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Abstract:
In this paper a stablizability of nonlinear control system x(t) = f (x) + g(X)u(t) has been studied by
using a suitable form for control function u(t) . We used some conditions on this system to find the

positive definite function which has negative definite derivative which led the system to be asympto-
tically stabilizable. Then We used some hypothesis and some conditions to get a system with
difference types of stabilizability.
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1. Introduction:

A fundamental feedback control problem is that of obtaining some prespecifued desired
behavior from a system about which there is uncertain or incomplete information. In recent years,
much effort has focused on utilizing Lyapunov theory to obtain controllers which yields desirable
behavior from systems whose uncertainties are characterized deterministically, rather than
stochastically [4, 5].

Stability of dynamical control systems is very important, because of its wide applications in
different fields. Since the process of finding the general solution to dynamical control system is
almost impossible except for linear systems with constant coefficients. Therefore, theorems for
determining the stability of the solution of a particular system without actually solving the system
are established [13]. Most physical systems encountered in engineering applications are inherently
nonlinear. Thus, control of nonlinear systems is a subject of active research and increasing interest.
However, most controller design techniques for nonlinear systems are not systematic and/or apply
only to very specific case [11].

One of the most basic issues in system theory is the stability of dynamical systems. The most
complete contribution to the stability analysis of nonlinear dynamical systems is due to Lyapunov.
Lyapunov's results, along with the Krasovskii-Lasalle invariance principle, provide a powerful
framework for analyzing the stability of nonlinear dynamical systems. Lyapunov methods have also
been used by control system designers to obtain stabilizing controllers for nonlinear systems. IN
particular, for smooth feedback, Lyapunov-based methods were inspired by Jurdjevic and Quinn [7]
who gives sufficient conditions for smooth stabilization based on the ability of constructing a
Lyapunov function for the closed-loop system. More recently, Art stein [1] introduced the notion of
a control Lyapunov function whose existence guarantees a feedback control law which globally
stabilizes a nonlinear dynamical system. In general the feedback control law is not necessarily
smooth, but can be guaranteed to be at least continuous at the origin in addition to being smooth
everywhere else. Even though for certain classes of nonlinear dynamical systems a universal
construction of feedback stabilizer can be obtained using control Lyapunov functions [18, 20], there
does not exist a unified procedure for finding a Lyapunov function candidate that will stabilize the
closed-loop system for general nonlinear systems [17].

Stabilization problem of nonlinear control system has been for many years a subject of great
interest to researchers in dynamical system theory [2, 6, 12, 15, 16, 19, 22]. This problem regarding
as an extension of the classical Kalman result [8] is to find a control such that the corresponding
solution of the system has desired properties. Depending on the properties involved one defines
various qualitative problems

2.Preliminaries:
The following notation will be used this paper:

R" is the n-dimensional Euclidean vector space; R is the set of all non-negative real numbers; ||x|

is the Euclidean norm of a vector x e R".
Consider the nonlinear system:
X(t) = F(x(t),t);t>0

X(t,) =X, ;t, >0 (21)



where x(t) e R", F(x,t):R"xR" — R"is a given nonlinear function satisfying F(0,t) =0for all

t € R™. We shall assume that conditions are imposed on system (2.1) such that the existence of its
solutions is guaranteed.

Definition(2.1): [10]
The zero solution of system(2.1) is exponentially stable if any solution x(X,,t) of (2.1) satisfies:
XX, 1)) < B(Xo |, to)e ™ W t >ty
where A(h,t):R" xR" — R"is a non-negative function increasing in he R"and ¢ is a positive
constant.
If the function £(.) in the above definition does not depend on t,, the zero solution is called

uniformly exponentially stable.From now on ,yo shorten expressions,instead of saying the zero
solution is stable ,We say that the system is stable.
Associated with system (2.1) We consider a nonlinear control system:

x(t) =F(x(t),u(),t) , t>0 (2.2)

where xe R",ueR"™,F(x,u,t):R"xR"xR" - R".

