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Abstract: In this paper, we suggest sufficied a method for solving a class of singularly
perturbed boundary value problems (SPPBVP). The method is proposed the semi analytic, modest
problem preparation and ready computer implementation. That is, we concerned with constructing
polynomial solutions to two point second order of singularly perturbed problems of ordinary differential
equation. A semi-analytic technique using two-point osculatory interpolation with the fit equal numbers
of derivatives at the end points of an interval [0,1]. Numerical linear and non linear examples are given

to illustrate the method. It is observed that the present method converges to the exact solution very well.
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1.Introduction

Singularly perturbed boundary value
problems (SPBVPs) are common in applied
sciences and engineering. They often occur
in, for example, fluid dynamics, quantum
mechanics, chemical reactions, electrical
networks, etc. A well known fact is that the
solution of such problems has a multiscale
character, i.e. there are thin transition layers
where the solution varies very rapidly, while
away from the layers the solution behaves
regularly and varies slowly. For a detailed
discussion on the analytical and numerical

treatment of such problems one may refer to

the books of O’Malley [1]; Doolan et al. [2];
Roos et al[3]; and Miller et al. [4].
Numerically, the presence of the
perturbation parameter leads to difficulties
when classical numerical techniques are
used to solve such problems, this is due to
the presence of the boundary layers in these
problems; see for example O’Malley [5].
Even in the case when only the approximate
solution is required, finite difference
schemes and finite element methods
produced  unsatisfactory  results;  see
Samarski [6]. It was shown in [7,8] that the

results of using classical methods are also



unsatisfactory even when a very fine grid is
used. Therefore, the numerical treatment of
singular perturbation problems presents

some major computational difficulties.

2. Singularly Perturbed Problems

The term “perturbation problem” is
generally used in mathematics when one
deals with the following situation: There is a
family of problems depending on a small
parameter >0, which we denote by P,,when
&= 0, we have the reduced problem P,. We
want to study the relationship between the
solution of P.and the solution of P, under
appropriate assumptions .The perturbation
problem PP, may consist of an ordinary
differential equation, or a system of
differential equations, doing with some
given conditions, such as boundary
conditions. The general form of the 2"%rder

singularly perturbed problems (SPPs) are:

{sy" = f(x,y,y"), x € [a,b], 0<eK1
boundary conditions

1)

such as boundary conditions are

y(a)= A ,
dimensional vector functions, x is a scalar

y(b) = B, where f are n-

variable in a given interval. A perturbation
problem (1) is called a singular perturbation
problem if & — 0, the solution
ye (x)converges to y, (x)only in some
interval of x, but not throughout the entire

interval, thus giving rise to an "boundary

layers™ phenomena at both end-points. [9]

There is no loss in generality in taking
a=0and b =1, and we will sometimes
employ this slight simplification. In this
paper we introduce a new technique for the
qualitative and quantitative analysis of
singular perturbation problems SPPBVP
using two-points polynomial interpolation .

3. Osculatory Interpolation [10]

Given {x;},i = 1,...k and values

fi(o),..., fi(”) ,where ri are nonnegative

integers and f; = f(x; ).We want to

construct a polynomial P(x) such that .

Pix) = 9, fori =1,...,kandj =

0,...,ri.

Such a polynomial is said to be an
osculatory interpolating polynomial of a
The degree of P(x)

K ri+1) -1

function f and

is at most

In this paper we use two-points
osculatory interpolation for singular
perturbation problems. Essentially this is a
generalization of interpolation using Taylor
polynomials and for that reason osculatory
interpolation is sometimes referred to as
two-point Taylor interpolation. The idea is

to approximate a function y(x) by a



polynomial P(x) in which values of y(x)
and any number of its derivatives at given
points are fitted by the corresponding
function values and derivatives of P(x).

And we are particularly concerned
with fitting function values and derivatives
at the two end points of a finite interval, say
[0,1],wherein a useful and succinct way of
writing a osculatory interpolate P,,, ; ;(x) of
degree 2n + 1 was given for example by
Phillips [11] as :

Pon 1 1(x) = X} oy (0)q;(x) +
(-1)/yP(D)g;(1 - x)} (2)

]' .
q](X) = ()]C—') (1 - x)"“f,?:é n:S) xs =
Q;j(x)
J
so that (2) with (3) satisfies :
y®(0) = B3, (0),yM(1) = B, (1),

r=01...,n

(3)

implying that P,,,,(x) agrees with the
appropriately truncated Taylor series for
y(x) about x =0 and x = 1.The error on
[0, 1] is given by :

