A Note on Normal and n-Normal Operators

Riyadh R. Al-Mosawi Hadeel A. Hassan

Department of Mathematics, College of Education for Pure Sciences, Thi-Qar University

Abstract

This paper is devoted to the study of normal operator on a Hilbert space H. Normal and n-normal operators from a given operator are obtained. Some properties of the normal and n-normal operators are investigated and some examples are also given.

Keywords: normal operators, n-normal operators.

1. Introduction

Here and hereafter, B(H), NB(H) and nNB(H) denote, respectively, to the algebra of all bounded, normal and n-normal linear operators acting on a complex Hilbert space H and An operator $T \in B(H)$ is called normal operator if $TT^* = T^*T$, self adjoint if $T = T^*$, projection if $T^2 = T^* = T$, n-normal operator if $T^nT^* = T^*T^n$, invertible with inverse S if there exists $S \in B(H)$ such that ST = I = TS, where $I \in B(H)$ is the identity operator.

The properties of normal and n-normal operators and operators related with them were extensively studied by many authors. For example, Patel and Ramanujan (1981) for normal operators, Naoum and Nassir 2007 for pseudo-normal operators, Jibril 2008 for n-power normal operators, Jibril (2010) for the operators satisfying $T^{*2}T^2 = (T^*T)^2$, Alzuraiqi and Patel (2010) for n-normal operators, Nassir (2010) for quasi-posinormal operators and Sid Ahmed (2011) for n-power quasi-normal operators satisfying $T^n|T|^2 = |T|^2T^n$. Recently, Panayappan and Sivaman (2012) introduced n-binormal operators and studied some basic properties of them and Panayappan (2012) studied n-power class (Q) operators for which $T^{*2}T^{2n} = (T^*T^n)^2$.

2. The Main Results

In the following proposition, we obtain a normal operator from given invertible normal operator.

Proposition 2.1. If $T \in NB(H)$ with inverse T^{-1} then $T^*T^{-1} \in NB(H)$ and $T^{-1}T^* \in NB(H)$.

Proof: For proving $T^*T^{-1} \in NB(H)$, it is sufficient to prove $(T^*T^{-1})(T^*T^{-1})^* = (T^*T^{-1})^* (T^*T^{-1}).$ Observe that $(T^*T^{-1})(T^*T^{-1})^* = (T^*T^{-1})^* (T^*T^{-1}).$

$$(T^*T^{-1})(T^*T^{-1})^* = T^*T^{-1}(T^{-1})^*(T^*)^* = T^*T^{-1}T^{*-1}T$$
$$= T^*(T^*T)^{-1}T = T^*(TT^*)^{-1}T = (T^{-1}T)^*T^{-1}T = I$$

and

 $(T^*T^{-1})^*$ $(T^*T^{-1}) = T^{-1^*}TT^*T^{-1} = T^{-1^*}T^*TT^{-1} = (TT^{-1})^*TT^{-1} = I.$ then $(T^*T^{-1})(T^*T^{-1})^* = (T^*T^{-1})^*$ $(T^*T^{-1}).$ Hence $T^*T^{-1} \in NB(H).$ Similarly, we can prove that $T^{-1}T^* \in NB(H)$.

Remark 2.1 Another way to prove Proposition 2.1 is given in the following. Clearly, if $T \in NB(H)$ then $T^* \in NB(H)$ and $T^{-1} \in NB(H)$. Since T^* and T^{-1} are commuting normal operators then T^*T^{-1} and $T^{-1}T^*$ are normal operators (see Gheondea (2009)). Example 2.1. Let $T: R^2 \to R^2$, where T(x, y) = (y, -x). It is easy to see that $T^*: R^2 \to R^2$, where $T^*(x, y) = (-y, x)$. Since

 $TT^*(x, y) = T(-y, x) = (x, y) = T^*(y, -x) = T^*T(x, y)$

Then T is a linear operator. It can be seen that $T^{-1}: R^2 \to R^2$, where $T^{-1}(x, y) = (-y, x)$. Now

 $T^{-1}T^*(x,y) = T^{-1}(-y,x) = (-x,-y) = T^*(-y,x) = T^*T^{-1}(x,y)$ Hence $T^{-1}T^*$ and T^*T^{-1} are linear operators.

