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Abstract: 

    In this paper a stablizability of nonlinear control system )()()()( tuxgxftx  has been studied by 

using a suitable form for control function )(tu . We used some conditions on  this system  to find the 

positive definite function which has negative definite derivative which led the system to be asympto-

tically  stabilizable. Then We used  some hypothesis  and  some conditions  to get  a system  with 

difference types of stabilizability. 

 

 

 

 
 

 

 

 حىل قابليت الأستقراريت لأنظوت السيطرة غير الخطيت
 

 

 شهيد ناصر حسين

 جاهعـــت ذي قــــار

 كليـــــــت علىم الحاسباث والرياضياث

لرياضياثقسن ا  

 

 

 الوستخلص

)()()()(في ٌذا انبحث قمىا بذراست قابهيت الأستقزاريت نىظاو انسيطزة غيز انخطي      tuxgxftx   مه خلال ايجاد انصيغت

 ( َانتي تكُن مشتقتٍا positive definiteانمىاسبت نذانت انسيطزة  َمه خلال َضغ شزَط مؼيىت ػهى ٌذا انىظاو قمىا بايجاد دانت)

(negative definite ( َانتي تجؼم انىظاو )(asymptotically stabilizable َبالاػتماد ػهى ٌذي انذانت َضؼىا مجمُػت مه . 

           انفزضياث َبشزَط مؼيىً مما قاد انىظاو أن يمتهك قابهيت الأستقزاريت َبأوُاع مختهفً                                              
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1. Introduction:                        
  A fundamental feedback control problem is that of  obtaining some prespecifued desired 

behavior from a system about which there is uncertain or incomplete information. In recent years, 

much effort has focused on utilizing Lyapunov theory to obtain controllers which yields desirable 

behavior from systems whose uncertainties are characterized deterministically, rather than 

stochastically [4, 5]. 

Stability of dynamical control systems is very important, because of its wide applications in 

different fields. Since the process of finding the general solution to dynamical control system is 

almost impossible except for linear systems with constant coefficients. Therefore, theorems for 

determining the stability of the solution of a particular system without actually solving the system 

are established [13]. Most physical systems encountered in engineering applications are inherently 

nonlinear. Thus, control of nonlinear systems is a subject of active research and increasing interest. 

However, most controller design techniques for nonlinear systems are not systematic and/or apply 

only to very specific case [11]. 

One of the most basic issues in system theory is the stability of dynamical systems. The most 

complete contribution to the stability analysis of nonlinear dynamical systems is due to Lyapunov. 

Lyapunov's results, along with the Krasovskii-Lasalle invariance principle, provide a powerful 

framework for analyzing the stability of nonlinear dynamical systems. Lyapunov methods have also 

been used by control system designers to obtain stabilizing controllers for nonlinear systems. IN 

particular, for smooth feedback, Lyapunov-based methods were inspired by Jurdjevic and Quinn [7] 

who gives sufficient conditions for smooth stabilization based on the ability of constructing a 

Lyapunov function for the closed-loop system. More recently, Art stein [1] introduced the notion of 

a control Lyapunov function whose existence guarantees a feedback control law which globally 

stabilizes a nonlinear dynamical system. In general the feedback control law is not necessarily 

smooth, but can be guaranteed to be at least continuous at the origin in addition to being smooth 

everywhere else. Even though for certain classes of nonlinear dynamical systems a universal 

construction of feedback stabilizer can be obtained using control Lyapunov functions [18, 20], there 

does not exist a unified procedure for finding a Lyapunov function candidate that will stabilize the 

closed-loop system for general nonlinear systems [17]. 

Stabilization problem of nonlinear control system has been for many years a subject of great 

interest to researchers in dynamical system theory [2, 6, 12, 15, 16, 19, 22]. This problem regarding 

as an extension of the classical Kalman result [8] is to find a control such that the corresponding 

solution of the system has desired properties. Depending on the properties involved one defines 

various qualitative problems    

 

 

 

2.Preliminaries: 
  The following notation will be used this paper: 

nR  is the n-dimensional Euclidean vector space; R is the set of all non-negative real numbers; x  

is the Euclidean norm of a vector nRx . 

Consider the nonlinear system: 

          
0;)(

0;)),(()(

000 



txtx

tttxFtx
                                                                               ( 2.1) 
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where nnn RRRtxFRtx  :),(,)( is a given nonlinear function satisfying 0),0( tF for all 
Rt . We shall assume that conditions are imposed on system (2.1) such that the existence of its 

solutions is guaranteed. 

