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Abstract

A submodule N of a right R-module M is said to be strongly large in case forany m € M, s € R
with ms # 0, there exists an r € R such that mr € N and mrs # 0. In this paper, we introduce strongly
G-extending modules which are particular G-extending modules, and investigate their properties and
characterizations. An R-module M is called strongly G-extending if for each submodule X of M there
exists a direct summand D of M such that X n D is strongly large in both X and D. Some sufficient
conditions for a direct sum of strongly G-extending modules to be strongly G-extending are obtained.

Examples to illustrate this concept are given.
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1 Introduction

Throughout all rings are associative with identity,
unless indicated otherwise, and all modules are
unital right R-modules, R denotes such a ring.
A submodule N of a right R-module M is a large
submodule (briefly N <, M) if, NnK # 0 for
each nonzero submodule K of M [8]. And, a
submodule N of M is said to be strongly large
(briefly N <;; M) incase foranym e M ,s €R
with ms # 0, there exists an r € R such that
mr € N and mrs # 0 [16]. Notice that every
strongly large submodule of a module is always
large submodule but not conversely. In [2],
Akalan, Birkenmeier and Tercan, consider the
following relations on the set of submodules of

a module M: (i) XaY if and only if there exists
A<M suchthat X <, A and Y <, 4; (ii) XpY
ifandonly if XNnY <, Xand XnY <, Y. Note
that 8 is an equivalence relation. Moreover, an R-
module M is called extending (also called CS) if,
for each X < M there exists a direct summand
D of M such that XaD [5]. Also, a module M is
said to be Goldie extending (briefly G-extending)
if, for each X < M there exists a direct summand
D of M such that XgD [2]. It is clear that every
extending module is G-extending. Following [15],
a module M is called strongly extending if every
submodule X of M, there exists a decomposition
M = K®L such that X is a strongly large in K.
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In this paper, our aim is to introduce and study
strongly G-extending modules by using concept of
strongly largeness. In section 2, we introduce the
relations w and p on the set of submodules of a
module, as following: (i) XwY if and only if
there exists A<M such that X <, A and
Y < 4; (i) XpY ifandonly if XnY < X and
X NnY < Y.Since every strongly large is always
large, then clear that the relations w and p
imply relations a , 8 respectively. Notice p is an
equivalence relation. We give some elementary
properties of these relations. For a module M, we
prove that M is strongly extending if and only if
for each X < M there exists a direct summand D
of M such that XwD. In section 3, we introduce
the concept of strongly G-extending modules,
and give some properties of such modules. An
R-module M is called strongly G-extending if for
each X < M there exists a direct summand D of
M such that XpD. Various characterizations of
such modules are given. Also, we define another
concept of modules called strongly G*-extending,
where an R-module M is said to be strongly
G*-extending if every direct summand of M is
strongly G-extending. It is shown that a strongly
G-extending module satisfying (C3) is strongly
G*-extending. Some relations between strongly
G-extending modules and other concept of modules
are obtained. In section 4, we discuss various
sufficient conditions on a module under which
the direct sum of strongly G-extending modules
is strongly G-extending. We prove that, if M,
and M, are strongly G-extending modules with
M = M,®M, is a duo SL-direct sum module, then
M is strongly G-extending, where for a module
M, {A.} and {B,} be collections of submodules
of M. Then M is called a SL-direct sum module
if foreach a, 4, <, B, implies @A, <D B,.

2 Basic Properties Of Relations w And p

In this section we define the relations w and p
on the set of submodules of a module. Many of
properties of such relations are given. We give
some characterizations of these relations.

Now, we presented the following definition.

Definition 2.1. For a module M, considered the
following relations on the set of submodules of
M :

(i) XwY if and only if there exists A < M such
that X <, A and Y <; 4;

(ii) XpY if and only if XNnY <; X and X n
Y <q 7.

A submodule N of a module M is called SL-closed
if, N has no proper strongly large extensions in
M [16]. Ungor; Halicioglu; Kamal and Harmanci
in [16], introduce Theorem 4.8, " if M is a module
and N < M. Then there exists H < M such that
N is a strongly large submodule in H and H is
a SL-closed in M ". In this case, a submodule H
is called SL-closure of N and it is not necessarily
unique. However, Ghawi; T.Y in [7], presented
the following, an R-module M is called a SL-UC
module if every submodule of M has a unique
SL-closure.

Remarks 2.2.

(i) It is clear that w is reflexive and symmetric,
but may not be transitive.

(ii) The relation p is an equivalence relation.



Proof. It is clear that p is reflexive and symmetric.
Now, to prove that p is transitive. Let X, Y and L
be submodules of M such that XpY and YpL.
Let x € X and r € R such that xr # 0. Since
XNnY <, X, so there exists s; € R such that
xs1 €EXNY; xs;r #0. Since Y NL <, Y and
xs; €Y, there exists s, € R such that xs;s, €
Y NnLand xs;s,r # 0. Put t = s;5,, this means
there exists t € R such that xt e XNnL and
xtr # 0. Thus X N L <, X. By a similar way,

XNL<, L Hence XpL and p is transitive. m

(iti) If X and Y are submodules of M such that
XwY, then XpY.

Proof. Let X,Y < M and XwY, then there exists
a submodule A of M such that X <;; A and

Y < A4, thus by [16, Lemma 2.9] X nY <, A.
SoXnY<gXandXnY < Y;thatis XpY.m

(iv) For a module M and X < M. XpM if and
only if X <y M. Also, Xp{0} ifand only if X = 0.

(v) Let M be a module such that X,pY; and
X,pY, then (X; N X,)p(Y; NY,) where X, X,,Y;
and Y, are submodules of M.

Proof. Since X;pY; and X,pY,,50 X; NY; <y X;
and X; nY, <, Y, alsoX, nY, <, X, and X, N
Y, <q Y,. Then by [16, Lemma 2.9],(X; N X,) N
(Y; n'Y,) is strongly large in both X; n X, and
Y, nY,,and hence (X; N X,)p(Y; NY,). m

(vi) Let M be a module such that X;Y; are
submodules of M, for all i € (I finite set). If
XipY; then (Nie; Xi) p (N, Yp) forall ier.

