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Abstract  

Lately introduced fractal fractional Caputo - Fabrizio operator. By substituting the 

single kernel at the classic derivative of fractal fractional Caputo with the ordinary kernel 

This modern operator was derived. We introduce some beneficial characteristics relied 

on the qualifier of fractal fractional Caputo - Fabrizio. Here, we extend Caputo-Fabrizio 

for nonlinear fractal fractional differential equations. We apply Legendre operational 

matrix relied on this modern operator and then, we employ it to solve the differential 

equations determined in the sense of fractal fractional Caputo-Fabrizio. To show the 

simplicity and precision of the suggested technicality Some numerical examples are 

given.  
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1. Introduction  

In [1], through replacement the single kernel in 

the classic derivative of fractal fractional Caputo 

with the ordinary kernel. Exponential kernel has 

used by the fractal fractional Caputo - Fabrizio 

(FFCF) operator, which is a non-single kernel 

FFCF have suggested the modern operator. It 

does not only have two various exemplifications 

for locative and temporal variables, but the entire 

impact of the memory can be pertraged else [1]. 

In heat convey model this modern operator has 

been successfully utilized [2], Freedman and 

nonlinear Baggs model [3], the equation of space 

time fractal fractional propagation [4], 

mathematical paradigms for an unstable 

Maxwell fluid flux and its thermic demeanor in 

a micro-pipe [5], mass-spring-damper system 

[6], and fractal fractional Maxwell liquid [7]. In 

this research, to the trouble determined in the 

sense of FFCF operator some existent analytical 

and numerical methods to solve fractal fractional 
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calculus trouble have been expanded, amongst 

them is the paper of Morales-Delgado et.al. In 

[8], to detect the essential solution for the fractal 

fractional advection propagation equation with 

the exporter the authors employ integral converts 

where the derivative is considered in FFCF 

sense. Nevertheless, since FFCF operator is 

comparatively modernistic, there are still 

comparatively bounded works conducted to gain 

the authoritative, precision and simple solving 

for the fractional calculus trouble determined in 

FFCF operator. 

Moreover, in solving several fractal fractional 

calculus troubles operational matrix (OPM) 

method relied on perpendicular function was 

successfully utilized which are acquainted in 

classic sense of fractal fractional Caputo. The 

method minimizes like these troubles to solve a 

system of algebraic equations, thence extremely 

simplify the trouble. In this research field the 

major contribution starts with the seminal paper 

concerning Legendre wavelets OPM through 

Yousefi and Razzaghi [9] and OPM relied on 

Legendre polynomials in [10]. to solve 

changeable arrangement fractal fractional 

differential equations this OPM process has been 

expanded as in [11]. Nevertheless, there are still 

no OPM related processes to solve the troubles 

determined in FFCF operator. Thus, in this 

paper, to represent the FFCF operator we derive 

the modern OPM relied on shifted Legendre 

polynomials (SLP), which is achieved by first 

deriving the formula for     𝐷𝜔,𝛽
 

𝐹𝐹𝐶𝐹 (𝑧 − 𝑎)𝛽 of 

a public derivative order 𝑛 < 𝜔 < 𝑛 + 1  . 

Thereafter, by pursuing the work of Dehghan 

and Saadatmandi [10], we derive the OPM relied 

on SLP to solve troubles in FFCF sense. It is the 

first time that the OPM is used for solving the 

problem in FFCF sense. The goal for this paper 

is to solve nonlinear fractal fractional Caputo 

Fabrizio by using OPM relied on Legendre 

polynomials. 

 

The article is arranged as the following: 

Section 2 shortly clarify fractal fractional Caputo 

and FFCF fractional derivative. In section 3 the 

Legendre OPM of fractal fractional derivative is 

gained. In section 4 the suggested method is 

utilized to many examples. Also, a conclusion is 

presented in section 5.  