 

Definition(2.1): [10] 
   The zero solution of system(2.1) is exponentially stable if any solution ),( 0 txx  of (2.1) satisfies: 

          0

)(

000 ,),(),( 0 ttetxtxx
tt


  

where   RRRth :),( is a non-negative function increasing in Rh and  is a positive 

constant. 

If the function (.) in the above definition does not depend on 0t , the zero solution is called 

uniformly exponentially stable.From now on ,yo shorten expressions,instead of saying the zero 

solution is stable ,We say that the system is stable. 

Associated with system (2.1) We consider a nonlinear control system: 

          0,)),(),(()(  tttutxFtx                                                                   (2.2) 

where nmnmn RRRRtuxFRuRx  :),,(,,  . 

 

Definition(2.2): [10] 
   Control system (2.2) is exponentially stabilizable by the feedback control ))(()( txhtu   

Where mn RRxh :)(  , if the closed-lop system: 

          ))),((),(()( ttxhtxFtx   

is exponentially stable. 

 

Lemma(2.3):[3] 
    Let P be a symmetric matrix and let )(min P and )(max P be the smallest and largest eigenvalues of 

P, respectively,then: 

          nT RxxPPxxxP  ,)()(
2

max

2

min   

where i

n

i

i xxx ,

2

1

2




  is the i -th component of x . 

 

Theorem(2.4):[14] 
    If there exists a scalar function ),( txV with continuous first partial derivative satisfying the 

following conditions: 

a. 0),( txV  for all 0x in  and all t . 

    0),0( tV  for all t . 

b. 0),( txV  for all 0x  in   and all t . 

    0),0( tV  for all t . 

  is the region(can be the entire state space),which includes the origin.Then the origin of the 

system )),(()( ttxFtx  is uniformly asymptotically stable. 
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Remark(2.5):[21] 
    Consider the nonlinear control system (2.2), assuming that 0),0,0( tF , for all 0t . 

We recall that system (2.2) is asymptotically stabilizable by a feedback control ))(()( txhtu  , where 

0)0(,:)(  hRRxh mn , if the zero solution of the system without control: 

          
0,)(

0,)),(),(()(

000 



txtx

ttxhtxFtx
 

is asymptotically stable in the Lyapunov sence. 

 

Definition(2.6):[9] 
    Let the origin be a solution of : 

          ))(()( txFtx   

it is said to be globally asymptotically stable if there exists a function  such that for each nRx ,all 

the solutions ),( 0 txx are defined on  ,0  and satisfy: 

          0,),(),( 000  ttxtxx   

 

 

3.Main result: 
    Consider the nonliear contror system described by: 

          )()()()( tuxgxftx                                                                                           (3.1) 

where mnnnn RRtuRRxgRRxf  :)(,:)(,:)(  and 0)( xg  for all x . In theorem below , 

We give sufficient conditions for the stabilizability of the system(3.1) 

 

 

Theorem(3.1):  

    The system (3.1)is asymptotically stabilizable if: 

a. 0;)(   xxf  

b.
)(

)()(
)(

xg

xPxxfxPfx
tu

TT 
 , where P  is a positive definite symmetric matrix and    

Proof: 

    Let PxxxV T)(  then from lemma (2.3) ,we have : 

          
2

max

2

min )()()( xPxVxP                                                                              (3.1.1) 

where )(min P  and )(max P are the minimum and maximum eigenvalues of P respectively. 

PxxxPxxV TT  )(  
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   

xPxg
xg

xPxxfxPfx

xg

xPxxfxPfx
xgPxxPxfxfPx

Pxxg
xg

xPxxfxPfx

xg

xPxxfxPfx
xPgxPxxfxPfx

Pxxg
xg

xPxxfxPfx

xg

xPxxfxPfx
xPgxPxxfxPfx

PxxguuxPgxPxxfxPfx

PxuxgxfuxgxfPx

T

T
TTTT

TTT

T

T
TTTT

TTT

T

T
TTTT

TTT

TTTTT

TT

)(
)(

)()(

)(

)()(
)()()(

)(
)(

)()(

)(

)()(
)()()(

)(
)(

)()(

)(

)()(
)()()(

)()()()(

)()()()(











 