Proof. It is straightforward. m

In the next, we give a condition under which
w is transitive.

Proposition 2.3. Let M be an R-module. Then w
is transitive if and only if M is a SL-UC module.

Proof. Assume that w is transitive. Let X < M
and let D;, D, be two SL-closed submodules of
M such that X <, D, and X <, D,. Since
D, <, D, and D, <; D,, so we have D;wX and
XwD,, thus D;wD, , so there exists A < M such
that D, <;; A and D, < A. But D; and D, are

both SL-closed, hence D; = A = D,.

Conversely, let M be a SL-UC module and let
N, K and L be submodules of M such that NwK
and KwL. Then there exists submdules A and B
of M such that N <;; A, K < A, K <, B and
L<gB. AssumeN <, X,K <g YandL < P,
where X,Yand P are SL-closed in M. By [16,
Lemma 29], NNnK<,;A and KnL < B.

Hence, NNK <g N<g X, NNK<g K< Y,

KNL<gK<gYand KNL <, L <, P. But
M is a SL-UC module, then X =Y = P this is
implies N <, X and L <;; X. Therefore NwL

and hence w is transitive. =

Proposition 2.4. A module M is SL-UC if and
onlyif w=p.

Proof. Assume that M is a SL-UC module. By
Remarks 2.2(iii), the relation w implies p. Now,
let X and Y be submodules of M such that XpY,
then XNnY <gXand XNnY < Y. Let H; and
H, be two SL-closed submodules of M such that
X<gHyand Y < H,, then XNnY <, H, and
XnY <, H,, but M is SL-UC, H; = H,. Thus
XwY and hence w = p.

Conversely, since p is transitive and w = p,
then w is transitive, so by previous Proposition,
M isaSL-UC module. =



The next result presented in [16].

Proposition 2.5. Let M, N be R-modules and
@: M — N be an R-monomorphism. Then

() If A<y BinM,then ¢(4) <, @(B) in Imgp.
(i) If X < N,then ¢ 1(X) <, M.

Now, we introduce the following Proposition.

Proposition 2.6. Let M, N be an R-modules and
@: M — N be an R-monomorphism. Then

(i) If ApB,then p(A) p (B) where A,B < M.
(i) If XpY ,then @~ 1(X) p ¢~ 1(Y) where X,Y < N.

Proof. It follows by Proposition 2.5. =

The condition of monomorphism of Proposition
2.6 (i) is necessarily, as the following example
shows.

Example 2.7. Consider the natural epimorphism
T Z®Z, » Z®7Z,/7@(0). Let A = (1,0)Z and
B =(1,1)Z, then AnB = (2,0)Z is a strongly
large submodule in both A and B, so ApB. But
n(A) = Z®(0)/Z6d(0) = 0 is not related to
w(B) by p . Note that 7 is not monomorphism.

Let M be an R-module. We define Zg(M) =
{m € M: rp(m) <; Rg},where rz(m) means the
annihilator set of min R . If R is a commutative
ring, then Zg(M) is a submodule of M called a
strongly singular submodule. An R-module M is
called strongly singular if Zg(M) = M, and M is
called non-strongly singular if Zg(M) = 0 [16].

We shall present the following Proposition.
Before, we need the following Lemma.

Lemma 2.8. Let R be a commutative ring and let
A, B and C be R-modules. If there exists a short

exact sequence 0 — A LA B% ¢ -0 such that
Imf < B, then C is a strongly singular module.
In particular, if A <g B then B/A is strongly
singular.

Proof. Assume that a short exact sequence

0—>A£>B£>C—>O. For b € B, we can given
a homomorphism h: R — B defined by h(r) =
br for all r € R. Since h is R-homomorphism
and Imf < B, then by Proposition 2.5(ii),
h=Y(Imf) <4 Rg. Put I = {r € R: br € Imf},
thus BI < Imf = Kerg, hence (g(b))I = 0 and
so g(b) € Zg(C). Thus C =Img € Z5(C). m

Proposition 2.9. Let R be a commutative ring
and M be an R-module. If A, B are submodules
of M such that ApB, A+ B/Aand A+ B/B are
strongly singulars.

Proof. Since ApB, then ANB <;; AandANnB
<4 B, then by previous Lemma, A/AN B and
B/A N B are strongly singulars, this implies
A+ B/A and A + B/B are strongly singulars, by
2" isomorphisms theorem. m

Let M be an R-module. M is said to satisfy
condition (*) in case if, for each m(# 0) e M
and ry, 1, € R, if 1; & rg(m) for some (i = 1,2)
and r;Rr, < rg(m), thenr; = 0 for j # i [16].

The following Proposition is appeared in [16,
Prop. 3.8].

Proposition 2.10. Let M be an R-module satisfy
the condition (*).Then M /K is a strongly singular
R-module, for all strongly large submodule K of M.



Remark 2.11. If M is an R-module satisfy the
condition (*) and N < M, then it is easy to see

that N also satisfies condition ().

Proposition 2.12. Let M be an R-module satisfies
condition (%), A and B are submodules of M. If
ApB, then A+ B/A and A + B/B are strongly
singulars.

Proof. Assume that ApB, then An B < A and
AN B < B. Since M satisfy the condition (*),
so by above Remark both of A and B is so. Thus
by Proposition 1.10, A/ANn B and B/AN B are
strongly singulars, and so by 2" isomorphisms
theorem, A+ B/A and A+ B/B are strongly

singulars. m

Using an argument similar to that used in
the proof of Remarks 2.2(v), Propositions (2.6),
(2.9) and (2.12), one can get the following three
Propositions for the relation w.

Proposition 2.13. Let M and N be R-modules.
Then

() If X;wY; and X,wY,, then (X; N X,)w(Y; N
Y;) where X,, X,,Y; and Y, are submodules of M.

