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Abstract: 

The purpose of this paper is to deals with the problem of regional boundary asymptotic gradient full order observer (𝚪∗𝐀𝐆𝐅𝐎-
observer) concept by using internal regional case. Thus, we study the relation between this notion and the corresponding 
asymptotic detectability and sensors. More precisely, various important results have been examined and explored concern an 
extension of an approach which enables to  reconstruct the gradient of current state from internal region. In addition, it has been 
shown that the characterization of 𝚪∗𝐀𝐆𝐅𝐎-observability under which conditions  to be achieved. Finally, we have illustrate that 
there is a dynamical system which does not represent the observer in the usual sense, but it could be interpreted as a 𝚪∗𝐀𝐆𝐅𝐎-
observer. 

Keywords: Γ∗G-strategic sensors, Γ∗AGFO-detectability, Γ∗AGFO-observers, internal approach. 

  

1. Introduction 
 

The concept of asymptotic observer theory was discovered 

by Luenberger for finite dimensional linear system as in [1]. 

Thus, this approach has been generalized to distributed 

parameter systems characterized by strongly continuous 

semi-group operators in Hilbert space by Grassing and 

Lamont [2]. The characterization of  an asymptotic observer 

via sensor and actuator structures was explored by El Jai et 

al. in [3-5].  

Recently, an important extension is that of  regional and 

regional boundary state reconstruction has been introduced 

by Zerrik and El Jai  et al. for finite time [6-9]. Al-saphory 

and El-Jai introduce the asymptotic regional state observation 

in infinite time as in [10-12].Therefore, the regional analysis 

consists in studying the asymptotic behavior of the systems 

not in the whole the domain but only in region 𝜔 ⊂ Ω or on 

Γ ⊂ ∂Ωof  system domain Ω [13-16]. 

Another orientation of regional gradient analysis in more 

different systems and  regions [17-19] and for asymptotic 

case [20-22]. 

The purpose of this concept is motivated by certain concrete-

real problems, in mechanic, thermic, environment in [23-25]. 

In this paper, we explore an approach which allow to 

construct Γ∗AGFO-observer in a given region Γ∗of the 

domain boundary 𝜕Ωin connection with regional boundary 

gradient strategic sensor (Γ∗G-strategic sensor)and regional  

boundary asymptotic gradient detectability (Γ∗AG-

detectability). 

It is interested to study the problem of the treatment of water 

by using a bioreactor where the objective is to estimate   the 

concentration of substrate at the boundary output of the 

bioreactor in order the water regulation is achieved  ( figure 

1) [26]. 

 

Fig. 1: Substrate concentration at the output of the reactor Γ∗. 

The outline of this paper is organized as follow: 

Section 2 concerns the class of considered system, 

definition, characterizations in connection with sensors 

and preliminaries of regional boundary gradient 

observability and detectability. Section 3, devotes to 

the problem of crossing method from internal region to 

boundary case by using trace operator esteems. Section 

4, gives an application to various situations of sensors 

locations on the regional boundary gradient detectability in 

diffusion parabolic distributed systems. Last section tackles 

the relation between regional boundary detectability of state 

gradient and regional boundary observer.  

2.  Considered System and Problem Formulation 
 
Consider a distributed parameter system defined with the 
following forms: 

⋄ Ω  is an open bounded subset of 𝑅𝑛with smooth boundary 

𝜕Ω. 

⋄ Γ is a sub-region of 𝜕Ω with positive measure. 

⋄ Denote 𝒬 = Ω ×]0,∞[ and Θ = ∂Ω×]0,∞[. 
⋄ The space 𝑋 = 𝐻1(Ω), 𝑈 = 𝐿2(0,𝑇,𝑅𝑝) and𝒪 =
𝐿2(0,𝑇, 𝑅𝑞) are designed in this paper as separable Hilbert 
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spaces and represented as state space, control space and 

observation space where 𝑝 and 𝑞 are the  numbers of 
actuators and sensors [10]. 

⋄ 𝐴 = ∑
𝜕

𝜕𝑥𝑗
(𝑎𝑖𝑗

𝜕

𝜕𝑥𝑗
)𝑛

𝑖,𝑗=1  with 𝑎𝑖𝑗∈ 𝐷(𝐴̅) (domain of 𝐴̅) is a 

second order linear differential operator, which generates a 

strongly continuous semi-group (𝑆𝐴(𝑡))𝑡≥0on the space 

𝐻1(Ω) and is self-adjoint with compact resolvent.  

