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Abstract:

In this article, we present that Black-Scholes process is a famous formula in financial mathematics. Our aim is to study the

behavior of stochastic parameters in that model with application to Financial Time Stock Exchange FTSE100 Index. We use some

parametric (Maximum likelihood, and Unbiased and Efficient) and nonparametric (Penalized least Squares, with different functions

for the drift and diffusion coefficients and generally the Black-Scholes process) methods. Moreover, we study the change-point

estimation for FTSE100 Index in order to determine these changes, and effects on the behavior of the Black-Scholes process.
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1. Introduction

Stochastic Differential Equations (SDE) has been studied
in recent years particularly in statistics aspect. We can define
Stochastic Differential Equation (SDE) that is a differential
equation adding to white noise term. The white noise term is
represented a standard Brownian motion in this article. We
present a good example of Stochastic Differential Equations
(SDE) that is called a Black-Scholes process. This process is
introduced by Fisher Black and Myron Scholes [6] which is
also called Geometric Brownian Motion [8, 9]. It has been
suggested for European markets. We find that it is very
interesting to study the Black-Scholes Process using real data.

Therefore, we motivate to study the behavior of the Black-
Scholes process and it effect on FSTE100. Comte et al (2007)
estimate drift and diffusion coefficients for some examples
from Stochastic Differential Equations (SDE) using a
penalized least squares approach [3]. Comte et al (2002)
present penalized least squares using different functions of
drift and integrated diffusion coefficients in a discrete time
[4]. Kessler et al (2012) present current research trends and
recent developments in statistical methods for Stochastic
Differential Equations. Moreover, it presents
a spectrum of estimation methods, including nonparametric
estimation as well as parametric estimations based on
likelihood methods, estimating functions, and simulation
techniques for high-frequency data [10].

Kloke et al (2015) present traditional nonparametric
methods and rank-based analyses, including estimation and
inference for models ranging from simple location models to
general linear and nonlinear models for uncorrelated and

responses [12].

lacus (2008) discusses the use of appropriate statistical
techniques, with the choice of particularly financial models
such as Black-Scholes process, starting from real financial
data [9].

lacus (2011) presents some elementary and advanced
topics on modern option pricing, from basic models of the
Black-Scholes theory to more sophisticated approaches [8].

The aim of this article is to estimate the parameters of
Black-Scholes process, using parametric and nonparametric
methods then determine the change points in our data by
change-points estimation.

In Section 2, we present Stochastic Differential Equations
(SDE), the properties of standard Brownian motion, and the
Black-Scholes process is a famous example of Stochastic
Differential Equations. In Section 3 and Section 4, we present
some parametric and nonparametric methods of the Black-
Scholes process to estimate those parameters.

In Section 5, the change-points estimation will be
presented. Finally, In Section 6, we apply our methods to real
data, for example FSTE100.

2. Stochastic Differential Equations
Stochastic Differential Equation (SDE) is a differential
equation adding to Noise term. The general form of Stochastic
Differential Equations (SDE) is as follows:
dX; = a(Xy) dt + b(X)dW, )

where
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dX; is the change of X, in a continuous time t. a(Xy) is the
drift parameter. b(X,) is the volatility parameter, and dW, is a
standard Brownian motion.

A standard Brownian motion is a stochastic process (a
continuous space and a continuous time) that describes the
evolution of value of any random variable. It is sometimes
called Wiener process that refers to Wiener (1923) [8]. The
properties of standard Brownian motion are as follows;

1. Itstarts at zero. Wy = 0.

2. Its sample path is everywhere continuous.

3. Itis nowhere differentiable.

4. It has independent increments. This means that if
(t,t;) and (t3,t;) are disjoint intervals, then the
increment or increase Wy -W; is independent of the
increment Wy, -W,.

5. Ifs<t, then W;-Ws ~ N(O, t - s).

We will present a good example of Stochastic Differential

Equations (SDE), which is called a Black-Scholes process.