(i) If ¢:M — N is an R-monomorphism and
A wB, then (4) w ¢(B),also XwY implies that
@ 1(X) w p71(Y), where A,B < Mand X,Y < N.

Proposition 2.14. Let R be a commutative ring
and M be an R-module. If A, B are submodules
of M such that AwB, then C/A and C/B are
strongly singulars, for some submodule C of M.

Proposition 2.15. Let M be an R-module satisfy
the condition (*), A and B are submodules of M.

If AwB,then C/A and C/B are strongly singulars,
for some submodule C of M.

Remark 2.16. Let M be an R-module and let
A4, A,, B, and B, are submodules of M. If A;pB;
and A,pB,, so it is not necessarily (4; + 4,) p
(B, + B;), for example, consider the Z-module
Z®Z, ,let A, = A, =(2,0)Z, B, = (1,0)Z and
B, = (1,1)Z. It is easy to see that A,;pB; and
A,pB,. But A; + A, = (2,0)Z is not related to
B, + B, =Z®Z, by p, since (A, + A,) n (B, +
B,) = (2,0)Z is not strongly large in B; + B, =
Z®Z,. Infact, (2,0)Z isnot large in ZBZ, .

Recall that an R-module M is called strongly
extending if every submodule is strongly large in
a direct summand of M. ( Equivalently, a module
M is strongly extending if and only if every SL-
closed submodule of M is a direct summand) [15].

In fact, every direct summand is a SL-closed
submodule but not conversely. It is Clear that,
every strongly extending module is extending.

Now, the next result gives characterization for
strongly extending modules.

Proposition 2.17. Let M be an R-module. Then
M is a strongly extending module if and only if
for each submodule X of M, there exists a direct
summand D of M such that XwD.

Proof. Suppose that M is a strongly extending
R-module. Let X < M, then there exists a direct
summand D of M such that X <g; D, but D < D
this implies XwD.

Conversely, assume A < M, so by assumption,
there exists a direct summand K of M such that
AwK this imply, there exists a submodule D of M



such that A <, D and K < D. We claim that
D is a direct summand of M. Since K is a direct
summand, then KL = M for some submodule
Lof MMButM=K+L<SD+1L, hence D+ L =
M. Now, let x(#0) e DnNL, then x € D and
x € L. Since K < D implies K <, D, so there
exists r € R such that xr(# 0) € K, but xr € L,
hence xr(# 0) € K n L which is a contradiction.
Thus D N L =0, and so DL = M, this mean D

is a direct summand of Msuchthat A<y, D. =

3 Characterizations And Properties Of Strongly
G-extending Modules

In this section, we introduce and investigate notion
of strongly G-extending modules and give some
basic properties. Several of characterizations about
this concept are presented. Also, we give relations
between such modules and other classes of
modules.

Now, we present the following definition.

Definition 3.1. An R-module M is called strongly
Goldie extending (briefly strongly G-extending)
if for each X < M, there exists a direct summand
D of M such that XpD.

Remarks and Examples 3.2.

(i) Every strongly extending module is strongly
G-extending, but not conversely, as the following
example shows: let M denote Z-module Q©Z,
where p is a prime, so M is strongly G-extending.
But it is not extending, see [2, Example 3.20]
hence M is not strongly extending.

(i) Since, every strongly large submodule is large,
then every strongly G-extending module is G-

extending, and hence from (i), every strongly
extending module is G-extending. But the converse
is not true in general, for example: the Z-module
Z,®Z, is G-extending, since it is extending, but
it is not strongly extending, see [15, Example 3.7].

A nonzero R-module module M is said to be
SL-uniform if, every nonzero submodule of M
is strongly large [7]. Clearly, every SL-uniform
module is a uniform module.

(iii) Every SL-uniform module is strongly G-
extending, since, for a SL-uniform module M, if
X <M, X is strongly large, and hence XpM, by
Remarks 2.2(iv). But the converse need not be
true in general, for example: it is clear that Z, as
Z-module is strongly G-extending, but it is not
SL-uniform. In fact, every proper submodule of
Z¢ is not large, and so it is not strongly large.

(iv) It is clear that every semisimple module is
strongly G-extending. In fact, every semisimple
module is strongly extending. But the converse
is not true in general, as example: the Z-module
Z@®Z is strongly extending, see [15, Example
3.10], so it is strongly G-extending, but it is not
semisimple.

(v) Every integral domain is strongly G-extending.

Proof. Let R be an integral domain and | be
a nonzero ideal of R. We claim that | is strongly
large. Let x € R and s € R such that xs # 0 .
For any a € 1, xa € I. Also, xas # 0 (since, if
xas = 0 and xs # 0 with R has no zero divisors,
then a = 0 which is a contradiction). So I < R,

this implies R is SL-uniform, and hence by (iii),
the result is obtained. m

In particular, Z, is strongly G-extending.



The next two Propositions gives condition under
which the concepts of strongly extending and
strongly G-extending modules are coincide.

Proposition 3.3. Let M be a SL-UC module.
Then M is strongly extending if and only if M is
strongly G-extending.

Proof. Follows by Propositions (2.4) and (2.17). =

Proposition 3.4. Let R be a commutative ring and
M be a non-strongly singular R-module. Then M
is strongly extending if and only if M is strongly
G-extending.

Proof. =) Clear.

<) Assume that M is a strongly G-extending R-
module. Let X < M, so there exists a submodule
A of M such that XpA and A@B = M for some
submodule B of M. By Proposition 2.9, X + A/A
is strongly singular. On the other hand, M is a
non-strongly singular module, so is M/A = B,
but (X + A)/A < M/A then (X + A)/A is non-
strongly singular, this implies that X + A = A4,
thus X < A.Hence X = X N A <; A. Therefore
M is strongly extending. m

Proposition 3.5. Let M be an indecomposable
R-module. Then M is strongly G-extending if and
only if M is SL-uniform.