2. Basic Concepts  

2.1. Caputo and FFCF fractal derivative  

The fractal fractional derivative of Caputo left-

sided  𝑫𝝎,𝜷
 

𝑪   of a function 𝒚(𝒛) ∈ 𝒀𝟏(𝟎, 𝒃) 

with 𝟎 < 𝝎 < 𝟏,  is acquainted as 

 

𝑫𝝎,𝜷
 

𝑪 𝒚(𝒛) =
𝟏

𝚪(𝟏 − 𝝎)
∫

𝒅𝒚(𝝉)

𝒅𝝉𝜷
(𝒛 − 𝝉)−𝝎𝒅𝝉       (𝟏) 

𝒛

𝟎

 

 

The fractal fractional derivative of fractal 

fractional Caputo is considered to be one of the 

most beneficial definitions of the fractal 

fractional derivatives utilized in several fields of 
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engineering and science. Nevertheless, the 

modern qualifier proposed of FFCF presumes 

two various representations for the temporal and 

locative variable. Indeed, they purported that the 

classic definition which is given by eq. (1) seems 

to be especially appropriate for mechanistic 

phenomenon, concerning with elasticity, 

exertion, harm and electromagnetic hysteresis. it 

looks more suitable to use the novel FFCF 

operator when these influences are not exist [1]. 

 

Definition 2.2. In [1], FFCF submitted the novel 

operator through substituting the single Kernel   

(𝑧 − 𝜏)−𝜔with  𝑒
−𝜔(𝑧−𝜏)

1−𝜔 and 
1

Γ(1−𝜔)
 with  

𝑀(𝜔)

1−𝜔
 in 

Eq (1) to acquire:                                     

For 0 < 𝜔 < 1 , 𝑎 ∈ [−∞, 𝑧)  and 𝑦(𝑧) ∈

𝑌1(0, 𝑏) , 𝑏 > 𝑎  the FFCF operator or more 

accurately the left-sided FFCF operator of 𝑦(𝑧) 

is acquainted as: 

 

𝑫𝝎,𝜷
 

𝑪 𝒚(𝒛) =
𝑴(𝝎)

𝟏 − 𝝎
∫

𝒅𝒚(𝝉)

𝒅𝝉𝜷
𝒆

−𝝎(𝒛−𝝉)
𝟏−𝝎 𝒅𝝉      (𝟐) 

𝒛

𝒂

 

 

Where the normalization function is 𝑀(𝜔) for 

example 𝑀(0) = 𝑀(1) = 1 

Here  𝝎  denotes the fractal fractional order,  𝛽 

denotes the fractal order and the integral has 

power law kernel and, 

 

𝒅𝒚(𝝉)

𝒅𝒛𝜷
= 𝐥𝐢𝐦

𝒛→𝝉

𝒚(𝒛) − 𝒚(𝝉)

𝒛𝜷 − 𝝉𝜷
 

          =
𝟏

𝜷𝝉𝜷−𝟏

𝒅

𝒅𝝉
𝒚(𝝉) 

In [1], the definition of Eq. (2) is expanded by 

FFCF also for the state of  𝒏 < 𝝎 < 𝒏 + 𝟏 with 

the additional presumption that 𝑦(𝑘)(𝜔) =

0, 𝑘 = 1,2, … , 𝑛:   

 

𝑫
𝒂+;𝒛

𝝎,𝜷
 

𝑭𝑭𝑪𝑭 𝒚(𝒛) = 𝑫𝒂+;𝒛
𝝊 (𝑫𝒏𝝉(𝒛)) 

𝑭𝑭𝑪𝑭         

 

  =
𝑴(𝝊)

𝟏−𝝊
∫ 𝒚(𝒏+𝟏) 𝒆

−𝝊(𝒛−𝝉)

𝟏−𝝊 𝒅𝝉               (𝟑) 
𝒛

𝒂
    

       

𝒚(𝒏+𝟏)(𝒛) = 𝑫(𝒏+𝟏)𝒚(𝒛) = 𝑫⌈𝝎⌉𝒚(𝒛)   

 

 Where   𝜐, 𝑛  are the decimal part and integer 

part of 𝜔 ∈ ℝ+, respectively. 

 

 

Note: We let 𝜔 = 𝑛 + 𝜐, where 𝜐 is the fractal 

fractional part and 𝑛 to indicate the floor( 𝜔) or  

⌊𝜔⌋ (i.e., integer part). Also,  ⌈𝜔⌉ is utilized to 

indicate the ceil (𝜔).                                     

