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1. Introduction 

        The tail index is the shape parameter of heavy - tailed distributions. Distributions are said 

to be heavy tailed if the variance is infinite, or the central limit theorem does not work, in which case 

quintiles and order statistics are used. The Hill estimator 
[17]

 is one of the most widely used tools to 

infer the tail behavior of a distribution, but sometimes this estimator produces poor results. To get rid 

of the problem of the large bias of the Bootstrap method, Hall in 1990 
[15]

 suggested using samples 

with a smaller size than the original sample size, provided that the sample size is very large and the 

second order parameter ( ) is known. Later, Drees & Kaufmann 
[7]

 proposed a sequential approach to 

constructing a consistent estimator (  
   
) that works asymptotically without knowing the underlying 

distribution function. To obtain a consistent estimator for the optimal number of order statistics that do 
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ABSTRACT 

 

Right-tailed distributions are very important in many applications. There 

are many studies estimating the tail index. In this paper, we will estimate 

the tail parameter ( ) using the three (Direct, Bootstrap and Double 

Bootstrap) methods. Our aim is to illustrate the best way to estimate the  

 -stable with (     ) using simulation and real data for the daily 

Iraqi financial market dataset. 
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not need restriction on the parameter ( ), (Danielsson et al., 2001)
[5]

 used a combination of subsample 

Bootstrap estimates of the difference between two estimators based on Bootstrap sample sizes of 

different order. (Gomes et al., 2002) 
[12]

 introduced a class of semi-parametric estimators for the 

parameter ( ) with a regularly varying tail and demonstrated that this parameter plays an important 

role when dealing with optimization problems in extreme values statistics. (Ciuperca & Mercadier, 

2010)
[4]

 generalized many studies on the extreme value theory to estimate the extreme value index and 

the second order parameter ( ). By performing some numerical calculations, the asymptotic normality 

and consistency were proven under classical assumptions. (Hashemifard et al., 2016)
[16]

 focused on the 

heavy-tailed stochastic signals generated by the autoregressive continuous-time model, and our aim 

was to estimate a distribution parameter related to a stable continuous-time autoregressive process with 

     . Improving the performance of the Hill estimator has been the goal of many recent 

publications. For example, (Nemeth, 2020)
[24]

 presented new methods that combine the advantages of 

the Bootstrap and Kolmogrov-Smirnov approach, where showed that his estimators are able to 

estimate the parameters of the large tail index, as well as relatively small sample sizes. 

In this paper, we generated data used a Geometric Brownian Motion (G.B.M.) model, which is a 

famous example of Stochastic Differential Equation (S.D.E.). Our aim is to estimate the right- tail 

parameter using the Direct, Bootstrap and Double Bootstrap methods and then compare the three 

methods using the mean square errors.  

        The rest of this article is arranged as follows: Section 2 introduces the heavy tail distributions and 

their types. Stochastic differential equations and Geometric Brownian motion are presented in section 

3. In section 4, we have presented our methods (the Direct, Hill estimator, the Hall’s Bootstrap and the 

Double Bootstrap) methods. In section 5, the simulation will be presented for our methods. Finally the 

conclusions are in section 6.  

2: Heavy-tailed distributions 

In probability theory, the heavy – tailed distribution is a probability distribution that is not significantly 

restricted
[1]

. Heavy tail distributions tend to have many extreme values as there will be more density 

under the p.d.f. curve. The distributions may be heavy right– tailed or left- tailed, or both. In this 

paper, we have focused on the heavy right- tailed distribution.  
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 Figure1: the heavy -tailed distribution 

Figure1: graph shows the right-heavy tail distribution. 

The term heavy tail can be used for distributions whose variance is infinite or whose moments are not 

limited.  

Definition 

The distribution function F(X) is said to have a (right) heavy tailed with tail index ( ) if it satisfies 

that
[25]

 :-  

      
   (  )

 ( )
          for all        and                        (1) 

Where: 

t: is the time 

x: is the random variable 

F(t): the cumulative function  

Definition 

A distribution of the random variable (r.v.) x with distribution function ( F ) is said to have a heavy 

(right) tail if the moment generating function   ( )  of x is infinite 
[10][27]

 i.e.,  

∫      ( )   
 

  
     for all     

There are three types of heavy-tailed distributions as follows :- 

2:1- Fat-tailed distribution 

https://www.statisticshowto.datasciencecentral.com/wp-content/uploads/2016/05/heavy-tailed.png
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A fat – tailed distribution is a probability distribution that exhibits a large skewness or kurtosis relative 

to the normal and exponential distribution. It is a tailed distribution with infinite variance. Many 

authors state that this type of distribution is a probability distribution with a tail that appears to be 

fatter than usual. A common example of a fat – tailed distribution is the Log-normal distribution
[2]

. 

2:2- Long-tailed distribution 

A distribution of the random variable (x) with distribution function ( F ) is said to have a long right 

tailed if 
[1]

 :- 

        *     |   +          for all     

This means that if the long-tailed quantity exceeds a high level, the probability approaches 1. 