Proof. Assume that M is a strongly G-extending
R-module. Let X be a nonzero submodule of M,
so there exists a direct summand D of M such
that XpD, thatis; XND <g Xand X ND < D.
Since M is an indecomposable R-module, either
D=0orD=M.If D=0,then {0} < X which
is a contradiction. Thus D = M, and so X <, M.
Therefore M is SL-uniform.

Conversely, follows by Rem.and.Ex. 3.2 (iii).m

B.Ungor and S.Halicioglu, in [15, Examples
3.3(1)], show that a module in which every
nonzero submodule is strongly large is strongly
extending (this means; every SL-uniform module
is strongly extending).

However, we have the following Corollary.

Corollary 3.6. Let M be an indecomposable
R-module. Then the following statements are
equivalent.

(i) M is a strongly extending R-module.
(i) M is a strongly G-extending R-module.

(iit) M is a SL-uniform R-module.

The following two results are appeared in [16,
Lemma 2.22; Prop. (5.1) and (5.7)].

Lemma 3.7. Let M be an R-module with the
condition (*). Then N s a large submodule of M
if and only if N is a strongly large in M.

Let M be a module over integral domain R.
Then the set T(M) = {m € M: mr = 0 for some
r(# 0) € R} is called a torsion submodule of M.
If T(M) = M, then M is called torsion, and it is
called torsion free whenever T(M) = 0 [12].

Proposition 3.8. Let M be a prime (or torsion
free) R-module. Then every large submodule of
M is strongly large.

However, by pervious two results, we can get
the following two Propositions directly.

Proposition 3.9. Let M be an R-module with the
condition (*). Then M is G-extending if and only
if M is strongly G-extending.



Proposition 3.10. Let M be a prime (or torsion
free) R-module. Then M is G-extending if and only
if M is strongly G-extending.

Now, we consider the following condition (d)
for some submodule N of a module M :

-Forall D <® M, D n N is a direct summand of

N... (d)

Proposition 3.11. Let M be a strongly G-
extending R-module and N < M. If N satisfies
the condition (&), then N is strongly G-extending.

Proof. Let X be a submodule of N. Since M is
a strongly G-extending module, so there exists
a direct summand D of M such that XpD. By
condition (4), D N N is a direct summand of N.
On the other hand, X N D <5 Xand XN D < D,
then by [16, Lemma 2.9], XN (DNN) <g4 X
NN=Xand Xn(DnNN)<g DnN. This mean
that Xp(D N N), and hence N is a strongly G-

extending R-module. m

Recall that an R-module M is said to have
the direct summand intersection property (briefly
SIP) if, the intersection of any two direct summ-
ands of M is a direct summand [17].

Corollary 3.12. Let M be a module has the SIP.
If M is strongly G-extending, then every direct
summand of M s strongly G-extending.

Proof. It is obvious. m

Let M be a module and A < M. A complement
for A in M is any submodule B of M which is
maximal with respect to the property AN B =0
[8]. Following [16], let N and L be submodules of
a module M with NnL =0. Then L is called an
SL-complement of N in M if, L is an SL-closed

submodule of M and N®L <, M. From the fact
that every direct summand is SL-closed, hence
every direct summand is SL-complement.

The following result is appeared in [16, Prop.
4.19].

Proposition 3.13. Let M be an R-module and
N,L <M. If L is an SL-complement of N in M,
then L is a complement of N in M.

Proposition 3.14. Let M be an R-module, consider
the following statements.

(i) M is a strongly G-extending R-module ;

(ii) For each Y < M, there exists X <M and
a direct summand D of M such that X <; Y and

X <5 D, where D®D' = M forsome D' < M ;

(iii) For each Y < M, there exists an SL-
complement L of Y and an SL-complement K
of L such that YpK and each homomorphism
@: K@®L —» M extends to a homomorphism ¢
from M to M.

Then (i) = (ii) and (iii) = (i). If (D) +
rz(D") = R, then (i) through (iii) are equivalent.

Proof. (i) = (ii) Let Y < M, then by (i), there
exists a direct summand D of M such that YpD,
that is; YNnD <y,Y and YNnD <, D. Put

X =YnND,hence X <M such that X <; Y and
X <4qD.

(iii) = (i) Assume that X < M, then by (iii),
there exists an SL-complement L of X and an
SL-complement K of L such that XpK, so by
Proposition 3.13, K is a complement of L and L
is a complement of X, hence by [13, Lemma 2],
K is a direct summand of M. Therefore M is
strongly G-extending.



(ii) = (iii) Let Y < M, then by (ii), there exists
a direct summand D of MsuchthatY nD <, Y
andYnD <, D, D®D' = M for some D' < M.
It is clear that D is an SL-complement of D’ in
M. Now, since D’ is a direct summand of M,
then D’ is SL-closed in M. On the other hand,
YND <, D and rz(D) + rz(D") = R, then by
[7, Lemma 2.1.33], (Y NnD)®D' <, M, thus
YOD' < M. Let x(#0)eYNnD’, thenx €Y
but YNnD <Y, thatis; YNnD <,Y, so there
exists r € R such that xr(# 0) € Y n D, then
xr(# 0) € D n D' which is a contradiction, thus
Y n D' =0. Therefore D' is an SL-complement
of Y. By taking, D = K and D' = L, we get the
result. m

Following [14], a module M is said to be satisfy
the C;,-condition if, every submodule of M has
a complement which is a direct summand of M.

Proposition 3.15. Let M be an R-module, consider
the following conditions.

(i) M is a strongly extending R-module ;
(i) M s a strongly G-extending R-module ;

(iii) For each X < M, then there exists an SL-
complement D of X such that D <® M, and hence
M has Cy, ;

(iv) For each semisimple submodule X of M,
X < (direct summand) in M.

Then (i) = (ii) = (iii) and (ii) = (iv).