 

2.2 Some Properties of The Shifted Legendre 

Polynomials 

The notable Legendre polynomials are 

acquainted with this interval [-1,1] and can be 

resolved with the guide of the accompanying 

repeat formulation [10]: 

 

𝓛𝜹+𝟏(𝒕) =
𝟐𝜹 + 𝟏

𝜹 + 𝟏
 𝒕 𝓛𝜹(𝒕) − 

𝜹

𝜹 + 𝟏
 𝓛𝜹−𝟏(𝒕)    ,    

𝜹 = 𝟏, 𝟐,…      (𝟒) 
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Where ℒ0(𝑡) = 1 and ℒ1(𝑡) = 𝑡 . For utilizing 

these polynomials on the interval 𝑧 ∈ [0,1] we 

limit which is named SLP through presenting the 

alteration of variable 𝑡 = 2𝑧 − 1. Let the SLP 

ℒ𝛿(2𝑧 − 1) indicated through  𝑃𝛿(𝑧)  . Then 

𝑃𝛿(𝑧) can be acquired as the following: 

 

𝑷𝜹+𝟏(𝒛) =
(𝟐𝜹 + 𝟏)(𝟐𝒛 − 𝟏)

(𝜹 + 𝟏)
  𝑷𝜹(𝒛) − 

𝜹

𝜹 + 𝟏
 𝑷𝜹−𝟏(𝒛) ,    𝜹

= 𝟏, 𝟐, …          (𝟓) 

Where 𝑃0(𝑧) = 1  and   𝑃1(𝑧) = 2𝑧 − 1 . The 

analytic form of the SLP 𝑃𝛿(𝑧) of degree 𝛿  is 

given by 

 

𝑷𝜹(𝒛) = ∑(−𝟏)𝜹+𝒔  
(𝜹 + 𝒔)!

(𝜹 − 𝒔)!

𝜹

𝒔=𝟎

 
𝒛𝒔

(𝒔!)𝟐
              (𝟔) 

 

Notice that  𝑃𝛿(0) = (−1)𝛿   and 𝑃𝛿(1) = 1   . 

The orthogonality condition is 

 

∫ 𝑷𝜹(𝒛) 𝑷𝜼(𝒛) 𝒅𝒛 = {

𝟏

𝟐𝜹 + 𝟏
           𝜹 = 𝜼 

𝟎                    𝜹 ≠ 𝜼
          (𝟕)

𝟏

𝟎

 

 

A function 𝑔(𝑧) square-integrable in [0,1] may 

be expressed in terms of SLP 

 

 

𝑔(𝑧) = ∑ 𝑐𝜂

∞

𝜂=0

𝑃𝜂(𝑧)       

where the coefficients 𝑐𝜂 are presented through 

  

𝒄𝜼 = (𝟐𝜼 + 𝟏) ∫ 𝒈(𝒛) 𝑷𝜼(𝒛) 𝒅𝒛      𝜼 = 𝟏, 𝟐,…   
𝟏

𝟎

 

 

Practically speaking, only the first  (𝑁 + 1) − 

terms SLP are consider. So, we have 

 

𝒈(𝒛) = ∑ 𝒄𝜼

𝑵

𝜼=𝟎

𝑷𝜼(𝒛)  = 𝑪𝑻∅(𝐳)     

 

where the shifted Legendre vector ∅(z)  and the 

shifted Legendre coefficient vector 𝐶  are 

presented by 

 

𝑪𝑻 = [ 𝒄𝟎 , … , 𝒄𝑵]                                   

∅(𝐳) = [ 𝑷𝟎(𝒛) , 𝑷𝟏(𝒛) , … , 𝑷𝑵(𝒛)] 𝑻        (𝟖)  

 

The derivative of the vector ∅(z)  can be 

expressed through 

 

  
𝒅∅(𝐳)

𝒅𝒛
= 𝑫(𝟏)∅(𝐳)                     (𝟗) 

 

where 𝐷(1)  is the (N + 1) × (N + 1)  OPM of 

derivative presented through 

  

𝑫(𝟏) = (𝒅𝜹𝜼)

= {
𝟐(𝟐𝜼 + 𝟏),     𝒇𝒐𝒓  𝜼 = 𝜹 − 𝒔  {

𝒔 = 𝟏, 𝟑, … ,𝑵  𝒊𝒇 𝑵 𝒐𝒅𝒅         
𝒔 = 𝟏, 𝟑, … ,𝑵 − 𝟏  𝒊𝒇 𝑵 𝒆𝒗𝒆𝒏

𝟎                                                                               𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 

 

For instance, for even 𝑁  we have  
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𝑫(𝟏)

= 𝟐

(

 
 
 
 

