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Abstract: 

In this article, we present that Black-Scholes process is a famous formula in financial mathematics. Our aim is to study the 

behavior of stochastic parameters in that model with application to Financial Time Stock Exchange FTSE100 Index. We use some 

parametric (Maximum likelihood, and Unbiased and Efficient) and nonparametric (Penalized least Squares, with different functions 

for the drift and diffusion coefficients and generally the Black-Scholes process) methods. Moreover, we study the change-point 

estimation for FTSE100 Index in order to determine these changes, and effects on the behavior of the Black-Scholes process. 
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1. Introduction

Stochastic Differential Equations (SDE) has been studied 

in recent years particularly in statistics aspect. We can define 

Stochastic Differential Equation (SDE) that is a differential 

equation adding to white noise term. The white noise term is 

represented a standard Brownian motion in this article. We 

present a good example of Stochastic Differential Equations 

(SDE) that is called a Black-Scholes process. This process is 

introduced by Fisher Black and Myron Scholes [6] which is 

also called Geometric Brownian Motion [8, 9]. It has been 

suggested for European markets. We find that it is very 

interesting to study the Black-Scholes Process using real data. 

Therefore, we motivate to study the behavior of the Black-

Scholes process and it effect on FSTE100. Comte et al (2007) 

estimate drift and diffusion coefficients for some examples 

from Stochastic Differential Equations (SDE) using a 

penalized least squares approach [3]. Comte et al (2002) 

present penalized least squares using different functions of 

drift and integrated diffusion coefficients in a discrete time 

[4]. Kessler et al (2012) present current research trends and 

recent developments in statistical methods for Stochastic 

Differential Equations. Moreover, it presents  

a spectrum of estimation methods, including nonparametric 

estimation as well as parametric estimations based on 

likelihood methods, estimating functions, and simulation 

techniques for high-frequency data [10]. 

Kloke et al (2015) present traditional nonparametric 

methods and rank-based analyses, including estimation and 

inference for models ranging from simple location models to 

general linear and nonlinear models for uncorrelated and 

responses [12]. 

Iacus (2008) discusses the use of appropriate statistical 

techniques, with the choice of particularly financial models 

such as Black-Scholes process, starting from real financial 

data [9]. 

Iacus (2011) presents some elementary and advanced 

topics on modern option pricing, from basic models of the 

Black-Scholes theory to more sophisticated approaches [8].  

The aim of this article is to estimate the parameters of 

Black-Scholes process, using parametric and nonparametric 

methods then determine the change points in our data by 

change-points estimation. 

In Section 2, we present Stochastic Differential Equations 

(SDE), the properties of standard Brownian motion, and the 

Black-Scholes process is a famous example of Stochastic 

Differential Equations. In Section 3 and Section 4, we present 

some parametric and nonparametric methods of the Black-

Scholes process to estimate those parameters. 

In Section 5, the change-points estimation will be 

presented. Finally, In Section 6, we apply our methods to real 

data, for example FSTE100. 

2. Stochastic Differential Equations 

Stochastic Differential Equation (SDE) is a differential 

equation adding to Noise term. The general form of Stochastic 

Differential Equations (SDE) is as follows: 

dXt = a(Xt) dt + b(Xt)dWt                         (1) 

where 
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dXt  is the change of Xt in a continuous time t. a(Xt) is the 

drift parameter. b(Xt) is the volatility parameter, and  dWt is a 

standard Brownian motion. 

A standard Brownian motion is a stochastic process (a 

continuous space and a continuous time) that describes the 

evolution of value of any random variable. It is sometimes 

called Wiener process that refers to Wiener (1923) [8]. The 

properties of standard Brownian motion are as follows: 

1. It starts at zero. W0 = 0. 

2. Its sample path is everywhere continuous. 

3. It is nowhere differentiable. 

4. It has independent increments. This means that if 

(t1,t2) and (t3,t4) are disjoint intervals, then the 

increment or increase Wt4 -Wt3 is independent of the 

increment Wt2 -Wt1. 

5. If s < t, then Wt -Ws ~ N(0, t - s). 

We will present a good example of Stochastic Differential 

Equations (SDE), which is called a Black-Scholes process. 

2.1- Black-Scholes Process 

Black-Scholes process (1973) is introduced by Fisher 

Black and Myron Scholes [6] which estimates the price S over 

time t. An option, from finance view, is contract to buy or sell 

an underlying asset at a specific price at time t, as shown in 

[13]. It is also called a Geometric Brownian motion [14]. This 

process is important mathematical model of a financial 

market. Mathematically, the Black- Scholes process can be 

written as follows: 

dSt = θ1 St dt + θ2 St dWt                       (2) 

where 

St: represents the spot price of an underlying asset in time t. 

θ1: represents the drift parameter. 