Proof. (i) implies (ii), clear. Assume that (ii), let
X < M. Since M is strongly G-extending, then
there exists submodules D’ and D of M such that
M = D@®D' and XpD'. It is clear that D is an
SL-complement of X and D is a direct summand

of M. Since SL-complement is complement, hence
M has C;4, so (iii) hold.

(it) = (iv)Suppose X is a semisimple submodule
of M. By (ii), there exists a direct summand D of
M such that XpD, that is; XNnD <5 X, Xn
D<yD,s0 XnD<,X but X is semisimple,
thenXND =X,andhence X <, D. m
Proposition 3.16. Let M be an R-module such
that Soc(4) <5 A for each A <M. Then M is
strongly G-extending if and only if for every
semisimple submodule is strongly large in a direct
summand.

Proof. Assume that a condition holds. Let X < M,
then Soc(X) is a semisimple submodule of M,
then there exists a direct summand D of M such
that Soc(X) <;; D. By hypothesis, Soc(X) <4 X,
thus Soc(X) < X n D which is a submodule in
both Xand D,so X ND <g Xand X ND < D,

that is; XpD and hence M is strongly G-extending.
The converse, follows from Proposition 3.15. =

A submodule N of a module M is called fully
invariant if, ¢(N) € N for all endmorphisms ¢
of M [18]. An R-module M is called duo if, every
submodule of M is a fully invariant submodule
[11]. A submodule N of a module M is said to be
distributive if, for each submodules A, B of M,
NNn(A+B)=(NnA)+ (NnB). An R-module
M is called distributive if, all it is submodules
are distributive [6].

Proposition 3.17. Let M be an R-module and
N < M is fully invariant. If M is a strongly G-
extending module then N is strongly G-extending.

Proof. Let X < N < M. Since M is strongly G-
extending, then there exists submodules D, D’ of
M such that XpD and M = D@D'. Consider the



projection maps ,;: M — D, m,: M — D'.For any
x€EN, x=a+b wherea€ D, b€ D’ and so
m,(x) = a, m,(x) = b. Since N is fully invariant
and i; o, € End(M), hence a = m;(x) =i, o
m(x) €Eiyomry(M)NN, that is; a € r;(M) N
N, where i;:D — M is an inclusion map. By a
similar way, we have b € m,(M) n N. Therefore
x=a+be€ (@M nN®m,(M)NN), and
hence N = (D N N)®(D N N). Since XpD, then
by some steps of proof of Proposition 3.11,
Xp(DNN) and DN N is a direct summand of
N. Thus N is strongly G-extending. m

Proposition 3.18. Let M be an R-module and
N < M is distributive. If M is strongly G-extending
then N is strongly G-extending.

Proof. It is easy to check. m

However, the next result follows directly from
Propositions (3.17) and (3.18).

Corollary 3.19. Let M be a duo (or distributive)
R-module. If M is a strongly G-extending module
then every submodule of M is so.

Recall that an R-module M is called multiplication
if, for every submodule N of M there exists an
ideal I of R such that N = MI [4].

It is clear that every multiplication modules is duo.
Hence we have:

Corollary 3.20. Let M be a multiplication module.
If M is strongly G-extending then every submodule
of M is so.

Proposition 3.21. Let R be a commutative ring
and M be a strongly G-extending R-module with
N < M. If M/N is non-strongly singular, then N
is a direct summand of M.
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Proof. Since M is a strongly G-extending module
and N < M, so there exists a direct summand D
of M such that NpD, then by Proposition 2.9,
N + D/N is strongly singular. Since M/N is non-
strongly singular and N + D/N < M/N,so clear
that N + D /N is a non-strongly singular module.
But D/NND =N+ D/N by (2" isomorphism
theorem), thus D/N N D is strongly singular and
non-strongly singular, this implies that D/N n D
is the zero submodule, and hence NN D = D.
Since D is a direct summand of M, then D is
SL-closed, but D=NnD <, N then D = N.

Thus N is a direct summand of M. =

By Proposition 2.12, we can get the following
result.

Proposition 3.22. Let M be a strongly G-
extending R-module satisfy the condition (%),
and N <M. If M/N is non-strongly singular,
then N is a direct summand of M.

Proof. Analogous proof of previous Proposition. m

Recall that an R-module M is said to have the
SL-closed intersection property (briefly SLCIP)
if, the intersection of any two SL-closed subm-
odules of M is again SL-closed [7].

The following Proposition illustrate a connection
between strongly G-extending, SL-UC and SLCIP
(SIP) modules.

Proposition 3.23. Let M be a strongly G-extending
R-module. Then M is a SL-UC module if and
only if M has the SLCIP ( also SIP).

Proof. Assume that M is a SL-UC module. Since
M is a strongly G-extending module, then by
Proposition 3.3, M is strongly extending. Let K



and L be direct summands of M, so by [15, Th.
3.25] K and L are strongly extending. Since
K N L < K, there exists a direct summand C of
Ksuchthat KN L < C.Similarly, KNL <y D
for some direct summand D of L. Thus C and
D denote the SL-closures of KN L, but M is a
SL-UC module, so € = D. It follows that C =
DS KnL,andhenceC=D=KnL.ButC,D
are direct summands of M, then K n L is a direct
summand of M and M has the SIP. Since M is
a strongly extending module, so M has the SLCIP,
by [7, Prop. 2.1.42]. The converse, follows by
[7,Th.2.1.12]. =

Now, we consider the following definition.

Definition 3.24. A module M is called strongly
G*-extending provided that every direct summand
of M s strongly G-extending.

Proposition 3.25. Every strongly extending
module is strongly G*-extending.

Proof. Suppose that M is a strongly extending
module, and let N be a direct summand of M.
By [15, Th. 3.25] N is also strongly extending,
and hence N is strongly G-extending, by Rem. and
Ex. 3.2(i). Thus M is strongly G*-extending. m

The converse need not be true in general, see
Rem.and.Ex. 3.2(i). In fact, the direct summands
of Q&Z,, as Z-module are only trivial summands
which are strongly G-extending.