2.1- Black-Scholes Process

Black-Scholes process (1973) is introduced by Fisher
Black and Myron Scholes [6] which estimates the price S over
time t. An option, from finance view, is contract to buy or sell
an underlying asset at a specific price at time t, as shown in
[13]. It is also called a Geometric Brownian motion [14]. This
process is important mathematical model of a financial
market. Mathematically, the Black- Scholes process can be

written as follows:
dS; =6, S; dt + 6, S; dW, )

where
S;: represents the spot price of an underlying asset in time t.
0,: represents the drift parameter.
6,: represents the volatility parameter.

It is more convenient to work with y,= log(Sy/S,), where
(So) is an initial value of the spot price. Using the 1t6 Lemma
[13], we can transform (1) into an equation for ;.
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Now, we will use the Euler scheme to transform the Black-
Scholes [9] from continuous to discrete time. The aim of
applying the Euler Scheme is that it is easier to deal with
discrete rather continuous time.

The Euler Scheme of y; is.
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by integrated the above equation, we now let &4— 0. When
we move from continuous to discrete time, positivity of the
diffusion parameter is unfortunately no longer guaranteed.

Hence, we replace 6, with | &,

1 .
Yper =Y+ (01 — SH'::' A +|Hg|\/@Z,. Z, ~ N(0.1) (6)

since, dW; ~ N(0,4) when dW, = W, , - W,

We will estimate the drift and diffusion parameters, using
parametric and nonparametric.

Moreover, we will determine the change points in our real
data using change-points estimation. Then we can estimate our
parameters before and after these points to choose the best

estimate of the parameters.

3. Parametric Methods
We will use Unbiased and Efficient, and Maximum
Likelihood methods to estimate the parameters for the Black-

Scholes process.

3.1- Unbiased and Efficient Estimation
Using equation (6), we can consider y, as random

variables, taking from common distribution
— 162) At 0,/ F))

Then, the parameters will be computed as the mean and

N [(61

the variance of a sample of i.i.d random variables for the
Normal distribution with .uﬂ-.t(ﬁ'l —%E':::I and oAt = 8,

From statistical view, these parameters are an Unbiased and
Efficient estimations [8]. Mathematically, we can computed
the mean and the variance as follows[9]:
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By solving the above equations, we can find the estimate

of 6, and 6,, where
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3.2- Maximum Likelihood Estimation

We will write the likelihood function, assuming that the
initial value y, is known. Mathematically, the likelihood
function can be expressed as

follows :
L(ye. -1, Y=o - - - U1lv0. 01, 62) = L(Yelys—1. Ye—as - - - Y1. Yo, b1, 0)
X L(Ye-1|Ye-2, Ye—3. - - -, Y1.Yo. 01, )

X+ x L(y|yo. bh. 02).

This process satisfies the Markov property. Therefore, we

can rewrite the above equation as follows:

L(ty Yot Yeas - Y [V0: B, 02) = L{Wftier, 00, o) X (Yot [ias 00, o) X - X L{s|yo, 01, 6).

As we mentioned before, this process is a normal
distribution, so we use the likelihood function

to estimate the parameters 6, and 6.

We can also find the confidence intervals of our

parameters in both methods as shown in [8, 9 and 10].

4- Non Parametric Method

We will use penalized least squares, with different
functions for our parameters to estimate the functions of
parameters for the Black-Scholes process. The initial aim of
this method is to estimate the fitting function for our
parameters and avoid excessive roughness, without loss of
generality.  Firstly, suppose it has been observed
%, yi),i=1,2,...,n

y; = f(x;) + noise.
where f is unknown. Secondly, we will try to make

> =)
L in minimizing criterion.

Now, we will use this method to find the best function for
the path of Black-Scholes process, and the function of drift
and diffusion estimators. Using equation (6) to estimate the
drift and diffusion function in discrete time and we will
consider our process as the regression type equation [3 and

10] as follows:
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The term Z, is a martingale increment [14] and the term
R4, belongs to the discretization case.