⋄The considered system is described by the following 
parabolic partial differential equations  

         

{
 

 
𝜕𝑥

𝜕𝑡
(𝜉, 𝑡) = 𝐴𝑥(𝜉, 𝑡) + 𝐵𝑢(𝑡)       𝒬

𝑥(𝜉, 0) = 𝑥0(𝜉)                             Ω
𝜕𝑥

𝜕𝑣
(𝜂, 𝑡) = 0                                    Θ

                           (1) 

where 𝜉 ∈ Ω,𝜂 ∈ 𝜕Ω, 𝑡 ∈ [0, 𝑇]and (𝜉, 𝑡) ∈ 𝒬, (𝜂, 𝑡) ∈ Θ. 
⋄ The measurements can be obtained  by using internal zone 
sensors and pointwise may be located inside Ω [6-7]. Thus, 
the output function augmented is given by  

          𝑦(. , 𝑡) = 𝐶𝑥(. , 𝑡)                                                        (2) 

where the operators 𝐵 ∈ 𝐿(𝑅𝑝,𝐻1(Ω))and 𝐶 ∈
𝐿(𝐻1(Ω),𝑅𝑞) are depended on the structure of actuators and 
sensors [10-15] (see (figure 2)). 
 

 
Fig. 2: Domain Ω, boundary Γ∗, and sensors and controls. 

 

⋄Under the given assumption above, the system (1) has a 
unique solution given by the following form [4-5].  

          𝑥(𝜉, 𝑡) = 𝑆𝐴(𝑡)𝑥0(𝜉) + ∫ 𝑆𝐴(𝑡 − 𝑠)
𝑡

0
𝐵𝑢(𝑠)𝑑𝑠          (3) 

⋄ The initial state 𝑥0and its gradient ∇𝑥0 are supposed to be 
unknown, the problem concerns the reconstruction of the 

initial gradient ∇𝑥0 on the region Γ of the system domain 𝜕Ω. 

⋄ The mathematical modelling illustrated in Figure 2 is more 
general and complicated than the real modelling in figure 1. 

⋄The problem is how to construct a an observer to the 

gradient of current state in a givenΓ∗ may be called Γ∗AGFO-
observer using internal region approach. 

⋄For deriving Γ∗AGFO-estimator of 𝑇𝑥(𝜉) on Γ∗, we need to 
consider the following points: 

• Now, we consider the operator 𝐾 given by the form  

         𝐾:𝐻1(Ω) → 𝐿2(0,𝑇, 𝑅𝑞) 
                      𝑥 → 𝐶𝑆𝐴(. )𝑥 
 where 𝐾 is bounded linear operator as in [4]. Thus, the 

adjoint operator 𝐾∗of 𝐾 is defined by 𝐾∗:𝒪 → 𝑋, and 
represented by the form  

           𝐾∗: 𝐿2(0,𝑇, 𝑅𝑞) → 𝐻1(Ω) 

                                 𝑦∗ → ∫ 𝑆𝐴
∗(𝑠)𝐶∗𝑦∗(𝑠)𝑑𝑠

𝑡

0
 

• The operator ∇ denotes the gradient is given by 

          {
∇:𝐻1(Ω) → (𝐻1(Ω))𝑛

𝑥 → ∇𝑥= (
𝜕𝑥

𝜕𝜉1
, … ,

𝜕𝑥

𝜕𝜉𝑛
)
 

with the adjoint of ∇ denotes by ∇∗ is given by [27] 

           {
∇∗: (𝐻1(Ω))𝑛 → 𝐻1(Ω)

𝑥 → ∇𝑥
∗= 𝑣                      

 

where 𝑣 is a solution of the Dirichlet problem 

         {
∆𝑣= −𝑑𝑖𝑣(𝑧)       Ω
𝑣 = 0                   𝜕Ω

 

• The trace operator of order zero is described by [28] 

          𝛾0: 𝐻
1(Ω) → 𝐻1/2(𝜕Ω) 

which is linear, subjective and continuous [29]. Thus, the 
extension of the trace operator of order zero which is denoted 

by 𝛾 defined as        

         𝛾: (𝐻1(Ω))𝑛 → (𝐻1/2(𝜕Ω))𝑛 

 and the adjoints are respectively given by 𝛾0
∗and 𝛾∗.  