Definition(2.2): [10]
Control system (2.2) is exponentially stabilizable by the feedback control u(t) = h(x(t))

Where h(x):R" — R™ , if the closed-lop system:
X(t) = F(x(t), h(x(1)),t)

is exponentially stable.

Lemma(2.3):[3]
Let P be a symmetric matrix and let A
P, respectively,then:
Zwin PYX* <XTPx < 2m P)X[* . V¥xeR"
2

where [x|° :Zn:|xi| , X; is the i-th component of x.
i=1

(P)and A, (P) be the smallest and largest eigenvalues of

'min

Theorem(2.4):[14]
If there exists a scalar function V (x,t) with continuous first partial derivative satisfying the
following conditions:
a.V(x,t)>0 forall x=0in Qandall t.
V(O,t)=0 forall t.
b.V(x,t)<0 forall x=0 in Q andall t.
V(0,t)=0 forall t.
Q is the region(can be the entire state space),which includes the origin.Then the origin of the
system x(t) = F(x(t),t) is uniformly asymptotically stable.




Remark(2.5):[21]
Consider the nonlinear control system (2.2), assuming that F(0,0,t) =0, forall t>0.

We recall that system (2.2) is asymptotically stabilizable by a feedback control u(t) = h(x(t)), where
h(x):R" —R™, h(0) =0, if the zero solution of the system without control:

X(t) = F(x(t),h(x),t) ,t >0

Xt,)=%, , t =0
Is asymptotically stable in the Lyapunov sence.

Definition(2.6):[9]
Let the origin be a solution of :
x(t) = F(x(1)
it is said to be globally asymptotically stable if there exists a function g such that for each x € R" all
the solutions x(x,,t) are defined on [0, oo) and satisfy:

Xt )] < Bl%outs)] + V2O

3.Main result:
Consider the nonliear contror system described by:

x(t) = £ (x)+g(xu(t) (3.1)
where f(x):R" ->R",g(X):R" ->R" ,u(t):R" - R™ and g(x) =0 forall x. Intheorem below,
We give sufficient conditions for the stabilizability of the system(3.1)

Theorem(3.1):
The system (3.1)is asymptotically stabilizable if:

a [tl=n| : 7>0
X" PE(x)+ fT(X)Px + ||
lo

b.ut)=-

, Where P is a positive definite symmetric matrix and « > 7

Proof:
Let V(x) = x" Px then from lemma (2.3) ,we have :

Jin PYX <V (X) < A (PN’ (3.1.1)
where A, (P) and 4., (P) are the minimum and maximum eigenvalues of P respectively.
V(x) = X" Px+ X" Px



=x"P[f (x) + g(x)u]+ [f (x) + g(x)u] Px
=Xx"PE(X)+ fT(X)Px+x"Pg(x)u+u"g"(x)Px
X"Pf(x) + 7 (x)Px+ | {XT Pf (x)+ f 7 (x)Px + x|
900 o0
KP 9+ £ (9Px+ | {XT PF(x)+ 7 ()Px+ a||x||]T
ol | locv)
KPE(x)+ T (P + | l:XT PE() + £ (Px+ a||x||]T
ool | Jocx)
Since for any vector Awe have |A| :HAT H then:
X" Pf (x)+ 7 (x)Px+a|x]|
o] |
TIPHE oo+ £ eoflPliX + ]
lo)]

=X Pf(x)+ f"(X)Px-x"Pg(x)

] 9" (X)Px

< “XT Pf (x)” + “ £7(x) Px“ - HxT Pg (x)” HgT (x) Px“

<P Pl ool £ colfell - x Il " COlIPI

v (0 < 2Pl C0l - 2Pl o

X
<2|x{IPllf Col - 2lPfla e |

< 2Jx|PJ| £ 00| - 2XPl[2IIIPJ £ (0] + ]
From the condition (a) We obtain:
V () < 20|PJJx|* — 2|2 PYI]* + ]
< 20PY||” ~ 4nP" 1] - 26| Pll|”
Since 477||P||2||x||3 >0 then:
V () < 20|PJJx|° - 2P|
<20 - )P
since >, [P|>0,[x[* >0 then:

V(X)<0
By theorem (2.4) and remark (2.5) the system (3.1) is asymptotically stabilizable.