On the other hand, it can be estimated the function of
diffusion coefficient which is faster than the function of drift
coefficient. Moreover, the regression-type equation has to be
more precise

for 6, than 6,. We set

(Yer1 — ve)*
RS = TR

= 01yat + V4t + Tats (10)

by using 1t6 Lemma and Fubini formula [4], we can get the

following relations, which is related the equation (10) as

follows.
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The term v, refers to a sum of martingale increments
whose variances have different orders

[10]. Moreover, the term £, is the main noise. The term
T4 refers to the discretization case. In two our parameters, we

will estimate our process in min iE [yae — £S5, )]

5- Change Points Estimation

In this article, the aim of the change points estimation is to
determine a change case in our data of the Black-Scholes
process. We will use the equations (2) and (6) in this method.
Moreover, our aim of this method is to check how the effect
on estimating the process, in particular the parameters before
and after the change points happened. We will rewrite

equation (6) using Euler scheme as follows:
Lo . .
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where K is the parameter of our interest. Letting k= k;
before the change point and k = k; after the change point. We
will transform equation (11) to standardized residuals as

follows:
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where Z; ~ N(0, 1).
Then, we can estimate the parameter before and after the
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where n is the number of points in our data for the Black-
Scholes process , m is a number of points before the change
point happened, and n-m is a number of points after the
change points happened.
In general, the parameter k can be estimated as.
27

n

b= (14)

If 6, and 6, are unknown, we assume that 6, is constant
and #; can be estimated parametrically or non-parametrically

as shown in Section 3.2 and Section 3.3.

6- Real Data

We apply our methods to real data, for example, Financial
Time Stock Exchange (FTSE100). We use R software which

is a free software using to analyses the data statistically.

6.1 Financial Times Stock Exchangel00

Financial Times Stock Exchangel00 (FTSE100) Index is
organized as a joint venture between the Financial Times and
the London Stock Exchange. When the market is open, this
index is registered every 15 seconds. Essentially, this index is
based on largest 100 companies in United Kingdom.

We apply the Black-Scholes process to the data shown in

Figure 1. The number of observation is T = 7758.

Financial Times Stock Exchange 100 Index
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Figure 1: Graph of Financial Times Stock Exchange Index
from 03/01/1984 to 10/08/2015.

6.2 Parametric Estimation

We begin by estimating the parameters 6 = [6;, ;] of the
Black-Scholes process as defined through (2) and (6) using
Unbiased and Efficient, and Maximum Likelihood estimations
as explained in Section 3.

Table 1 and Table 2 show the estimate of our parameters
using Unbiased and Efficient and Maximum Likelihood
estimations, Mean Square Error and Confidence Intervals for
each parameter.

The estimation of the parameters is clearly good using our
methods. Moreover, both methods have got the closer results.
We can say that the estimate of maximum likelihood is better
than the unbiased and efficient method because the mean
square error is least value. Figure 2 presents the estimate of
the profile likelihood for the parameters 6, and 6,, which is
clearly that the profile likelihood gives us a good estimation
for our parameters.

Table 1: The results of Unbiased and Efficient Estimation

Estimate of Mean Squares %25 %975
Parameters Error
(2] 0.07599 0.0025 0.014600 | 0.14013
0, 0.1746967 0.0097 0.17200 | 0.1789




Table 2: The results of Maximum Likelihood Estimation

Estimate of Mean Squares %25 %975
Parameters Error
01 0.07597 0.0023 0.0145211 | 0.1374702
0, 0.17469020 0.0092 0.1719722 | 0.1775

25

T T T T T
0.00 0.05 0.10 0.15 0.172 0.174 0.176 0.178

Figure 2: Graph of the profile likelihood for the 6; and 6,.