• For a sub-boundary Γ∗ of 𝜕Ω and let 𝜒Γ∗be the function 
defined by    

         {
𝜒Γ∗: 𝐻

1/2(𝜕Ω) → 𝐻1/2(Γ∗)

𝑥 → χΓ∗𝑥 = 𝑥│Γ∗                  
 

with 𝑥│Γ∗ is the restriction of the state 𝑥 to Γ∗, and 

         χΓ∗: (𝐻
1(𝜕Ω))𝑛 → (𝐻

1
2⁄ (Γ∗))𝑛 

where the adjoints are respectively given by 𝜒 Γ∗
∗  and 𝜒Γ∗

∗ .  

•Finally, we introduced the operator 𝜒Γ∗𝛾∇𝐾
∗ from 𝒪 into 

(𝐻1/2(Γ∗))𝑛 and the adjoint of this operator given 

by𝐾 ∇∗𝛾∗𝜒Γ∗
∗ .  

• We first recall a sensors are defined by any couple 

(𝐷, 𝑓)where 𝐷be a non-empty closed subset of Ω which is 

represented the spatial supports of sensor and 𝑓 ∈
𝐿2(𝐷)represent the distributions of the sensing measurements 

on𝐷.  

Then, according to the choice of the parameters 𝐷and𝑓, we 
have different types of sensor:  

• It may be zone, if 𝐷 ⊂ Ωand 𝑓 ⊂ 𝐿2(𝐷). In this case, the 

operator 𝐶 is bounded [8-9] and the output function (2) may 
be given by the form 

         𝑦(𝑡) = ∫ 𝑓(𝜉)𝑥(𝜉, 𝑡)𝑑𝜉 = 𝐶𝑥(𝜉, 𝑡)
𝐷

                         (4) 

• It may be pointwise, if  𝐷 = {𝑏}with 𝑏 ∈ Ω  and 𝑓 =
𝛿(.−𝑏), where 𝛿 is the Dirac mass concentrated in 𝑏. In this 

case, the operator 𝐶 is un bounded and the output function 
(2) may be given by the form  

         𝑦(𝑡) = ∫ 𝑥(𝜉, 𝑡)𝛿𝑏(𝜉 − 𝑏)𝑑𝜉Ω
                                   (5) 

In this section, we present some definitions and descriptions 
of regional boundary gradient observability, detectability and 
strategic sensor, which is derived of [17-22]. Consider the 

autonomous system of (1) define by 

         

{
 

 
𝜕𝑥

𝜕𝑡
(𝜉, 𝑡) = 𝐴𝑥(𝜉, 𝑡)                       𝒬

𝑥(𝜉, 0) = 𝑥0(𝜉)                             Ω
𝜕𝑥

𝜕𝑣
(𝜂, 𝑡) = 0                                    Θ

                           (6)  

The solution of (7) is given by the following form  

         𝑥(𝜉, 𝑡) = 𝑆𝐴(𝑡)𝑥0(𝜉)  for all 𝑡 ∈ [0, 𝑇]                      (7) 
• The systems (6)-(7) are said to be exactly regionally 

boundary gradient observable on  Γ∗(𝐸 𝛤∗𝐺-observable)  if  

           𝐼𝑚 𝜒Γ∗∇𝐾
∗ = (𝐻1 2⁄ (Γ∗))𝑛 

• The systems (6)-(7) are said to be weakly regionally 

boundary gradient observable on  Γ∗ (𝑊𝛤∗𝐺-observable)    if  

           𝐼𝑚𝜒Γ∗𝛻𝐾∗=(𝐻1 2⁄  (Γ∗))𝑛 

It is equivalent to say that the systems (6)-(2) are 𝑊𝛤∗𝐺-
observable  if 

          𝐾𝑒𝑟𝐾𝛻∗𝜒Γ∗ = {0} 
• If the systems (6)-(2) are is 𝑊𝛤∗𝐺-observable, then 

𝑥0(𝜉, 0) is given by  

          𝑥0 = (𝐾
∗𝐾)−1𝐾∗𝑦 = 𝐾†𝑦,                                       (8) 

where 𝐾† is the pseudo-inverse of the operator  𝐾 [9-10].  

• A sensor (𝐷, 𝑓) is regional boundary gradient strategicon  

Γ∗ (Γ∗𝐺-strategic) if the observed system is 𝑊𝛤∗G-
observable. 
 • The measurements can be obtained by the use of zone or 

pointwise sensors, which may be located in Ω [11-12]. 