Lemma(3.2)

The system (3.1) which is satisfies the conditions of theorem (3.1) is exponentially stabilizable.
Proof:
From theorem (3.1),we have:

V (x) =x"Px such that A, (P)[X|" <V (X) < A, (P)|X|" and V (x) < 2(7 - 2)|P||X|
2@=nP| _,
Ao (P)

Let: Q(x,t) =V (x)e™ , where m=

Q(x,t) =V (x)e™ +mV (x)e™



<207 - a)|Pl[X €™ + M A, (PYX| ™
<[2(7 - @)|P|+ M2 (P ] X[ "™

2(n - a)|P[+mA, (P)

L e e ]

Q(X!t) _Q(X()yto) S|:

2(a—n)|P|
Awax (P)

Q(th) _Q(tho) <0

Q(x,t) <Q(Xo,t5)

QX 1) SV (X,)e™ < A, (P)[%,] €™

Setting: B([X,[to) = A (P)||x0||2emto , hence:

Q(x,t) < B([%o| o)
From the left hand of (3.1.1), we have:

||x||s_M}
L ;Lmin (P)

r _mt Y2 vz _,
[une™ 1 _[Alult)]”
L ﬂ’min (P) ﬂ“min (P)

Therefore the system(3.1) is exponentially stabilizable.

Since: m= , then:

Corollary(3.3):

In lemma (3.2) if Q(x,t) =V (x)e™ "™, then the system (3.1) is uniformly exponentially
stabilizable.
Proof:

Q(X,t) :V(X)em(t*to)
Q(X,t) :\] (X)em(t’t") +mV (X)em(t—to)
<[2(7- @)|P||+ MA (P)]X[ €™

2(n — a)”P” +MA, (P) :|||X||2 [em(t—to) _1]

m

Q(X!t) _Q(Xo,to) S|:

2(a—m)|P|
I (P)

Q(X!t) _Q(XO!to) <0
Q(X,t) < Q(Xo,to) SV(XO) < /’LmaX (P)||X0||2

Setting: B(|X[) = A (P)||x0||2, hence: Q(x,t) < B([%,[)
From the left hand of(3.1.1),we have:

||x||{ﬂ}
ﬂ‘min (P)

Since: m= , then:



ﬁ’min (P) - ﬁ’min (P)

Therefore the system (3.1) is uniformly exponentially stabilizable.

. |:Q(X’t)em(tt0) j|1/2 < |:ﬁ(||XO||) j|1lze_2m(t—to)

Corollary(3.4):
In lemma (3.2) , if Q(x,t) =V (X)+mA,_, (P)||x||2t, then the system(3.1) is a globally

asymptotically stabilizable.
Proof:

Qx,t) =V (X) + M (P)[X| t
Q(x,t) =V (X) + M2, (P)|X|°

<207 - a)[PlIX" + M2 (PYX°

<[2(7 - @)||P|+ M A (P X[
2(a-n)|P|

Arnex (P)

Q(x,t) —Q(X,,t,) <0
Q1) SQ(Xg1te) <V (Xg) + My, (PY]X [t
From the right hand of (3.1.1),we obtain:
QUX,) < A (PYXo|” + M (P X[ t6

< (Mty +2) A (P

Setting: A%, to) = (Mty +1) Ay (P)[X,| ", hence: Q(x,t) < B([%to)
From the left hand of (3.1.1) we have:

_ /2 5 U2
V (X) Py Q(x,t) —mA, (P)[x|t
_ﬂ‘min (P)_ - /1min (P)
Since: mA,_, (P)||x||2t >0, then:
[ QD) |
_ﬂ‘min (P)_
- 1/2

B(xoll to)
L j’min (P)
Therefore the system (3.1) is a globally asymptotically stabilizable.

Since: m= , then: Q(x,t) <0,hence:

<

1/2
I <

<
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