θ2: represents the volatility parameter. 

It is more convenient to work with yt= log(St/S0), where 

(S0) is an initial value of the spot price. Using the Itô Lemma 

[13], we can transform (1) into an equation for yt. 

 
 

 
 

Now, we will use the Euler scheme to transform the Black-

Scholes [9] from continuous to discrete time. The aim of 

applying the Euler Scheme is that it is easier to deal with 

discrete rather continuous time. 

The Euler Scheme of yt is. 

 

by integrated the above equation, we now let . When 

we move from continuous to discrete time, positivity of the 

diffusion parameter is unfortunately no longer guaranteed. 

Hence, we replace θ2 with | θ2| 

 
 

since, dWt ~ N(0,Δ) when dWt = Wt+ Δ - Wt 

We will estimate the drift and diffusion parameters, using 

parametric and nonparametric. 

Moreover, we will determine the change points in our real 

data using change-points estimation. Then we can estimate our 

parameters before and after these points to choose the best 

estimate of the parameters. 

3. Parametric Methods 

We will use Unbiased and Efficient, and Maximum 

Likelihood methods to estimate the parameters for the Black-

Scholes process. 

3.1- Unbiased and Efficient Estimation 

Using equation (6), we can consider yt as random 

variables, taking from common distribution 

 

Then, the parameters will be computed as the mean and 

the variance of a sample of i.i.d random variables for the 

Normal distribution with  

From statistical view, these parameters are an Unbiased and 

Efficient estimations [8]. Mathematically, we can computed 

the mean and the variance as follows[9]:  

 



By solving the above equations, we can find the estimate 

of θ1 and  θ2, where 

 

 

3.2- Maximum Likelihood Estimation 

We will write the likelihood function, assuming that the 

initial value y0 is known. Mathematically, the likelihood 

function can be expressed as  

follows : 

 

This process satisfies the Markov property. Therefore, we 

can rewrite the above equation as follows: 

 

As we mentioned before, this process is a normal 

distribution, so we use the likelihood function 

to estimate the parameters θ1 and θ2. 

We can also find the confidence intervals of our 

parameters in both methods as shown in [8, 9 and 10]. 

4- Non Parametric Method 

We will use penalized least squares, with different 

functions for our parameters to estimate the functions of 

parameters for the Black-Scholes process. The initial aim of 

this method is to estimate the fitting function for our 

parameters and avoid excessive roughness, without loss of 

generality. Firstly, suppose it has been observed  

(xi, yi), i =1, 2, . . . , n 

yi = f(xi) + noise. 

where f is unknown. Secondly, we will try to make 

 in minimizing criterion. 

Now, we will use this method to find the best function for 

the path of Black-Scholes process, and the function of drift 

and diffusion estimators. Using equation (6) to estimate the 

drift and diffusion function in discrete time and we will 

consider our process as the regression type equation [3 and 

10] as follows: 

 

The term ZΔt is a martingale increment [14] and the term 

RΔt belongs to the discretization case. 

On the other hand, it can be estimated the function of 

diffusion coefficient which is faster than the function of drift 

coefficient. Moreover, the regression-type equation has to be 

more precise 

for θ2 than θ1. We set 

 

by using Itô Lemma and Fubini formula [4], we can get the 

following relations, which is related  the equation (10) as 

follows. 

 

 



The term  refers to a sum of martingale increments 

whose variances have different orders 

[10]. Moreover, the term  is the main noise. The term 

 refers to the discretization case. In two our parameters, we 

will estimate our process in min  

 

5- Change Points Estimation 

In this article, the aim of the change points estimation is to 

determine a change case in our data of the Black-Scholes 

process. We will use the equations (2) and (6) in this method. 

Moreover, our aim of this method is to check how the effect 

on estimating the process, in particular the parameters before 

and after the change points happened. We will rewrite 

equation (6) using Euler scheme as follows: 

 

where k is the parameter of our interest. Letting k= k1 

before the change point and k = k2 after the change point. We 

will transform equation (11) to standardized residuals as 

follows: 

 

 

where Zt ~ N(0, 1). 

Then, we can estimate the parameter before and after the 

change point k1 and k2 are 

 

 

where n is the number of points in our data for the Black-

Scholes process , m is a number of points before the change 

point happened, and n-m is a number of points after the 

change points happened. 

In general, the parameter k can be estimated as. 

 

If θ1 and  θ2 are unknown, we assume that θ2 is constant 

and θ1 can be estimated parametrically or non-parametrically 

as shown in Section 3.2 and Section 3.3. 

6- Real Data 

We apply our methods to real data, for example, Financial 

Time Stock Exchange (FTSE100). We use R software which 

is a free software using to analyses the data statistically. 