 

3. 𝚪∗𝑮-obervability and 𝚪∗𝑨𝑮-detectability 
 

This section links Γ∗𝐺-obervability and Γ∗𝐴𝐺-detectability 
notions and which roll paly to  build the devoted observer. 

• The semi-group (𝑆𝐴(𝑡))𝑡≥0 isregionally boundary 

asymptotically gradient stable on (𝐻1 2⁄ (Γ∗))𝑛 (Γ∗𝐴𝐺-

stable), then for all 𝑥ₒ ∈ 𝐻1(Ω), the  solution  of  
autonomous system associated  to system (1) coverage to 

zero when 𝑡 tend to ∞. 
• The system (6) is said to be Γ∗𝐴𝐺-stable if the operator 𝐴 

generates a semi-group which is Γ∗𝐴𝐺-stable. 
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•A system is said to be Γ∗𝐴𝐺-stableif and only if there exists 

some positive constants 𝑀Γ∗ , 𝛼Γ∗ ,  such that 
         ‖𝜒Γ∗γ∇𝑆𝐴(. )‖

𝐿((𝐻1 2⁄ (Γ∗))
𝑛
, 𝐻1(Ω))

≤  𝑀Γ∗𝑒
𝛼Γ∗  , ∀𝑡 ≥ 0.        (9) 

• If the semi-group (𝑆𝐴(𝑡))𝑡≥0 is Γ∗𝐴𝐺-stable, then for all 

𝑥ₒ ∈ 𝐻1(Ω), the  solution  of autonomous system (6) 
associated  to system (1) satisfies 

     ‖𝜒Γ∗γ∇𝑥(. , 𝑡)‖(𝐻1 2⁄ (Γ∗))
𝑛 =

 ‖𝜒Γ∗γ∇𝑆𝐴(𝑡)𝑥0‖(𝐻1 2⁄ (Γ∗))
𝑛  

                                             ≤  𝑀Γ∗𝑒
𝛼Γ∗‖𝑥0‖(𝐻1 2⁄ (Γ∗))

𝑛  

and then, we have  

             lim
𝑡⟶∞

‖𝜒Γ∗γ∇ 𝑥(𝑡)‖(𝐻1 2⁄ (Γ∗))
𝑛 = 0. 

•The system (1)-(2) is  said to be regionally boundary 

asymptotically gradient detectable on Γ∗ (Γ∗𝐴𝐺-detectable), 

if there exists an operator 𝐻Γ∗𝐴𝐺 :𝑅
𝑞 → (𝐻1 2⁄ (Γ∗))

𝑛
, such 

that the operator (𝐴− 𝐻Γ∗𝐴𝐺𝐶) generates a strongly 

continuous semi-group(𝑆𝐻Γ∗𝐴𝐺(𝑡))𝑡≥0
, which is Γ∗𝐴𝐺-stable. 

 

Proposition 3.1:If the system (6)-(2) is E Γ∗𝐺-observable, 

then it is Γ∗𝐴𝐺-detectable. This  results gives  the  following  

inequality ∃ 𝑘Γ∗ > 0, such that 

          ‖𝜒Γ∗γ∇𝑆𝐴(. )𝑥‖(𝐻1 2⁄ (Γ∗))
𝑛 ≤  𝑘 Γ∗‖𝐶𝑆𝐴(. )𝑥‖𝐿2(0,∞,𝒪),       (10)  

for all  𝑥 ∈ (𝐻1 2⁄ (Γ∗))
𝑛
.        

Proof׃  The proof of  this proposition can be concluded  from  

the results on observability by considering the operator 

𝜒Γ∗γ∇𝐾
∗ in the following  forms [29-30] 

         1. 𝐼𝑚𝑓 ⊂ 𝐼𝑚𝑔.  

         2. There exists  𝑘 > 0,  such that 

                       ‖𝑓∗𝑥∗‖𝐸∗ ≤ 𝑘‖𝑔
∗𝑥∗‖𝐹∗, for all  𝑥

∗ ∈ 𝐺∗ 
From the right hand said of above inequality𝑘Γ∗‖𝑔

∗𝑥∗‖𝐹∗ , 
there exists 𝑀Γ∗ ,𝜔Γ∗ > 0 with 𝑘Γ∗ < 𝑀Γ∗ , such that  

           𝑘Γ∗‖𝑔
∗x‖𝐹∗ ≤ 𝑀Γ∗𝑒

−𝜔Γ∗𝑡‖𝑥∗‖𝐹∗ 
where  𝐸, 𝐹 and 𝐺 be a reflexive Banach spaces and 𝑓 ∈
𝐿(𝐸, 𝐺), 𝑔 ∈ 𝐿(𝐹, 𝐺).If we apply this result, considered   