The osculatory interplant for Pans1(X)
may converge to y(x) in [0,1] irrespective
of whether the intervals of convergence of
the constituent series intersect or are disjoint
.The important consideration here is whether
Ron+1 — 0 as n—oo for all x in [0,1]. In the

application to the boundary value problems

in this paper such convergence with n is

always confirmed numerically .We observe
that (2) fits an equal number of derivatives
at each end point but it is possible and
indeed sometimes desirable to use
polynomials which fit different numbers of
derivatives at the end points of an interval.
Finally we observe that (2) can be
written directly in terms of the Taylor
coefficients a and b; about x =0 and x =1

respectively, as :
Pypir(x) = ?=o{anj(x) +

(—1)/b;Q;(1 — x) (4)

4. lllustration of the Method

In this section we describe solution of
SPPs  using  two-points  polynomial
interpolation .

.To illustrate the method, we will consider
the 2"order SPPs:

"+ f(x,y,y) =0 )
9i(y(0),y(1),y'(0),y' (1)) = 0,i =
1.2 (6)

where g4, g, are in general nonlinear functions
of their arguments and g, and g, are given in
three kinds [12] :

1- y(0) = ag,y(1) = by ...... (6a),
and we say this kind Dirichlet
condition (value specified).

2- y'(0) = a;,y'(1) = by ... .(6b)
and we say this kind Neumann

condition (Derivative specified).



3 ¢Y'(0)+c1y(0) = a,doy'(1) +
diy(1) = b ....(6c), where cg ,C1 ,do

,d; are all positive constants not all are

zero but c; , dp are equal to zero or ¢y,

diare equal to zero and we say this
kind Mixed condition (Gradient &

value) .

The simple idea behind the use of two-
point polynomials is to replace y(x) in
problem (5)-(6), or an alternative
formulation of it, by a P,n+1 Which enables
any unknown boundary values or derivatives
of y(x) to be computed . The first step
therefore is to construct the Pyn41 . To do this
we need the Taylor coefficients of y (x) at

Xx=0:
y=ay+ax+ ¥, ax (7a)

into (5)and equate coefficients of powers of
X. The resulting system of equations can be
solved to obtain a; (ap, a1)for all i > 2. Also
we need the Taylor coefficients of y (x) at x
= 1. Using MATLAB throughout we simply

insert the series forms :

¥ = bo+by(x — 1) + X, bi(x — 1)}

(7b) into (5) and equate coefficients of
powers of (x—1). The resulting system of
equations can be solved to obtain b; (bo, b; )
for all 1 > 2.The notation implies that the
coefficients depend only on the indicated
unknowns ap, ai;, b, b;. The algebraic

manipulations needed for this process .We
are now in a position to construct a Pan+1(X)
from (7) of the form (2) and use it as a
replacement in the problem (5)—(6). Since
we have only the four unknowns to compute
for any n we only need to generate two
equations from this procedure as two
equations are already supplied by the
boundary conditions (6). An obvious way to
do this would be to satisfy the equation (5)
itself at two selected points x =¢;, X =¢C; in
[0,1] so that the two required equations

become :

€Pypy1(c) + f{Pons1(c), Ponsa (i), i} =
0,i=12 )

An alternative approach is to recast
the problem in an integral form before doing
the replacement. Extensive computations
have shown that this generally provides a
more accurate polynomial representation for
a given n. We therefore use this alternative
formulation throughout this paper although
we should keep in mind that the procedure
based on (8) is a viable option and shares
many common features with the approach
outlined below. Of the many ways we could
provide an integral formulation we adopt the
following. We first integrate the formula (5)
twice where a; = y(0) and a; = y' (0) and

putting x = 1 then gives :



eby —as + [ f(s),y'(s),s)ds =0 (9)
and

eby —ag —a; + [, (L —$)f(¥(s),y(s),5)ds = 0
(10)

where by = y(1)and b; = y'(1).

The precise way we make the
replacement of y(x) with a Pa1(X) in (9)
and (10) depends on the nature of f( 'y ,y',x )
and will be explained in the examples which
follow. In any event the important point to
note is that once this replacement has been
made, the equations (6), (9) and (10)
constitute the four equations we require to
determine the set {ay, bo, a1, b1}. As we shall
see the fact that the number of unknowns is
independent of the number of derivatives
fitted represents perhaps the most important
feature of the method.

5. Numerical results

To demonstrate the applicability of
the method we have applied it on the linear
and nonlinear singular perturbation
problems. These examples have been chosen
because they have been widely discussed in
literature and because approximate solutions
are available for comparison. Also, we test
the accuracy of obtained solutions
computing the mean square error (M.S.E).