2:3- Sub - exponential distributions 

The distribution that the largest value in the sample contributes the most to the total 
[22]

. The properties 

of heavy tailed distribution as follows: 

1- The central limit theory works misleading. 

      2 -   Order statistics are used because some moments do not exist. 

3: Stochastic Differential Equations 

Stochastic Differential Equations (SDEs) are used to model many different phenomena such as 

unstable stock prices and physical systems. These equations contain a variable that is random white 

noise which is computed as a derivative of Brownian motion.    ̂ lemma helps to find a solution for 

SDEs 
[18][20]

. 

The general form of SDE is 
[11]

:- 

                                           (2) 

Where:-  

   : the change of    in a continuous time t. 

 : the drift parameter.  

 : the volatility parameter. 
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  : Standard Brownian motion. 

A standard Brownian motion is a continuous time and continuous space stochastic process that 

describes the process of evolution of the value of any random variable. It is sometimes called the 

Wiener process 
[19]

. 

We will present the Geometric Brownian Motion as a popular example of SDEs. 

3:1.Geometric Brownian Motion 

The Geometric Brownian Motion (GBM), also called the exponential Brownian motion is a 

continuous- space and continuous-time stochastic process. many Economists prefer the Geometric 

Brownian motion as a simple model of market prices, because it is positive everywhere (with 

probability 1) 
[8]

. It is an important example of SDEs as it is used to model stock prices in 

mathematical finance which is called Black and Scholes 
[18][23]

. It is modeled by Fisher Black and 

Myron Scholes 
[9]

. 

The general form of G.B.M. is 
[11]

 :- 

                                                           (3) 

The analytical solution is: 

          (.  
 

 
  /        )               (4) 

 

It is easier way to work with the daily returns: 

      
  
  

 

Where: 

   is an initial value. 

Note that the Geometric Brownian Motion has a log-normal distribution with drift    and volatility 

  [8]
. 

 



6                                     M. F. Al-Saadony, N. A. Hassan, Al-Qadisiyah Journal of Pure  Science  26 , 5 (2021) pp. Math. 1–15                        

 

4: Tail index estimation 

There are many important estimators of the tail index ( ), but in this paper we will use the Hill 

estimator to address the important problems and solutions for estimating the tail index, such as  

goodness-of-fit test and optimal choice of the sample fraction (k) 
[25]

. 

4:1. Hil estimator 

It is an important estimator used to detect the presence of heavy tails. To define a Hill estimator we 

assume that there are non-negative (           ) observations. . For      , write    for 

the i th largest value of (           ), so  

           

Then Hill’s estimator of ( ) is defined as 
[17]

:- 

 ̂  [
 

 
 ∑    

        

      

 
   ]

  

             (5) 

Where:- 

K:- number of upper-order statistics. 

 ̂   tail index estimator. It is a consistent estimator for the tail index if the following are achieved 
[21]

:- 

              
 

 
              

If k  is too large, the estimator is biased, while using a small k results in a large variance. So, the Hill 

estimator is strongly dependent on the optimal k selection 
[6][13]

.  

4.2:Direct estimation method 

A simple method for choosing optimal k in the equation (6) directly 
[25]

 : 

            [
  

(   ) 
   .

 

 
/
  

 
  

 
]         (6) 

Where: 
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 : is the Hill estimator mentioned in (5)  

K: represent the equation (7) 

n: sample size 

  and  : are the second order regular variation parameters. It can be calculated using the following 

steps:- 

a) steps to calculate   
[14]

: 

1-                              0    .
  

     
/1             (7) 

2-                        
( )( )  [

 

 
∑   

        

      

 
   ]

 

        (8)     =1,2,3,4 

3- if     

 ( )
( ) ( )  [

  (  
( )( )) 

 

 
  .  

( )( )  /

 

 
  .  

( )( )  / 
 

 
  .  

( )( )  /
]          (9) 

4- if     

 ̂( )   |
 .  

( )( )  /

  
( )( )  

|           (10) 

b) we can calculate   as follows 
[3]

: 

 ̂ ( )   
 (   ̂ )

   ̂  ̂ 
.
 

 
/  ̂ 

[(  
( )( ))

 

 .  
( )( )  /

 
 ]

 

.  
( )( )  /

 
 .  

( )( )   /

 
 

        (11) 

Where  ̂( ),  ̂( ) and  ̂ ( ) are consistent estimators for  ,   and   respectively 

4.3:Hall’s Bootstrap method 

It is a method used to estimate the parameter of the tail index by sampling a data set with replacement. 

Hall in1990 suggested the Bootstrap method for estimating the Mean Square Error (MSE) and select 

smoothing parameter in nonparametric methods. Suppose [            ] denote observations from 

the distribution function F and assume 
[15]

 : 

   ( )               C and               (12) 
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Where: 

c: constant 

 : tail index 

We wish to estimate ( ) by using Hill estimator in equation(5) 
[17]

. Let [             - 

denote the order statistics of ,  - and[ k] is a smoothing parameter. We will choose[ k] to minimize 

mean square error (MSE) of   ̂ 
[15]

. Let    

MSE(n, k) = E, ̂( )   -                                      (13) 

Where:- 

  ̂( )  is the Hill estimator. 