Proposition 2.1 states that $T \in NB(H)$ is the sufficient condition for $T^*T^{-1} \in NB(H)$. However this is not the necessary condition as in the following example.

Example 2.1. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$, where T(x, y) = (2y, x). Note that $T^*(x, y) = (y, 2x)$ and $T^{-1}(x, y) = \left(y, \frac{1}{2}x\right)$. Since $TT^*(x, y) = (4x, y)$ and $T^*T(x, y) = (x, 4y)$ then *T* is not normal. Let $S_1 = T^{-1}T^*$ and $S_2 = T^*T^{-1}$. It is easy to see that

$$S_1(x, y) = \left(2x, \frac{1}{2}y\right) = S_1^*(x, y) \text{ and } S_2(x, y) = \left(\frac{1}{2}x, 2y\right) = S_2^*(x, y)$$

i.e. S_1 and S_2 are self adjoint operators and hence S_1 an S_2 are normal operators. Remark 2.2 It is known (see, Alzuraiqi and Patel (2010)) that every normal operator is *n*-normal for every *n* but the converse is not true. So that if $T \in NB(H)$ then $T^*T^{-1} \in nNB(H)$ but this result need not to be true in case of $T \in nNB(H)$. In the following theorem, we study the case when *T* is an *n*-normal operator.

Theorem If $T \in nNB(H)$ then T^*T^{-1} and $T^{-1}T^*$ are *n*-normal operators. Proof. The idea of some of the following proof are borrowed from (see, Now

> $T \in nNB(H) \Rightarrow T^{n} \in NB(H)$ $\Rightarrow (T^{n})^{*} = (T^{*})^{n} \in NB(H) \text{ and } (T^{-1})^{*} = (T^{*})^{-1} \in NB(H)$ $\Rightarrow T^{*}, T^{-1} \in nNB(H).$

Now, since T^* and T^{-1} are commuting normal operators then $(T^*)^n$ and $(T^{-1})^n$ are commuting normal operators. The result follows using Theorem 2.8 of Alzuraiqi and Patel (2010).

Example Let T(x, y) = (ix + 2y, -iy). Since $T^*(x, y) = (ix, 2x - iy)$ and $T^{-1}(x, y) = (-ix - 2y, iy)$ then *T* is 2-normal but not normal. Let $S(x, y) = T^*T^{-1}(x, y) = (x - 2iy, -2ix - 3y)$. Since $S^*(x, y) = (x + 2iy, +2ix - 3y)$ then $SS^* \neq S^*S$ and hence T^*T^{-1} is not normal. It is easy to show that $(T^*(x, y))^2 = (-x, -y)$ and $(T^{-1}(x, y))^2 = (-x, -y)$ are normal which implies that $T^*(x, y)$ and $T^{-1}(x, y)$ are 2-normal operators. Since $(T^*)^2$ and $(T^{-1})^2$ are commuting 2-normal operator then $(T^*)^2(T^{-1})^2 = I$ and $(T^{-1})^2(T^*)^2 = I$ are *n*-normal operators (see Alzuraiqi and Patel (2010)).

Corollary $T \in NB(H)$ iff $T^*T^{-1}T = TT^*T^{-1}$.