5.1 The linear example

Example 1

Consider the following 2" order
singular perturbed boundary-value problem
(S.P.Ps): e2y”—y+1=0 with Dirishlit
BC:y(0) =0, y(1) =2 x€[0,1] . The

analytic solution :

e -t 2 _a-»
y=1+ : e_z —e?+1+e_ze = s.t
l1-e e 1-e €
£=0.03 [13]

Here 9) and (10) become
0.0009 (by — a;)1 — f, y(s) ds = 0 (11)
and
0.5018 — a; — fol(l —5)y(s) ds =0 (12)
The coefficients : a, ,by, a3, bsz,...can
be found from (7a) and (7b) .A initio
inclusion of the boundary conditions of the
problem has reduced the number of
unknowns to two, namely {a;, b:}, which
are computed by solving (11) and (12) with
y(s) replaced by a Pq+1(S) and. If the value
of n = 4 we will get polynomial of degree
nine, which represents the resolution of the
singular perturbation problem which are as
follows

P, = (8712453704582529 x°)/4398046511104-
(2450045339036563x°)/274877906944+
(2376848378417523x)/137438953472-
(1301316542224843x°)/68719476736+
(7067365088926747x°)/549755813888-
(6148040127986429x*)/1099511627776+
(6828527416826277x°)/4398046511104
(2326170035692319  x?)/8796093022208  +
(7038451686753859x)/281474976710656.



The results for n = 4 are displayed in
Table 1. We can see that there is clear
convergence with n to the ‘exact’ values
which are obtained using MATLAB
boundary value software.  Figure 1 gives
the accuracy of the method.

Example 2

Consider the following 2" order
homogeneous singular perturbed boundary-

value problem (S.P.Ps):

" ! 1 H
ey" + (1 —g)y —Jy= 0 ,xe[0,1] with
Dirishlit BC y(0)=0,y(1)=1 and

analytic solution :y = i —% e
[14] Such that =107, If the value of n = 4
we will get polynomial of degree nine,
which represents the resolution of the
singular perturbation problem which are as
follows

Pg:(5770898234988837x9)/131072-
(4126284522071755x°)/65536+
(5854518678880257x")/262144-
(3911524096275751x°)/1048576+
(5866447649961765x°)/16777216-
(5251378322827223x")/268435456+
(5646797071639953x°)/8589934592-
(7008388454598599x2)/549755813888+
82378570341061x)/2199023255552.

The results of solution given in the
following table :

5.2 The non-linear example
Example 3

Consider the following 2" order nonlinear

singular perturbed boundary-value problem

ey" + 2y +¢€¥ s.t x e [0,1]

with Mixed BC’s y(0) = 0,y'(1) = —0.5.

The exact solution:

y=log(ﬁ)—log(2) e_sz [ 16] Such
that =10 . If the value of n = 4 we will
get polynomial of degree nine, which
represents the resolution of the singular

perturbation problem which are as follows

Po=-(6339216228566459x°)/281474976710656
+  (1587385008841237x%)/17592186044416 -
(165257470682931x")/1099511627776+
(4754109614451443x°)/35184372088832-
(1251853984166609x°)/17592186044416+
(3135285418890191x*)/140737488355328-
(1129098090681425x%)/281474976710656+
(424920472391205x%)/1125899906842624-
(8041888101053153x)/576460752303423488.

Example 4
Consider the following 2" order
nonlinear singular perturbed boundary-value

problem



ey"+yy —y with Dirishlit BC's:
y(0)=-1, y(1) =3.9995, xe[0,1]

and the analytic solution :

=+
Y = x + ¢4 tanh(cq <

2y 7
) 1]
s.t ¢, =2.9995 and

_1l (c1—1
2= B

) s.te=10""7

. If the value of n = 3 we will get
polynomial of degree nine, which
represents the resolution of the singular

perturbation problem which are as follows

P,=(435411227217891x")/2199023255552-
(7490497929480767x°) /8796093022208+
(6751639456538077x°)/4398046511104-
(6609553554849531x")/
4398046511104+(7584009124791225x°)
/8796093022208-(2547607450080331x%)/
8796093022208+ (7556089753371941x

/140737488355328 — 1
The results of solution given in the

following table :
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TABLE 1: The result of the methods for n=4 of examplel