6.1  Financial Times Stock Exchange100 

Financial Times Stock Exchange100 (FTSE100) Index is 

organized as a joint venture between the Financial Times and 

the London Stock Exchange. When the market is open, this 

index is registered every 15 seconds. Essentially, this index is 

based on largest 100 companies in United Kingdom. 

We apply the Black-Scholes process to the data shown in 

Figure 1. The number of observation is T = 7758. 

 

Figure 1: Graph of Financial Times Stock Exchange Index 

from 03/01/1984 to 10/08/2015. 

6.2  Parametric Estimation 

We begin by estimating the parameters θ = [θ1, θ2] of the 

Black-Scholes process as defined through (2) and (6) using 

Unbiased and Efficient, and Maximum Likelihood estimations 

as explained in Section 3. 

Table 1 and Table 2 show the estimate of our parameters 

using Unbiased and Efficient and Maximum Likelihood 

estimations, Mean Square Error and Confidence Intervals for 

each parameter. 

The estimation of the parameters is clearly good using our 

methods. Moreover, both methods have got the closer results. 

We can say that the estimate of maximum likelihood is better 

than the unbiased and efficient method because the mean 

square error is least value. Figure 2 presents the estimate of 

the profile likelihood for the parameters θ1 and θ2, which is 

clearly that the profile likelihood gives us a good estimation 

for our parameters. 

Table 1: The results of Unbiased and Efficient Estimation 

 Estimate of 

Parameters 

Mean Squares 

Error 
% 2.5 % 97.5 

θ1 0.07599 0.0025 0.014600 0.14013 

θ2 0.1746967 0.0097 0.17200 0.1789 



 

Table 2: The results of Maximum Likelihood Estimation 

 Estimate of 

Parameters 

Mean Squares 

Error 
% 2.5 % 97.5 

θ1 0.07597 0.0023 0.0145211 0.1374702 

θ2 0.17469020 0.0092 0.1719722 0.1775 

 

Figure 2: Graph of the profile likelihood for the θ1 and θ2. 

 

6.3 Nonparametric Estimation 

We estimate the parameters [θ1,θ2] and the general formula 

of the Black-Scholes process using nonparametric estimation 

as defined in equation (9) and (10). Figure 3 represents the 

estimate of drift coefficient (top graph), the estimate of 

diffusion coefficient (Middle graph) and the estimate of the 

general form of the Black-Scholes process (bottom graph). 

Clearly, the best estimation is for the diffusion coefficient 

because the red/broken line is very close to the black line 

whereas the red/broken line is away in some intervals for the 

drift coefficient and its away in a long interval for the general 

formula of the Black-Scholes process. 

Figure 4 represents the estimate of drift coefficient (top 

graph), the estimate of diffusion coefficient (Middle graph) 

and the estimate of the general form of the Black-Scholes 

process (bottom graph). Clearly, the best estimation is for the 

drift and diffusion coefficients because the red/broken line is 

very close to the black line whereas the red/broken line is 

away in a long interval for the general formula of the Black-

Scholes process. 

 

Figure 3: Nonparametric estimators of the drift and diffusion 

coefficients, and the general form for the Black-Scholes 

process. Assume that θ1 = 0.5  × St   and θ2 = 0.7   × St  are 

shown in the black line and the red/broken line represents the 

estimate of the drift and diffusion coefficient, and the estimate 

of general form for the Black-Scholes process. 

 

Figure 4: Nonparametric estimators of the drift and diffusion 

coefficients, and the general form for the Black-Scholes 

process. Assume that θ1 = 0. 75 * St and   are 

shown in the black line and the red/broken line represents the 

estimate of the drift and diffusion coefficient, and the estimate 

of general form for the Black-Scholes process. 

6.4 Change Points Estimation 

We use the change points estimation in our data and 

estimate the parameters before and after these points as shown 

in Section 4. Table 3 represents the change points and 

estimates the parameters k1 and k2 using maximum likelihood 

and nonparametric estimation. Figure 5 shows the change 

points shown as red/broken line in our data using maximum 

likelihood. 

Table 4 represents the change points and estimates the 

parameters k1 and k2 using nonparametric method. Figure 6 

shows the change points shown as red/broken line in our data 

using nonparametric method. Figure 7 represents the estimate 



of the θ1 before and after the change points as shown in Table 

4. 

In general, the estimate of θ1 after the change points is 

obviously better than before the change points because the 

estimated function of parameter (red/broken line) is so closer 

to the function of parameter (black line). 