Proof: The proof is straightforward and is hence is omitted. ■

Theorem 2.4. If $T \in NB(H)$ and with inverse T^{-1} then

$$(T^*T^{-1})^n(T^*T^{-1})^*(T^*T^{-1}) = (T^*T^{-1})^*(T^*T^{-1})^{n+1}$$

Proof:

$$(T^*T^{-1})^n (T^*T^{-1})^* (T^*T^{-1}) = (T^*T^{-1})^n T^{-1^*} TT^* T^{-1}$$

= $(T^*T^{-1})^n T^{-1^*} T^* TT^{-1}$
= $(T^*T^{-1})^n I$
= $I(T^*T^{-1})^n$
= $T^{-1^*} T^* TT^{-1} (T^*T^{-1})^n$
= $(T^*T^{-1})^* (T^*T^{-1}) (T^*T^{-1})^n$
= $(T^*T^{-1})^* (T^*T^{-1})^{n+1} \blacksquare$
Theorem 2.6. Let $T \in B(H)$. Then T normal operator iff $T^*T^{-1}T^* = (T^*)^2 T^{-1}$

Proof. Suppose *T* normal operator. Since T^{-1} normal operator then

 $T^{*}T^{*}T^{-1}^{*}T^{-1}T^{*} = T^{*}T^{*}T^{-1}T^{-1}^{*}T^{*} = T^{*}T^{*}T^{-1}I = T^{*}T^{*}T^{-1}$ $\Rightarrow T^{*}T^{-1}T^{*} = T^{*}T^{*}T^{-1}$ Suppose that $T^{*}T^{-1}T^{*} = T^{*}T^{*}T^{-1}$ Since $T^{*}T^{-1}T^{*} = T^{*}T^{*}T^{-1} \Rightarrow T^{*-1}T^{*}T^{-1}T^{*} = T^{*-1}T^{*}T^{*}T^{-1}$ $\Rightarrow IT^{-1}T^{*} = IT^{*}T^{-1} \Rightarrow T^{-1}T^{*}T = T^{*}T^{-1}T \Rightarrow T^{-1}T^{*}T = T^{*}I$ $\Rightarrow TT^{-1}T^{*}T = TT^{*} \Rightarrow IT^{*}T = TT^{*} \Rightarrow T^{*}T = TT^{*} \Rightarrow T$ is a normal operator \blacksquare

References

- **1. Alzuraiqi**, S. A. and Patel, A. B. (2010) On normal operators. General Mathematical Notes. Vol. 1, No. 2, pp:61-73.
- **2. Gheondea,** A. (2009). When are the products of normal operators normal? Bull. Math. Soc. Sci. Math. Roumanie Tome . Vol. 52(100), No. 2, pp:129–150.
- **3. Panayappan**, S. and Sivamani, N. (2012) On n-binormal operators. General Mathematical Notes. Vol. 10, No. 2, pp:1-8.
- **4. Jibril**, A.A.S. (2008) On n-power normal operators. The Arabian Journal of Science and Engineering, Vol. 33, No. 2A, pp:247-251.
- **5. Jibril**, A.A.S. (2010) On operators for which $T^{*2}T^2 = (T^*T)^2$. International Mathematical Forum, Vol. 5, No. 46, pp:2255-2262.
- **6. Panayappan**, S. (2012) On n-power class (Q) operators. International Journal of Mathematical Analysis, Vol. 6, No. 31, pp:1513-1518.
- **7.** Naoum, A. G. and Nassir, S. N. (2007) Pseudo-normal operators. Iraqi Journal of Science. Vol. 48, No. 1, pp:178-181.
- **8.** Nassir, S. N. (2010) Quasi-posinormal operators. Baghdad Science Journal. Vol. 7, No. 3, pp: 1282-1287.
- **9. Patel,** A. P. and Ramanujan, P. B. (1981) On sum and product of normal operators. Indian J. of Pure and Applied Mathematics, Vol. 12, No. 10, pp: 1213-1218.

Here and hereafter, B(H), NB(H) and nNB(H) denote, respectively, to the algebra of all bounded, normal and n-normal linear operators acting on a complex Hilbert space H and An operator $T \in B(H)$ is called normal operator if $TT^* = T^*T$, self adjoint if $T = T^*$, projection if $T^2 = T^* = T$, n-normal operator if $T^nT^* = T^*T^n$, invertible with inverse S if there exists $S \in B(H)$ such that ST = I = TS, where $I \in B(H)$ is the identity operator.