            𝐸 = 𝐺 = (𝐻1/2(Г∗))𝑛 , 𝐹 = 𝒪, 𝑓 = 𝐼𝑑(𝐻1/2(Г∗))𝑛  

and  

            𝑔 = 𝑆𝐴
∗(. )𝜒Γ

∗𝛾∗∇∗𝐶∗ 
where 𝑆𝐴(. ) is a strongly continuous semi-group generates 

by 𝐴, which is Γ∗𝐴𝐺-stable on Γ∗, then it is Γ∗𝐴𝐺-detectable 

on Γ∗.∎ 

Thus, the notion of Γ∗𝐴𝐺-detectability is a weaker property 

than the 𝐸 Γ∗G-observability [30].   
Remark 3.2: We  show that the characterization result that 

links an Γ∗𝐴𝐺 -detectable and sensors structures. For that 

purpose, we assume that the operator 𝐴 has a complete set of 

eigenfunctions 𝐻1(Ω)[13] denoted 𝜑𝑚𝑗orthonormal 

in (𝐻1/2(Γ∗))𝑛  and the associated eigenvalues 𝜆𝑚 are of 

multiplicity 𝑟𝑚 and suppose that the system (1) has 𝐽 unstable 
modes. 

Thus, the sufficient condition of an Γ∗𝐴𝐺-detectability is 
given by the following result. 

Theorem 3.3: Suppose that there are 𝑞 zone sensors 

(𝐷𝑖 , 𝑓𝑖)1≤𝑖≤𝑞 and the spectrum of  𝐴 contains 𝐽  eigenvalues  

with  non-negative  real  parts. The system (1)-(2) are  Γ∗𝐴𝐺-
detectable if and only if  

1. 𝑞 ≥ 𝑚, 

2. rank 𝐺𝑖 = 𝑚𝑖, for all  𝑖 = 1,… , 𝐽  with  

𝐺 = (𝐺)𝑖𝑗 = {
〈𝜓𝑗(. ), 𝑓𝑖(. )〉𝐿2(𝐷𝑖)                        zone  sensors

𝜓𝑗(𝑏𝑖)                                    pointwise sensors
 

where sup𝑚𝑖 = 𝑚 < ∞ and j = 1,… ,∞.  
Proof: The proof can be stated by the same way as in ref. 
[31] with some modifications by choosing pointwise 

sensors.∎ 
3.1.is complete 

 
4. Regional internal and 𝚪∗𝑨𝑮𝑭𝑶-observer 

reconstruction 
In this section, we give the sufficient conditions which are 

guarantee the existence of (Γ∗𝐴𝐺𝐹𝑂-Observer) which allows 

to construct a Γ∗𝐴𝐺𝐹𝑂-estimator of the state 𝜒Γ∗𝛾𝛻𝑇𝑥(𝜉, 𝑡) 
by using internal region to pass on the regional boundary. 
The original results are presented and examined. 

 

4.1 Definitions and characterizations 
This subsection related to present some definitions and 
characterizations. 
 
Definition 3.1:The dynamical system associated to the 
considered systems (1)-(2)is given by 

        {

𝑧(𝜉, 𝑡) = 𝐹Γ∗𝐴𝐺𝑧(𝜉, 𝑡) + 𝐺Γ∗𝐴𝐺𝑢(𝑡) + 𝐻Γ∗𝐴𝐺𝑦(𝑡)      𝒬

𝑧(𝜉, 0) = 𝑧0(𝜉)                                                                 Ω
𝜕𝑥

𝜕𝑣
(𝜂, 𝑡) = 0                                                                       Θ

    (11) 

where𝐹Γ∗𝐴𝐺generates a strongly continuous semi-group 
(𝑆𝐹Γ∗𝐴𝐺(𝑡))𝑡≥0 which is 𝐹Γ∗𝐴𝐺-stable on 𝑍 and 𝐺Γ∗𝐴𝐺 ∈