Remarks 3.26.

(i) Let M be an R-module has the SIP. Then
M is strongly G-extending if and only if M is
strongly G*-extending.

Proof. It follows by Corollary 3.12. =
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(ii) Let M be a duo (or distributive) R-module.
Then M is strongly G-extending if and only if M
is strongly G*-extending.

Proof. It follows by Corollary 3.19. m

(iii) Let M be a multiplication R-module. Then
M is strongly G-extending if and only if M is
strongly G*-extending.

Proof. It follows by Corollary 3.20. =

(iv) Let M be a free module over a PID. Then M
is a strongly G-extending module if and only if
M is a strongly G *-extending module.

Proof. By [3, Cor. 1.1.6] M has the SIP. Hence,
the result is obtained from (i). m

(v) Let R be a commutative ring. Then R is
strongly G-extending if and only if R is strongly
G*-extending.

Proof. Since R is a commutative ring, then R has
the SIP. Thus, the result is obtained by (i). =

Recall the following conditions for a module M:

(C,) If a submodule A of M is isomorphic to a
summand of M, then A is a summand of M ;

(C3) If M; and M, are two direct summands of
M such that M; N M, = 0, then M;®M, is a
summand of M.

Now, we shall give another condition under
which the concepts of strongly G-extending and
strongly G *-extending are coincide.

Theorem 3.27. Let M be a module satisfying Cs.
Then M is strongly G-extending if and only if M
is strongly G*-extending.



Proof. Assume that M is a strongly G-extending
R-module. Let N be a direct summand of M, so
M = N@®K for some submodule K of M. Consider
a projection map m:M — N. Let X < N in M,
then there exists a direct summand Y of M such
that XpY, thatis; XNnY <g Xand XnY <y Y.
To prove that K N Y = 0. Assume that a(# 0) €
KnY,soaeYanda.l#0butXnY <Y,
there exists r € R such that ar(¥0)eXnY,
then ar € X € N but ar € K, hence ar(+ 0) €
N n K which is a contradiction. So KNnY =0,
but M satisfy Cs, then K@Y is a direct summand
of M. Now, we claim that K@Y = K@n(Y). Let
x=k+y€eK®Y where k e K and y € Y. Put
y=n+k, where neN and k; € K. Then
x=k+k;+n(y) e K®&n(Y), and hence
K®Y € K@n(Y).Conversely, let b € K@n(Y),
b=k+mn(y) where ke K and y €Y. Put y =
n+k,where neN, k, €K. So b=k —k, +
y € K@®Y. Therefore, K@Y = K®n(Y). Thus
n(Y) is a direct summand of M, but n(Y) <N,
so m(Y) is a direct summand of N. Next to prove
that X p m(Y). For any n € n(Y), n = n(y) for
some y €Y, and let r € R such that nr # 0.
Hence m(yr) =m(y)r #0, thus yr =0 but
XNY <Y, then there exists s € R such that
yseXNnYandyrs #0,s0yseXandys €Y.
Then nrs = n(y)rs = n(yrs) # 0. Since ys €
X € N, then n(ys) = ys. Hence ns = n(y)s =
n(ys) =ys e XNnnu(Y).ThusX N (Y) <4 m(Y).
It is clear m(Y) = N n (K®n(Y)), to see this;
let x=n=k+mn(y) € Nn (K®n(Y)), where
neN, keKandyeY. Thus k=n—n(y) €
NNK =0, and so k =0, then x = n(y) € n(Y).
So Nn (K@n(Y)) € n(Y), and hence n(Y) =
Nn(Kénr(Y)) =N n (K®Y). Thus X nn(Y) =
Xn(Nn((K®Y)=X N (KBY) <, X, therefore

Xnn(Y) < X. Thus N is strongly G-extending,
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and hence M is a strongly G*-extending module.

The converse is clear. m

Corollary 3.28. Let M be a module satisfying
C,. Then M is strongly G-extending if and only if
M is strongly G*- extending.

Proof. Since C, implies C5, hence the result is
obtained. m

Now, we will investigate the behavior of strongly
G-extending modules. We need the next Lemma.

Lemma 3.29. Let M be an R-module satisfies
condition (*) and N,L < M. If STIN <y S~ 1L in
S™'M as S~'R-module, then N <, L in M as R-
module, where S is a multiplicative closed subset
of R.

Proof. Let [ € L and r € R such that Ir # 0. For
s€S, l/seS L and r/s € ST'R such that
(I/s)(r/s) # 0 (because, if (I/s)(r/s) =0, so
there exists (0 #)t € R such that Irt=0; that is
rt € rz(1), but r € rz (1) and M satisfies condition
(*) this implies t = 0 which is a contradiction).
Since STIN <, ST1L, then there exists 1, /s; €
S7IR such that (I/s)(r1/s;) € STIN and
(l/s)(r /s1)(r/s) # 0, this implies Ir; € N and
Iryr # 0 for some r; € R (because if lr;r =0,
(lryr/s18?) = 0, s0 (I/s)(ry/s1)(r/s) = 0 which
is a contradiction.) Thus the result is obtained. m

Proposition 3.30. Let M be an R-module satisfies
condition (*) and S be a multiplicative closed
subset of R. Then M is a strongly G-extending as
R-module if and only if S™*M is a strongly G-
extending as S~'R-module, provided S7!'A =
S™1B iff A=B.

Proof. Suppose that M is a strongly G-extending
R-module. Let S7'A < S7M, so A < M, then



there exists a submodule B of M such that ApB
(ie. ANB<gq A and ANB <4 B), B&C =M
for some C < M. It is clear that S™'B <® S$~1M.
Since a module M satisfies the condition (%),
then (S7!A) NS B)=S"1(AnB) <, S714
and (S7'A) NS B)=S"1ANB) <, S7!B,
by [7, Lemma 2.1.47], that is; (S™14)p(S~1B).
Therefore S~*M is a strongly G-extending S~1R-
module.