 















 














 

Since for any vector A we have TAA   then: 

 xxfPxPxxfPx

xg

xxPxfxfPx
xgPxxfPx

xg

xPxxfxPfx
xgPxxfPxxV

TT

TT















)(22)(2

)(

)()(
)(2)(2

)(

)()(
)(2)(2)(

 

From the condition (a) We obtain: 

 
2322

22

242

222)(

xPxPxP

xxPxPxPxV








 

Since 04
32
xP  then: 

2

22

)(2

22)(

xP

xPxPxV








 

Since 0,0,
2
 xP  then : 

0)( xV  

By theorem (2.4) and remark (2.5) the system (3.1) is asymptotically stabilizable. 

 

Lemma(3.2) 
    The system (3.1) which is satisfies the conditions of theorem (3.1) is exponentially stabilizable. 

Proof: 

From theorem (3.1),we have: 

PxxxV T)(  such that 
2

max

2

min )()()( xPxVxP    and 
2

)(2)( xPxV    

Let: mtexVtxQ )(),(    , where 0
)(

)(2

max





P

P
m




 

mtmt exmVexVtxQ )()(),(    
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  mt

mtmt

exPmP

exPmexP

2

max

2

max

2

)()(2

)()(2








 

 0
2max

00

)()(2
),(),(

mtmt eex
m

PmP
txQtxQ 







 



 

Since: 
)(

)(2

max P

P
m



 
  , then: 

0),(),( 00  txQtxQ  

),(),( 00 txQtxQ   

00
2

0max0 )()(),(
mtmt

exPexVtxQ   

Setting: 0
2

0max00 )(),(
mt

exPtx    , hence: 

),(),( 00 txtxQ   

From the left hand of (3.1.1), we have: 
2/1

min )(

)(










P

xV
x


 

     2

2/1

min

00

2/1

min )(

),(

)(

),(
mtmt

e
P

tx

P

etxQ


























 

Therefore the system(3.1) is exponentially stabilizable. 

 

Corollary(3.3): 

    In lemma (3.2) if 
)( 0)(),(

ttm
exVtxQ


 , then the system (3.1) is uniformly exponentially 

stabilizable. 

Proof: 

    
)( 0)(),(

ttm
exVtxQ


  

)()( 00 )()(),(
ttmttm

exmVexVtxQ


   

             )(2

max
0)()(2

ttm
exPmP


   

 1)()(2
),(),(

)(2max

00
0 







 


ttm
ex

m

PmP
txQtxQ


 

Since: 
)(

)(2

max P

P
m



 
  , then: 

0),(),( 00  txQtxQ  

2

0max000 )()(),(),( xPxVtxQtxQ   

Setting:
2

0max0 )()( xPx   , hence: )(),( 0xtxQ   

From the left hand of(3.1.1),we have: 
2/1

min )(

)(










P

xV
x


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)(

2

2/1

min

0

2/1

min

)(
0

0

)(

)(

)(

),( tt
mttm

e
P

x

P

etxQ 


























 

Therefore the system (3.1) is uniformly exponentially stabilizable. 

 

Corollary(3.4): 

    In lemma (3.2) , if txPmxVtxQ
2

max )()(),(  , then the system(3.1) is a globally 

asymptotically stabilizable. 

Proof: 

txPmxVtxQ
2

max )()(),(   

2

max )()(),( xPmxVtxQ    

           
  2

max

2

max

2

)()(2

)()(2

xPmP

xPmxP








 

Since: 
)(

)(2

max P

P
m



 
  , then: 0),( txQ ,hence: 

0),(),( 00  txQtxQ  

0

2

0max000 )()(),(),( txPmxVtxQtxQ   

From the right hand of (3.1.1),we obtain: 

0

2

0max

2

0max )()(),( txPmxPtxQ    

           
2

0max0 )()1( xPmt   

Setting: 
2

0max000 )()1(),( xPmttx   , hence: ),(),( 00 txtxQ   

From the left hand of (3.1.1) we have: 
2/1

min

2

max

2/1

min )(

)(),(

)(

)(













 











P

txPmtxQ

P

xV
x






 

Since: 0)(
2

max txPm , then: 

2/1

min )(

),(










P

txQ
x


 

     

2/1

min

00

)(

),(










P

tx




 

Therefore the system (3.1) is a globally asymptotically stabilizable. 
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