𝟎 𝟎 𝟎 𝟎 … 𝟎 𝟎 𝟎
𝟏 𝟎 𝟎 𝟎 … 𝟎 𝟎 𝟎
𝟎 𝟑 𝟎 𝟎 … 𝟎 𝟎 𝟎
𝟏 𝟎 𝟓 𝟎 … 𝟎 𝟎 𝟎
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝟏 𝟎 𝟓 𝟎 … 𝟐𝑵 − 𝟑 𝟎 𝟎
𝟎 𝟑 𝟎 𝟕 … 𝟎 𝟐𝑵 − 𝟏 𝟎)

 
 
 
 

 

3. OPM for fractal fractional order 

differential equation 

By utilizing (9). can be written the higher 

derivative as follows [13]: 

 

𝒅𝒏∅(𝒛)

𝒅𝒛𝒏
= (𝑫(𝟏))𝒏∅(𝒛)                  (𝟏𝟎) 

 

Where  𝑛 ∈ 𝑁   and the superscript symbol, in 

𝐷(1) , indicate matrix powers. Thus 

 

 𝑫(𝟏) = (𝑫(𝟏))𝒏                    (𝟏𝟏) 

 

Theorem 1.  Let 𝑛 < 𝜔 < 𝑛 + 1,  for a 

presented integer  𝛽 ≥ ⌈𝜔⌉  ,the FFCF operator 

of order 𝜔 ≠ ⌈𝜔⌉  of  (𝜏 − 𝑎)𝛽  is presented as 

[17] 

 

𝑫
𝒂+;𝝉

𝝎,𝜷
 

𝑭𝑭𝑪𝑭 (𝝉 − 𝒂)𝜷

=
𝑴(𝝊)𝚪(𝜷 + 𝟏)

𝟏 − 𝝊
[( ∑

(−𝟏)𝜹(𝝉 − 𝒂)𝜷−𝒏−𝟏−𝜹

𝚪(𝜷 − 𝒏 − 𝜹) (
𝝊

𝟏 − 𝝊)
𝜹+𝟏

𝜷−𝒏−𝟏

𝜹=𝟎

)

+
(−𝟏)𝜷−𝒏

(
𝝊

𝟏 − 𝝊)
𝜷−𝒏

𝒆
−𝝊(𝝉−𝒂)

𝟏−𝝊 ]             (𝟏𝟐) 

 

Theorem 2. Let  𝜙ℒ(𝑧)  be the shifted Legendre 

vector acquainted in (6) and also assume 

 𝑛 < 𝜔 < 𝑛 + 1 , then, 

 

𝑫 
𝝎,𝜷

 
𝑭𝑭𝑪𝑭 𝝓𝓛(𝒛) = 𝑷 

𝝎,𝜷
 
 𝝓𝓛(𝒛)             (𝟏𝟑) 

 

where 𝑃 
𝜔,𝛽  is the  𝑁 × 𝑁  OPM of FFCF 

operator of order 𝜔 acquainted as [13]:  

 

𝑷 
𝝎,𝜷 =

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝟎 𝟎 … 𝟎
⋮ ⋮ … ⋮
𝟎 𝟎 … 𝟎

∑ 𝜽⌈𝝎⌉,𝟎,𝒔

⌈𝝎⌉

𝒔=⌈𝝎⌉

∑ 𝜽⌈𝝎⌉,𝟏,𝒔

⌈𝝎⌉

𝒔=⌈𝝎⌉

… ∑ 𝜽⌈𝝎⌉,𝑵−𝟏,𝒔

⌈𝝎⌉

𝒔=⌈𝝎⌉

⋮ ⋮ … ⋮

∑ 𝜽𝜹,𝟎,𝒔

𝜹

𝒔=⌈𝝎⌉

∑ 𝜽𝜹,𝟎,𝒔

⌈𝝎⌉

𝒔=⌈𝝎⌉

… ∑ 𝜽𝜹,𝑵−𝟏,𝒔

⌈𝝎⌉

𝒔=⌈𝝎⌉

⋮ ⋮ … ⋮

∑ 𝜽𝑵−𝟏,𝟎,𝒔

𝑵−𝟏

𝒔=⌈𝝎⌉

∑ 𝜽𝑵−𝟏,𝟎,𝒔

⌈𝝎⌉

𝒔=⌈𝝎⌉

… ∑ 𝜽𝑵−𝟏,𝑵−𝟏,𝒔

⌈𝝎⌉

𝒔=⌈𝝎⌉ ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (𝟏𝟒) 

  

where 𝜃𝛿,𝜂,𝑠 is presented through 

 

𝜽𝜹,𝜼,𝒔

=
(𝟐𝜼 + 𝟏)𝑴(𝝊)

𝟏 − 𝝊
∑

(−𝟏)𝜹+𝜼+𝜾(𝜹 + 𝒔)! (𝜼 + 𝜾)!