Conversely, assume X < M,so S71X < S~ 1M,
there exists a submodule S™'Y of S™*M such
that (S71X)p(S~1Y), and (S7Y)®(SIK) =
S™IM forsome S7'K < S™'M.But S~ (Y®K) =

(STIY)B(STIK) = S™IM, then by assumption
Y®K = M, that is; Y is a direct summand of M.
Since (S7'X) N (S7Y) < S7*X and (S71X) N
(S7y) <, STy, then S7Y(X nY) <, S™1X and
STIXnY) <, S7tY, so by previous Lemma,
XNnY<gXandXnY < Y, thatis; XpY. Thus

M is a strongly G-extending as R-module. =

Corollary 3.31. Let M be an R-module satisfies
condition (*). Then M is a strongly G-extending
R-module if and only if M, is a strongly G-
extending R,-module, for all maximal ideals P
of R.

The following Proposition is appeared in [16,
Prop. 2.25].

Proposition 3.32. Let M be an R-module with
the condition (*), m € M and | be a right ideal
of R. Then

(i) If I is a strongly large in R, then ml is a
strongly large in mR.

(ii) If rx(m) < M and ml is a strongly large in
mR, then | is a strongly large in R.
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Next, we will consider multiplication modules
with the strongly G-extending.

Proposition 3.33. Let M be a faithful finitely
generated multiplication R-module satisfies ().
Then M is strongly G-extending if and only if R
is strongly G-extending.

Proof. Suppose that M is a strongly G-extending
R-module. Let A be an ideal of R, so MA is
a submodule of M, then there exists a direct
summand K = MB such that (MA)pK, for some
ideal B of R, and K@®L = M where L = MC <
M for some ideal C of R. Then M(B®C) =
MB®MC = M, but M is faithful multiplication,
implies BC = R, that is; B <® R. On the other
hand, (M) <ANB, M(ANB) <4 MA and
M(A N B) < MB, so by previous Proposition (ii),
ANB <, A and AN B < B, this mean ApB.
Thus R is strongly G-extending.

Conversely, assume that N < M. Since M is
multiplication, so N = MI for some ideal | of R.
But R is strongly G-extending, so there exists an
ideal J of R such that Ip/, and J@®P = R for some
ideal P of R. Thus Inj <yl and INJ <],
but M satisfies the condition (*), so by previous
Proposition(i), NNM] <, N and NN M] <

M]. Since ] <® R this implies M] <® M. Hence
M is strongly G-extending. m

However, we shall gave the following Corollary.
But, the next Lemma we needed which appeared in
[16, Prop. 2.21].

Lemma 3.34. Every torsion free module satisfies
condition ().

By comparing the above Lemma and Proposition
3.33, we have the following Corollary.



Corollary 3.35. Let M be a torsion free finitely
generated multiplication R-module. Then M is
strongly G-extending if and only if R is strongly
G-extending.

Recall that an R-module M is called a scalar
module if, for each ¢ € End (M), there exists an
a € R such that ¢(m) = ma for all m € M [10].

Now, we finish this section by the following
Proposition.

Proposition 3.36. Let M be a faithful scalar R-
module. Then R is strongly G-extending if and
only if S = End(M) is strongly G-extending.

Proof. Since M is a scalar R-module, so by [10,
Lemma 6.2] S = End(M) = R/rx(M). But M
is faithful, so S = End(M) = R. Thus the result
is obtained. m

4 Direct Sums Of Strongly G-extending Modules

In this section, we investigate some various con-
ditions for a direct sum of strongly G-extending
modules to be strongly G-extending.

We begin with the following example.

Example 4.1. It is well known that Z is an integral
domain, so clear that the polynomial ring of Z is
also an integral domain (i.e. Z[X] is an integral
domain), then by Rem.and.Ex. 3.2(v), Z[X] is
strongly G-extending. But Z[X] @ Z[X] is not
strongly G-extending. In fact, Z[X] @ Z[X] is not
G-extending, see [2]. This example show that the
class of strongly G-extending modules is not
closed under direct sums.
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Following K.R. Goodearl in [8], if {4,} is an
independent family of submodules of M and
A, <. B, for each «a, then {B,} is an independent
family of submodules and @ A, <. B,. But
"strongly large" version of this statement is an
open question.

However, we introduce the following definition.

Definition 4.2. Let {A,} and {B,} be collections
of submodules of a module M. The module M
is called SL-direct sum if for each a, A, < B,
implies @ A, <.,® B, .

Lemma 4.3. Let { M,:a € A} be a family of
SL-direct sum modules. If A, p B, of M, for all

a € A, then (B A,)p(D By).

Proof. Assume that A, p B, of a module M, for
each @ € A. Then (A, N By) <gq Ay, and (Ag N
B,) <4 B, foreach a € A. But M, is SL-direct
sum, then @ (A, N B,) <P A, and @ (4, N
By) <a® By, thus (B A,) N (D By) <P A,
and (D A4q) N (D By) <@ By Thus (B Ag) p
(D@ By) m

Proposition 4.4. Let M; and M, be R-modules
such that M = M; @ M, be a duo SL-direct sum
R-module. Then M;, M, are strongly G-extending
if and only if M is strongly G-extending.

Proof. Suppose M, M, are strongly G-extending
R-modules, and X < M. Since M = M; @ M, is
a duo module, X = (X n M;) @ (X n M,). On the
other hand, for (i = 1,2), X N M; < M; and M; is
strongly G-extending, so there exists a direct
summand D; of M; such that (X n M;) p D;. By
Lemma 43 X=XnNM)D XnM,)p (D, D
D,), since M is a SL-direct sum module. Notice
that D, @ D, is a direct summand of M. Thus



M is a strongly G-extending R-module. The
converse, follows directly by Corollary 3.19. =

Proposition 4.5. Let M = M; @& M, be a distrib-
utive SL-direct sum R-module. Then M,, M, are
strongly G-extending if and only if M is strongly
G-extending.