To choose (k) we do the following steps:- 

Draw a resample    
  *  

    
       

 + from         . Let{      
       

          
 + denote 

the order statistics of{   
    

       
 +, and let 

[25]
: 

 ̂ (     )  [
 

 
∑             

              
 

  

   

]

  

 

Then, the Bootstrap estimate of    (     ) is:- 

    ̂ (     )   ,* ̂
 (     )   ̂(   )+

 |           -          (14) 

Then choose  ̂   to minimize     ̂(     ). the optimal is:  

       
  

for a known y  (   ) but an unknown    , Hall 
[15]

 proposed to estimate       by: 

 ̂    ̂ (
 

  
)                     (15) 

 

 



             M. F. Al-Saadony, N. A. Hassan, Al-Qadisiyah Journal of Pure  Science  26 , 5 (2021) pp. Math. 1–15                       9 

 

4.4: Double bootstrap method  

 Double Bootstrap method is one of the most accurate estimates which was introduced by 
[5]

 and 

improved by 
[26]

. It presents a solution for selecting the sample fraction by the two-step sub-sample 

Bootstrap method. Then, we reduces the asymptotic mean square error Q(n,k) instead of MSE (n,k)
[25]

, 

where: 

 (   )   (
 

 
 ̂ ( )   ̂( ))

 

                    (16) 

Where 

    ̂( )  {
 

 
∑ (   

        

      
)
 

 
   }

  

                    (17) 

We will explain the steps of this method as follows: 

- Draw a resample ,  
         

 -  from ,         -  with     ( 
   )  for some   .  

 

 
/.  

-  Determine the estimators of  ̂( ) and  ̂( )  based on the bootstrap sample as  ̂ ( ) and 

 ̂ ( ), and choose: 

 ̂            {(
 

 
( ̂ (  ))

 
  ̂ (  ))

 

|         }         (18) 

- Repeat the equation (16) with(    
  
 

 
 ) and we get  ̂   

-  The optimal      is:  

 ̂     
 ̂ 
 

 ̂ 
{

(     ̂ )
 

(           ̂ )
 }

          ̂ 
     

                   (19) 

 

5: Simulation study 

We have set (N=50, N=100, N=150, N=200 and N=250). We have generated Geometric Brownian 

motion driven Brownian motion. Then we have get tail index ( ),      and the mean square error 

(MSE) for each sample. We let       and       . The data is simulated using equation (4). 
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Table 5.1:    MSE and     for five samples based on 100 replications. 

N=50 Bootstrap Double Bootstrap Direct 
  0.0102245247 0.033000000 0.07107605 

MSE 0.0001292511 0.001716803 0.01004159 
     3.0000000000 2.000000000 7.11581631 

N=100  

  0.0105181566 0.0223157895 0.041829245 
MSE 0.0001373524 0.0004991821 0.002247387 
     3.0000000000 2.0000000000 0.490268148 

N=150  

  0.0162245871 0.045960000 0.04216307 
MSE 0.0003937763 0.002791125 0.00261230 
     3.4100000000 2.610000000 0.25461379 

N=200  

  0.0164169738 0.054640000 0.050240318 
MSE 0.0003870336 0.003323239 0.002988345 
     3.9500000000 2.970000000 0.168603382 

N=250  

  0.0224340013 0.066000000 0.056774807 
MSE 0.0008237568 0.005643042 0.003709766 
     4.1200000000 3.350000000 0.041839528 

 

 Table (5.1) represent the value of    MSE and     for our model using Direct, Bootstrap and Double 

Bootstrap methods. When 100 replications, it is obvious that the worst performance is for the direct 

method. the performance of the Bootstrap method is much better than the others. For all sample sizes, 

the performance of the Double Bootstrap method was near of the Bootstrap method performance. 
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Figure 5.1: the Geometric Brownian Motion model through the time. 

Figure (5.1) shows the movement of Geometric Brownian motion through time. It is clearly that the 

process affect by Brownian motion and always is positive. 

 

 

 



12                                     M. F. Al-Saadony, N. A. Hassan, Al-Qadisiyah Journal of Pure  Science  26 , 5 (2021) pp. Math. 1–15                        

 

 

 

Figure 5.2: the returns through the time. 

Figure (5.2) shows the movement of Geometric Brownian motion returns through time. It is clearly 

that the process affect by Brownian motion and always is positive. 
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6: Conclusion  

We have used some nonparametric methods to estimate the tail parameter, for the Stochastic 

Differential Equation (SDE) such as G.B.M model. From the simulation and based on the results of the 

MSE, we found that the Bootstrap method for parameter estimation is the best method for estimation, 

as it achieved the lowest MSE.  
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