(𝜹 − 𝒔)! 𝒔! (𝜼 − 𝜾)!  𝜾!

𝜼

𝜾=𝟎

[
(−𝟏)𝟏−⌈𝝎⌉

𝜸𝒔−⌈𝝎⌉+𝜾+𝟐

+ ∑
(−𝟏)⌈𝝎⌉𝒆−𝒚

(𝜾 − 𝒓)! 𝜸𝒔−⌈𝝎⌉+𝒓+𝟐

𝜾

𝒓=𝟎

+ ∑
(−𝟏)𝒔+𝒓

𝜾! 𝚪(𝒔 − ⌈𝝎⌉ − 𝒓 + 𝟏)𝜸𝒓+𝟏(𝒔 − ⌈𝝎⌉ − 𝒓 + 𝜾 + 𝟏)

𝒔−𝝎

𝒓=𝟎

] (𝟏𝟓) 

 

where 
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𝜸 =
𝝊

𝟏 − 𝝊
                  (𝟏𝟔)     

 

𝜹 =  ⌈𝝎⌉,… ,𝑵 ,             𝜼 = 𝟎, 𝟏, 𝟐, … ,𝑵 − 𝟏              

 

 

3.1. For nonlinear fractal fractional order 

differential equation 

Consider the nonlinear multi-order fractal 

fractional differential equation 

 

𝑫𝝎,𝜷𝒈(𝒛) = 𝒀(𝒛, 𝒈(𝒛), 𝑫𝜷𝟏𝒈(𝒛), … ,𝑫𝜷𝒔𝒈(𝒛)    (𝟏𝟕) 

 

With initial condition 

 

 𝒈(𝜹)(𝟎) = 𝒅𝜹  , 𝜹 = 𝟎,… , 𝒏        (𝟏𝟖) 

 

Where   𝑛 < 𝜔 ≤ 𝑛 + 1 , 0 < 𝛽1 < 𝛽2 < ⋯ <

𝛽𝑠 < 𝜔, and  𝐷𝜔,𝛽 indicates the fractal fractional 

derivative of Caputo of order 𝜔. It ought to be 

noticed that 𝑌  can be nonlinear in generic. To 

utilizing SLP for this problem, we firstly 

approximate 𝑔(𝑧) , 𝐷𝜔,𝛽𝑔(𝑧) 𝑎𝑛𝑑  𝐷𝛽𝜂𝑔(𝑧)  

for 𝜂 = 0,… , 𝑠 . Through replacing these 

equations in Eq. (17) we obtain 

 

𝑪𝑻𝑫(𝝎,𝜷)𝝓(𝒛)

≃ 𝒀(𝒛, 𝑪𝑻𝝓(𝒛), 𝑪𝑻𝑫(𝜷𝟏)𝝓(𝒛), … , 𝑪𝑻𝑫(𝜷𝒔)𝝓(𝒛)    (𝟏𝟕) 

 

Also, we get 

 

𝑔(0) = 𝐶𝑇𝜙(0) = 𝑑0,                

𝑔(𝜆)(0) = 𝐶𝑇𝐷𝛿𝜙(0) = 𝑑𝛿        

 

firstly calculates Eq. (19) at (𝑁 − 𝑛) points, to 

find the solution 𝑔(𝑧)We utilize the first (𝑁 −

𝑛)  roots of shifted Legendre of 𝑃𝑁+1(𝑧) for 

suitable collocation points. Together these 

equations with Eq. (20) generate  (𝑁 +

1) nonlinear equations which disbanded by 

utilizing the iterative method of Newton.                                      

 

 

4. Numerical Examples 

In this part, of nonlinear fractional differential 

equations with left-sided CF operators some 

numerical examples are solved by utilizing the 

enforcement of the recently derived OPM for 

left-sided CF operator.  