6.3 Nonparametric Estimation

We estimate the parameters [6,,6,] and the general formula
of the Black-Scholes process using nonparametric estimation
as defined in equation (9) and (10). Figure 3 represents the
estimate of drift coefficient (top graph), the estimate of
diffusion coefficient (Middle graph) and the estimate of the
general form of the Black-Scholes process (bottom graph).
Clearly, the best estimation is for the diffusion coefficient
because the red/broken line is very close to the black line
whereas the red/broken line is away in some intervals for the
drift coefficient and its away in a long interval for the general
formula of the Black-Scholes process.

Figure 4 represents the estimate of drift coefficient (top
graph), the estimate of diffusion coefficient (Middle graph)
and the estimate of the general form of the Black-Scholes
process (bottom graph). Clearly, the best estimation is for the
drift and diffusion coefficients because the red/broken line is
very close to the black line whereas the red/broken line is
away in a long interval for the general formula of the Black-

Scholes process.
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diffusion coet ficient

The Black-Scholes Process

Figure 3: Nonparametric estimators of the drift and diffusion
coefficients, and the general form for the Black-Scholes
process. Assume that 6, = 0.5 xS, and 6, =0.7 xS, are
shown in the black line and the red/broken line represents the
estimate of the drift and diffusion coefficient, and the estimate

of general form for the Black-Scholes process.
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Figure 4: Nonparametric estimators of the drift and diffusion

coefficients, and the general form for the Black-Scholes
process. Assume that 6, = 0. 75 * S, and 8, =+/1 + 57 are
shown in the black line and the red/broken line represents the

estimate of the drift and diffusion coefficient, and the estimate

of general form for the Black-Scholes process.

6.4 Change Points Estimation

We use the change points estimation in our data and
estimate the parameters before and after these points as shown
in Section 4. Table 3 represents the change points and
estimates the parameters k; and k, using maximum likelihood
and nonparametric estimation. Figure 5 shows the change
points shown as red/broken line in our data using maximum
likelihood.

Table 4 represents the change points and estimates the
parameters k; and k, using nonparametric method. Figure 6
shows the change points shown as red/broken line in our data

using nonparametric method. Figure 7 represents the estimate




of the 6, before and after the change points as shown in Table

4,

In general, the estimate of 6, after the change points is

obviously better than before the change points because the

estimated function of parameter (red/broken line) is so closer

to the function of parameter (black line).

Table 3: The results of the Change points using Maximum

Likelihood Estimation

Year of . .
Estimate | Estimate
the change 0, before | 0, after ! ke
point
1988.276 | 0.2549453 | 0.18583 | 1.051124 | 0.7252491
1999.156 0.243 0.2275 | 0.8302445 | 1.143743
2008.576 0.2020 0.23520 | 1.031882 | 1.289755
Table 4: The results of the Change points using
Nonparametric method
Year of the change point Ky k,
1988.42 0.160314 0.1257458
1999.156 0.1262803 0.1968252
2008.576 0.1791424 0.2201445
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Figure 5: The Change points represent red/broken line in the
FTSE100 using Maximum Likelihood method.

7- Conclusion

We have applied the Black-Scholes process to the real
data, i.e., (FTSE100), using parametric and nonparametric
estimation. We have performed inference for the parameters
of the Black-Scholes process. We believe that the parametric
performance is better than the nonparametric performance for
the process because we have got the best estimated of the
parameters. We also have applied the change points for
(FTSE100) to show the change points happened in the real
data from starting (FTSE100) until now, and estimated the
parameters using parametric and nonparametric methods. We
can conclude that the parametric estimation is better than

nonparametric estimation particularly in our article.

FTSE100 Index
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I I I
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Figure 6: The Change points represent red/broken line in the
FTSE100 using nonparametric method.
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Figure 7: The estimated of 67 (red/broken line) and the

function 61 (black line) of in the FTSE100 before and after

the change points happened using honparametric method.
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