Analviic sojution 812 -2:00000000312880
X na yy'c()s(g’ U = 1.45223411074369¢-09
a
Py (N=4) E(X) =] Py = Ya(X) |
0.0 0 0 0
..ﬂ'ki\'\"k RS TARS
0.1 o 0.960737796991716 | 0.00358820966112500
T AAAVYVFIIY )Y
0.2 o 0.998727366201283 0
8499060 0V EYY
0.3 o 0.099954600143766 | 1.11022302462516¢-15
T AA44ATAYEREY
04 | Y 0.999995906986901 | Y.V )+ YY¥.YE1Yo1 116
05 \ 1,00000000000000 | 1.11022302462516e-16
Yovvean yHiveyvyen
06 | LTI | 100000541840825 | 2.475477460572866-06
Voo v v govadAeny
0.7 . 1.00004539985623 0
Voo e YYVYIYYVAAY
08 | ! 1.00112012903621 | 0.000152504762511052
0.9 “'“W:HWW\ LTorYTAArTEVYY 0
1.0 Y N 0
M.S.E= 1.1726¢-06
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Figurel:Comparison between the exact solution and semi-analytic method Py

TABLE 2: The result of the methods for n=4 of example 2

Analytic a,;=1.10528545600124 present
X solution b= 1 solution in
Ya(X) Py (N=4) E() =] Pg - ya(x) | [15]

0.0 0 0 0 0.000 000 0
0.01 | 0.502489288196842 | 0.502488758543014 | 5.29653828684751e-07 0.502 489 3
0.02 | 0.505050503911542 | 0.505061429949489 | 1.09260379473897¢-05 0.505 050 5
0.03 | 0.507614213197911 | 0.507597320985607 | 1.68922123041648e-05 0.507 614 2
0.04 | 0.510204081632653 | 0.510205722940375 | 1.64130772173365e-06 0.510 204 1
0.05 | 0.512820512820513 | 0.512829978545462 | 9.46572494886500e-06 0.512 820 5
0.06 | 0.515463917525773 | 0.515471671230134 | 7.75370436068013e-06 0.515 463 9
0.07 | 0.518134715025907 | 0.518136222284390 | 1.50725848346855e-06 0.518 134 7
0.08 | 0.520833333333333 | 0.520830073497412 | 3.25983592175394¢-06 0.520 833 3
0.09 | 0.523560209424084 | 0.523560495118079 | 2.85693995349945e-07 0.523 560 2
0.10 | 0.526315789473684 | 0.526335512722622 | 1.97232489379529¢-05 0.526 315 8

M.S.E=8.721894117502932¢-11
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Figure2:Comparison between the exact solution and semi-analytic method Py

TABLE 3: The result of the methods for n=4 of example3

Analytic solution al_ 0
X ya(X) bo— 0
Py (N=4) E(X) =[Pg —Ya(X) |
0.0 0 0 0
0.1 0.597837000755620 0.597825695848629 1.13049069915272¢-05
0.2 0.510825623765991 0.510863642279602 3.80185136111821e-05
0.3 0.430782916092454 0.430663211975091 0.000119704117363617
0.4 0.356674943938732 0.356818341946612 0.000143398007879825
0.5 0.287682072451781 0.287605751003049 7.63214487315977¢-05
0.6 0.223143551314210 0.223012881327226 0.000130669986984244
0.7 0.162518929497775 0.162529616078207 1.06865804320455¢-05
0.8 0.105360515657826 0.105437615771765 7.71001139389105€-05
0.9 | 0.0512932943875505 | 0.0512916273469943 1.66704055614558¢-06
1.0 0 0 0

M.S.E = 5.883446236369177e-09

10
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TABLE 4: The result of the methods for n= 3 of example4

Analvtic soluti a,=5.99940860402658 Numerical

X na yy'c(fg uHon 1, =8.99877132674263 method in
: Py(N=4) | E(X)=|P7—yaX)] [16]

0.0 -1 -1 0 -1.000000
0.1 3.09950000000000 3.09950037405570 3.74055701524156e-7 3.0988336
0.2 3.19950000000000 3.19950054404607 5.44046066863757e-7 3.1988096
0.3 3.29950000000000 3.29949792067516 2.07932483542450e-6 3.2988017
0.4 3.39950000000000 3.39951024523336 1.02452333554659¢e-5 3.3987978
0.5 3.49950000000000 3.49948916543168 1.08345683234035e-5 3.4987953
0.6 3.59950000000000 3.59949445307403 5.54692596788087¢e-6 3.5987937
0.7 3.69950000000000 3.69949921685082 7.83149178840148¢e-7 3.6987927
0.8 3.79950000000000 3.79950299240116 2.99240115753108e-6 3.7987916
0.9 3.89950000000000 3.89950351334945 3.51334945358772¢e-6 3.8987911
1.0 3.99950000000000 3.99950000000000 0 3.9987905

M.S.E=2.663488578194586e-11

11
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