 

Example 1. We next consider the following 

nonlinear 

 

𝑫𝟑𝒈(𝒛) + 𝑫 
𝑭𝑭𝑪𝑭

 
𝝎,𝜷𝒈(𝒛) + 𝒈𝟐(𝒛) = 𝒛𝟒   ,         

𝒈(𝟎) = 𝒈′(𝟎) = 𝟎,     𝒈′′(𝟎) = 𝟐 

 

     𝑦(𝑧) = 𝑧2   is the exact solution of this 

problem and   𝑁 = 3 

 

We solved the above problem 

 

𝑪𝑻𝑫𝟑∅(𝒛) + 𝑪𝑻𝑫𝝎,𝜷∅(𝒛) + [𝑪𝑻∅(𝒛)]𝟐 − 𝒛𝟒 = 𝟎    (𝟐𝟏) 
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Abs. Error of  𝜷 

2.99 2.98 2.95 𝒛 

6.75841409  

𝑒−11 
5.07711699  𝑒−11 4.270668598 𝑒−10 0.1 

5.40673194  

𝑒−10 
4.06169291  𝑒−10 3.41653491  𝑒−9 0.2 

1.82477205    

𝑒−9 
1.37082135    𝑒−9 1.15308053  𝑒−8 0.3 

4.32538563    

𝑒−9 
3.24935432    𝑒−9 2.73322793 𝑒−8 0.4 

8.44801881    

𝑒−9 
6.34639516    𝑒−9 5.338335797 𝑒−8 0.5 

1.45981765    

𝑒−8 
1.09665708    𝑒−8 9.22464426  𝑒−8 0.6 

2.31813636    

𝑒−8 
1.74145083    𝑒−8 1.46483934  𝑒−7 0.7 

3.46030851    

𝑒−8 
2.59948346    𝑒−8 2.18658234  𝑒−7 0.8 

4.92688458    

𝑒−8 
3.70121766   𝑒−8 3.11331743  𝑒−7 0.9 

Table 1:  The Absolute errors for different value of  

𝜔 = 2.5 , for example (1) 

 

Figure 1: The exact solution and approximate 

solution of  𝜔 = 2.5 , for example (1) which is 

the exact solution of this problem. 

 

Example 2. We next consider the following 

nonlinear 

 

𝑫𝟒𝒈(𝒛) + 𝑫 
𝑭𝑭𝑪𝑭

 
𝝎,𝜷𝒈(𝒛) + 𝒈𝟑(𝒛) = 𝒛𝟗   ,        

 𝒈(𝟎) = 𝒈′(𝟎) = 𝟎,     𝒈′′(𝟎) = 𝟐 

 

    𝑦(𝑧) = 𝑧3   is the exact solution of this 

problem and   𝑁 = 4 
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We solved the above problem. 

𝑪𝑻𝑫𝟒∅(𝒛) + 𝑪𝑻𝑫𝝎,𝜷∅(𝒛) + [𝑪𝑻∅(𝒛)]𝟑 − 𝒛𝟗 = 𝟎    (𝟐𝟏) 

Abs. Error of  𝜷 

3.99 3.98 3.95 𝒛 

1.97688371  

𝑒−11 
2.82267774  

𝑒−11 
5.11456466  𝑒−11 0.1 

3.16301594  

𝑒−10 
4.51628530  

𝑒−10 
8.18330370  𝑒−10 0.2 

1.60127685    

𝑒−9 
2.28636944   

𝑒−9 
4.14279752    𝑒−9 0.3 

5.06082560    

𝑒−9 
7.22605649    

𝑒−9 
1.3093286     𝑒−8 0.4 

1.23555313    

𝑒−8 
1.76417395    

𝑒−8 
3.19660303    𝑒−8 0.5 

2.56204296    

𝑒−8 
3.65819109    

𝑒−8 
6.62847604    𝑒−8 0.6 

4.74650089    

𝑒−8 
6.77725063    

𝑒−8 
1.22800702    𝑒−7 0.7 

8.09732096    

𝑒−8 
1.15616904    

𝑒−7 
2.09492576    𝑒−7 0.8 

1.29703425    

𝑒−7 
1.85195924    

𝑒−7 
3.355666  𝑒−7 0.9 

 

 

 

Figure 2: The exact solution and approximate 

solution of  𝜔 = 3.5 , for example (2)

  

  

 

5. Conclusion 

To solve non-linear FFCF differential new 

equation OPM has been utilized. Some 

numerical examples appear that the method 

is soft to employ and giving aloft fineness.  

The new OPM for the operator of FFCF 

inherits the gorgeous advantage from the 

well known OPM for the fractal fractional 

derivative of fractal fractional Caputo. The 

method minimizes the trouble in the sense 

of FFCF to those which are related to solve 

a system of algebraic equations, 

subsequently extremely simplify this 

trouble.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2:  The Absolute errors for different 

value of  𝜔 = 3.5 , for example (2) 
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