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1. Introduction

The fuzzy measure, defined on a classical o — field,
was introduced by Sugeno [7]. Ralescu and Adams [1]
generalized the concepts of fuzzy measure and fuzzy
integral to the case that the value of a fuzzy measure
can be infinite, and to realize an approach from
subjective.

Wang [12,11]and Kruse [4] studied some structural
characteristics of fuzzy measures and proved several
theorem about fuzzy measure.

The notion of fuzzy measure was extended by
Avallone and Barbieri, Jiang and Suzuki [9],
Narukawa and Murofushi[10], Ralscu and Adams [1]
as a set function which was defined on o — field with
valus in [0, ]. After that, many authors studied the
fuzzy measure and proved some results about it as Guo
and Zhang [10], Kui [6], Li and Yasuda [3], Lushu and
Zhaohu [5], Minghu[2].

In this paper, we mention the definition of completion
of fuzzy measure with some properties, and prove
some new relations deal with completeness of fuzzy
measure.

Definition (1):[13]
Let (Q, F) be a measurable space. A set function
u:F — [0, 0) is called a fuzzy measure if

1 u@®) =0
2. u(A) <u(B) , whereACS B

Definition (2):

Let (Q, F) be a fuzzy measurable space, A € F is said
to be u — null set if u(A) = 0. The fuzzy measure u is
said to be complete on F if F contains the subset of
every u — null sets.

Definition (3):[12]
u is called countably weakly null-additive, if for any
{An} c F,

u(4,) =0, foralln>1 =>;1<UAn> =0
n=1
Definition (4):[12]
u is said to be additive, if u(A U B) = u(A4) + u(B)
whenever A,B € Fand An B = Q.
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2. Main results

Theorem (1):

Let (Q,F, u) be a fuzzy measurable space and u is
countably weakly null-additive and 6, = {E:E c A €
F and u(4) = 0}.Then §,, is o — ring.

Proof:
1. Clearly @ € 5, .
2. LetE, ,E, € 6, = thereexists A; ,A, € F

suchthat E; c A, ,E, c A, and u(4,) = 0,u(4,) =
0.

E,/E,CE CA €FS0E, /E,€5,.

3. Let {E,,} be a sequence of sets in &,
n=1,2,... = there exist a sequence {4,} n=1,2,... of
sets in F such that E,, / A, and u(4,) =0.

U E, c U A,
n=1 n=1

Since F is o — field

= UA” EF
n=1

Since u is countably weakly null-additive

n=1
So
| JEn e,
n=1
Therefore

8, iso —ring
Theorem (2):

Let (Q,F, u) be a fuzzy measurable space and u is
additive, define F = {(E UE,)/E,:E € F ,E; ,E, €
8,}.Then A €  iff there exists M, N € F such that
M c Ac Nand u(N/M) =0.

Proof:
LetM,NeFandM cAc Nandu(N /M) =0.
So

A=((Nug@)/(N/A)
Since
N/AcN/M€Fand u(N/M)=0= N/A€ES,.

Therefore

Suppose that A € F,then=(E UE,)/E, ,E €
F,E ,E, €5,.

= there exist A; , A, € F such that u(4,)
= 0 ,[_l(Az) = 0

andE, c A, ,E,c A, ,E/A,cACEUA,;

EUA,,E/A, e Fand u((E U A))/(E/AY))
=u((A41 /E)U (A, NE)) = u(A; / E) + u(A, N E)
Since

A/E c Ajand A, N E c A, = u(A,/E)
=0andu(4, NE)=0

So

n((E v A)/(E/AZ) = 0.

Corollary (1):

Let (Q,F, u) be a fuzzy measurable space and u is
additive. ThenA€ F iff A=EUM,E€FandM €

8,



Proof:

Suppose that A € F . By theorem (2) there exist
M,N € Fsuchthat NcAcMandu(M /N)=0

A=NU(A/N) ,NEF

Since

A/NcM/N€Fand u(M/N)=0= A/N €,

Conversely

Suppose A=EUM,E€F and M € §,
A=(EuM)/¢ ,0€s, =>A€F

Corollary (2):

Let (Q, F, u) be a fuzzy measurable space and u is
additive. ThenA e Fiff A=E /DwithE € F
andD €6, .

Proof:
Suppose that A € F

= there exist M, N € F such that

NcAcM and u(M/N)=0
A=M/M/A) MeF
Since
M/Ac M/N € Fand u(M/N) =0
So
M/AE€Sé,.

Conversely
Suppose that A= E / D where E € Fand D € 6,

= A=(Eu®)/D D,p €6,

= A€EF

Theorem (3):

Let (Q, F, 1) be a fuzzy measurable space and u is
additive. Then F is ¢ — ring.

Proof:
1. Clearly @ € F .
2. Let {A,} n = 1,2, ... be a sequence of sets

such that A4,, € F

= A, = M, UN, where M,, € F and N, €4, .

QAn - p(Mn UN,) = <0 Mn> u <0 Nn>

[ee]
=1 n=1 n=1

Since

Fiso — field and §,, is 0 — ring

=>UMne:F,UNnE6M
n=1 n=1

So
UA” EF
n=1
3. Let A,B € F from Corollary(1) we obtain
A=M,;UN,
B = M2 U N2 .

A/B = (M1 u N1)/(M2 U Nz)
= ((Ml / My) /Nz) Y ((N1 / M) /Nz)

= [((M1 /My)/ Ez) U ((Ez /N)n (M, / Mz))] Y
((Ny / Mp) / N,)

N,cE,eF ,u(E;))=0 A/B €F

Therefore

F is o0 —ring.
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