{p, \mu} \right\}$$

Hence,

(3.1)
$$\omega_{k,r}^{\varphi}(B_n(f),\delta)_{p,\mu} \le C\delta^k \|\varphi^k(x)P_{k,n}(x)\|_{p,\mu}$$

where, the constant C dependent on r, k and $p \clubsuit$

Reference

- [1] A. H. Alwan ,(2005); "On Equivapproximation of Bounded μ -measurable functions in $L_p(\mu)$ -space" A thesis Presented to the college of science University of Bagdad.
- [2] Z. Ditzian and V. Totik ,(1987);"Moduli of Smoothness ";Springer Series in Computation Mathematics ,Vol. 9,Springer –Verlag, New York.
- [3] S. K. Jassim ,(1991) ;"Direct and inverse inequalities for some discrete operators of bounded measurable function". Serdica Bulgarica Mathematics Publications.
- [4] S. K. Jassim,(1990) ;"Best one-sided approximation with algebraic polynomials". Serdica, Bulgarica Mathematics Publications ,Vol. 16, pp 263-269.
- [5] Habeeb A. Kadhim,(2009); "On Coconvex Approximation" A thesis Presented to the college of education University of Babylon.
- [6] K. A. Kopotun,(2003); "Equivalence of Moduli of Smoothness and Application" math. comp. (to appear).
- [7] Kirill A. Kopotun ,(1991) ;" On Equivalence of Moduli of Smoothness of Splines in L_p , p > 0.
- [8] M. E. Monroe,(1953);"Introduction to measure theory and integration". Addison-Wesky.
- [9] George M. Phillips,(2003);"Interpolation Approximation by polynomials".
- [10] E. V. Wicheren ,(1989);"Direct and inverse theorems for Bernstein's polynomials in the space of Riemann integration functions". Constructive Approximation, 2,331-337.

المستخلص :

الهدف من هذا البحث هو دمراسة بعض المخواص الاساسية لمقياس النعومة المرجّح لكل من دتيزين وتوتك
$$\omega_{k,r}^{\varphi}$$
 للدوال المقيدة والقابلة للقياس - μ في الفضاءات μ والقابلة للقياس - μ في الفضاءات μ الستخدام متعددة حدود مربشتان الجمرية .