Proof. Assume M;, M, are strongly G-extending
R-modules. Let X <M, then X =XnNnM =Xn
M, B M,)=XnM,) P (XnM,)since M is
a distributive R-module. By same argument of
Proposition 4.4, M is strongly G-extending module.
The converse, follows from Corollary 3.19. =

Proposition 4.6. Let M = M, @ M, be a SL-
direct sum R-module, rx(M;) + rzx(M,) = R. If
M; and M, are strongly G-extending, then M is
strongly G-extending.

Proof. Let X be a nonzero submodule of M.
Since 1z(M;) + rzx(M,) = R, then by the same
way of the proof of [1, Prop. 1.2.4] X = A @ B,
where A < M; and B < M,. Since X # 0, then
we have three cases: Case 1,if A+ 0 and B =0,
then X = A is a submodule of M;, but M, is
strongly G-extending, then there exists a direct
summand D of M, such that XpD. It is clear that
D is a direct summand of M. Case 2, if A=10
and B # 0, then by a similar way, we get a direct
summand C of M, (‘also in M) such that XpC.
Case 3, if A and B are both nonzero submodules,
so there exists direct summands D, D, of M, and
M, respectively, such that ApD, and BpD,. Since
M is SL-direct sum, then by Lemma 4.3, X =
(ADB)p (D, ®D,) and D, @ D, is a direct
summand of M. From above cases, we get the

result. m
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Proposition 4.7. The following statements are
equivalent for a PID R.

(i) ;e R is strongly G-extending, for all index
setl;

(ii) Every projective R-module is strongly G-
extending.

Proof. (i) = (ii) Assume that P is a projective
R-module. Choose a free R-module F and an
epimorphism ¢: F — R. Since F is free, so by
[9, Lemma 4.4.1] F = @;¢; R for some index set
I. Consider the short exact sequence 0 — Kerg

—l>®ie, R % P > 0 where i is the inclusion map.
Since P is projective, so the sequence is splits.
Thus @,c; R = Ker@®P. Since @P;¢; R is free
strongly G-extending over a PID R, so by Remarks
3.26 (iv), D¢, R is strongly G*-extending, but P
is a direct summand of @, R, therefore P is
strongly G-extending.

(i) = (i) Obvious. =

References

[1] Abbas, M.S., 1990, On Fully Stable Modules,
Ph.D. Thesis, Univ. Of Baghdad, Iraq.

[2] Akalan, E., Birkenmeier, G.F., Tercan, A., 2009,
Goldie Extending Modules, Comm. Algebra 37,
PP. 663-683.

[3] Al-Bahraany, B.H., 2000, Modules With The
Pure Intersection Property, Ph.D. Thesis, Univ.
Of Baghdad, Irag.

[4] Barnard, A., 1981, Multiplication Modules, J.
Algebra 71, PP. 174-178.

[5] Dung, N.V., Huyn, D.V., Smith, P.F. and
Wisbauer, R., 1994, Extending Modules, Pitman

Research notes in math. Series, Longman Harlow.



[6] Erdogdu, V., 1987, Distributive Modules, Canad.
mat. Bull. 302, PP. 248-254.
[71 Ghawi, Th.Y., 2015, Modules With Closed
Intersection (Sum) Property, Ph.D. Thesis, Univ.
Of Al-Mustansiriyah, Iraqg.
[8] Goodearl, K.R., 1976, Ring Theory, Nonsingular
Rings And Modules, Dekker, Newyork.
[9] Kasch, F., 1982, Modules And Rings, Academic
press, London.
[10] Mohamed-Ali, E.A., 2006, On Ikeda-Nakayama
Modules, Ph.D. Thesis, Univ. Of Baghdad, Iraq.
[11] Ozcan, A.C., Harmanci, A. and Smith, P.F., 2006,
Duo Modules, Glasgow math. J, PP. 533-545.
[12] Sharpe, D.W. and Vamos, P., 1972, Injective
Modules, Lectures in pure math., Cambridge
Univ. Press.
[13] Smith, P.F. and Tercan, A., 1992, Continuous
And Quasi-continuous Modules, Houston J. math,
PP. 339-348.
[14] Smith, P.F. and Tercan, A., 1993, Generalizations
Of CS-Modules, Comm. Algebra, PP. 1809-1847.
[15] Ungor, B. and Halicioglu, S., 2013, Strongly
Extending Modules, Hacettepe J. math. And
Statistic, PP. 465-478.
[16] Ungor, B. and Halicioglu, S., Kamal, M.A. and
Harmanci, A., 2013, Strongly Large Module
extensions, An.Stiint. Univ. Al.I.Cuza lasi. Math.
(S.N.) 59, PP. 431-452.

[17] Wilson, G.V., 1986, Modules With The Summand
Intersection Property, Comm. In Algebra, PP. 21-38.

[18] Wisbauer, R., 1991, Foundations Of Module And
Ring Theory, reading, Gordon and Breach

Science Publishers.

16

é.ﬂj&hﬂ\ O s 58 o gl iluilia
GO pui gy AU
Q3 - Apuadll) Aaals / A il IS/ ilsaly 1) o
Thaar_math83@yahoo.com : s xS 4

oaldiall

Balal) e M ga¥) Gl e N g al ulial
SMEM paic &S oS A b8 s pm =uR
U r ER paic anald mr#0 &« rER
gl lalie Ledd Sl 138 A mrs 0 smr €N
sl Alilie (e dals Als o Al G-baadl) e o548
e M Gliall ladl g5 lpaal & (g LS5 Godaalll (1
O S 13 Ghaaill (o (58 st ilia oann R )
M e D Ml panx 4S50 2258 (M e X (20 odlia
SX e B L @i i XND Y dus
el & seaall dand S A4y 5 pall by dll ey D
Jpranl) 5 ilia dia a0 Godaadll (e (5l gone s il
udae ] 28 Giluliall (e g il 138 i g3 Al Leale


mailto:Thaar_math83@yahoo.com