Table 3: The results of the Change points using Maximum 

Likelihood Estimation 

Year of 

the change 

point 

Estimate 

θ1 before 

Estimate 

θ2 after 
k1 k2 

1988.276 0.2549453 0.18583 1.051124 0.7252491 

1999.156 0.243 0.2275 0.8302445 1.143743 

2008.576 0.2020 0.23520 1.031882 1.289755 

 

Table 4: The results of the Change points using  

Nonparametric method 

Year of the change point k1 k2 

1988.42 0.160314 0.1257458 

1999.156 0.1262803 0.1968252 

2008.576 0.1791424 0.2201445 

 

 

 

Figure 5: The Change points represent red/broken line in the 

FTSE100 using Maximum Likelihood method. 

7- Conclusion 

We have applied the Black-Scholes process to the real 

data, i.e., (FTSE100), using parametric and nonparametric 

estimation. We have performed inference for the parameters 

of the Black-Scholes process. We believe that the parametric 

performance is better than the nonparametric performance for 

the process because we have got the best estimated of the 

parameters. We also have applied the change points for 

(FTSE100) to show the change points happened in the real 

data from starting (FTSE100) until now, and estimated the 

parameters using parametric and nonparametric methods. We 

can conclude that the parametric estimation is better than 

nonparametric estimation particularly in our article. 

 

Figure 6: The Change points represent red/broken line in the 

FTSE100 using nonparametric method. 

 

 

Figure 7: The estimated of   θ1 (red/broken line) and the 

function θ1  (black line) of in the FTSE100 before and after 

the change points happened using nonparametric method. 

 

References 

1) Buchen, P. (2012). An Introduction to Exotic Option 

Pricing. Chapman & Hall/CRC Financial Mathematics 

series. 

2) Comte, F. (2001). Adaptive estimation of the spectrum 

of a stationary Gaussian sequence. Bernoulli, 7, 267–

298. 

3) Comte, F., Genon-Catalot, V., & Rozenholc, Y. (2007). 

Penalized nonparametric mean square estimation of the 

coefficients of diffusion processes. Bernoulli, 13, 514–

543. 

4) Comte, F., & Rozenholc, Y. (2002). Adaptive estimation 

of mean and volatility functions in (auto-)regression 

models. Stochastic Process. Appl., 97, 111–145. 

5) De Gregorio, A. and Iacus, S. M. (2008). Least squares 

volatility change point estimation for partially observed 



diffusion processes. Communication in Statistics, Theory 

and Methods 37, 15, 2342–2357. 

6) Fisher, B. and M. Scholes (1973). The pricing of options 

and corporate liabilities. Journal of Political Economy 

81(3), 637654. 

7) Harris, G. (1995). Low Frequency Statistical Interest 

Rate Models. 5th AFIR International Colloquium. 

pp.799–831. 

8) Iacus, S. M. (2011). Option Pricing and Estimation of 

Financial Models with R. (First ed.) . John Wiley & 

Sons. Italy.  

9) Iacus, S. M. (2008). Simulation and Inference for 

Stochastic Differential Equations with R Examples. (First 

ed.) . Springer. Italy. 

10) Kessler, M., A. Lindner, and Soersen (2012). Statistical 

Methods for Stochastic Differential Equations 

Monographs on Statistical and Applied Probability 124. 

Boca Raton: Chapman & Hall/CRC Book. 

11) Klebaner, F. C. (2012). Introduction to 

Stochastic Calculus with Applications (Third ed.). 

Australia. Imperial College Press. 

12) Kloke, John and Mckean, Joseph W. (2015). 

Nonparametric Statistical Methods Using R. Boca Rotan. 

Taylor & Francis Group. 

13) Mikosch, T. (1998). Elementary Stochastic Calculus 

with Finance in View, Volume 6 of Advanced Series on 

Statistical Science & Applied Probability. World 

Scientific. 

14) Mikosch, T. (2004). Elementary Stochastic Calculus.(5th 

ed.). World Scientific. Denmark. 



 

شوز مع تطبيقها في الجانب المالي-واللامعلمي في عملية بلاكتوظيف الطرائق المعلمي   

 الدكتور مهند فائز السعدون

 قسم الاحصاء/ جامعة القادسية
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والتي تعتبر من اشهر الصيغ في الرياضيات المالية. ان الهدف من هذا البحث -selohcS khaeB في هذا البحث، سوف يتم التطرق الى عملية  

يالعشوائ لمعالم selohcS-Bkhae   هو دراسة المسار   

 SseaacS)   ( واللامعلمي. قد تم استخدم بعض الطرائق المعلمي)الامكان الاعظم وطرقة الكفاءة غير المتحيزةESsF011من خلال  تطيبقه على موشر  

Ssaclahezcl hca مع استخدم بعض الدوال المختلفة للمعالم ) laersوlerreSeol  وعملية khaeB selohcS  يشكل عام، وتم ايضا دراسة تحليل نقاط التغيير في

khaeB selohcS لتحديد هذه التغييرات وتاثيرها على مسار عملية  ESsF011بيانات

.  