𝐿(𝑈, 𝑍),𝐻Γ∗𝐴𝐺 ∈ 𝐿(𝒪,Z). The system (11) defines anΓ∗𝐴𝐺-

estimator for 𝑇Γ∗𝐴𝐺𝑥(𝜉, 𝑡) = 𝜒Γ∇𝑇𝑥(𝜉, 𝑡), where 𝑇:𝑋 ⟶ 𝑍  
with 

𝑇Γ∗𝐴𝐺𝑥(𝜉, 𝑡) = 𝑧(𝜉, 𝑡) 
Definition 4.2:Suppose there exists a dynamical system with 

state 𝑧(. , 𝑡) ∈ 𝑍  given by 

        {

𝜕𝑧

𝜕𝑡
(𝜉, 𝑡) = 𝐴𝑧(𝜉, 𝑡) + 𝐵𝑢(𝑡) − 𝐻Γ∗𝐴𝐺𝐶(𝑥(𝜉, 𝑡) − 𝑧(𝜉, 𝑡))  𝑄

𝑧(𝜉, 0) = 𝑧ₒ(𝜉)                                                                              Ω

𝑧(𝜂, 𝑡) = 0                                                                                      Σ

      (12) 

In this case the operator 𝐹Γ∗𝐴𝐺in system (1)[13] is given by 

𝐹Γ∗𝐴𝐺 = 𝐴 −𝐻Γ∗𝐴𝐺𝐶 where 𝑇Γ∗𝐴𝐺 = 𝐼Γ∗AGFO the identity 

operator. Thus the operator 𝐴 −𝐻Γ∗𝐴𝐺𝐶 generate a strongly 

continuous semi-group (𝑆𝐴−𝐻Γ∗𝐴𝐺𝐶(𝑡))𝑡≥0 on separable 

Hilbert space  𝑍 which is Γ∗𝐴𝐺-stable. 

Thus, ∃ 𝑀𝐴−𝐻Γ∗𝐴𝐺𝐶 ,𝛼𝐴−𝐻Γ∗𝐴𝐺𝐶 > 0 such that 

          ‖𝑆𝐴−𝐻Γ∗𝐴𝐺𝐶(. )‖ ≤ 𝑀𝐴−𝐻Γ∗𝐴𝐺𝐶𝑒
−𝛼𝐴−𝐻Γ∗𝐴𝐺𝐶 ᵗ , ∀𝑡 ≥ 0. 

Then, let such that solution of (11) similar to (3) 

          𝑧(𝜉, 𝑡) = 𝑆𝐴−𝐻Γ∗𝐴𝐺𝐶(𝑡)𝑧(𝜉) + [∫ 𝑆𝐴−𝐻Γ∗𝐴𝐺𝐶(𝑡 −
𝑡

0

𝜏)𝐵𝑢(𝜏)𝐻Γ∗𝐴𝐺𝑦(𝜏)]𝑑𝜏. 

Definition 4.3: The system (12) defines Γ∗AGFO-estimator 
such that  

          𝑧(𝜉, 𝑡) = 𝜒Γ∗∇ 𝑇Γ∗AGFO𝑥(𝜉, 𝑡) = 𝐼Γ∗AGFO𝑥(𝜉, 𝑡) ∈
(𝐻1 2⁄ (Γ∗))𝑛 

where 𝑥(𝜉, 𝑡) is the solution of the systems (1)-(2), if  

          lim
𝑡→∞

‖𝑧(. , 𝑡) − 𝜒Γ∗∇ 𝑇Γ∗AGFO𝑥(𝜉, 𝑡)‖(𝐻1 2⁄ (Γ∗))𝑛 = 0, 

and 𝜒Γ∗𝛻𝜒Γ∗∇ 𝐼Γ∗AGFO maps 𝐷(𝐴) into 𝐷(𝐴 −
𝐻Γ∗𝐴𝐺𝐶) where 𝑧(𝜉, 𝑡) is the solution of system (12). 

Remark 4.4: The dynamic system (12) specifies Γ∗AGFO-
observer of the systems given by (1)-(2) if the following 
holds: 
         1-There exists  

          𝑀Γ∗AGFO ∈ 𝐿(𝑅, (𝐻
1 2⁄ (Γ∗)𝑛)) and 𝑁Γ∗AGFO ∈

𝐿((𝐻1 2⁄ (Γ∗))ⁿ) 
         such that 

          𝑀Γ∗AGFO𝐶 +𝑁Γ∗AGFO = 𝐼Γ∗AGFO. 

          2- 𝐴 − 𝐹Γ∗AGFO = 𝐻Γ∗AGFO𝐶 and 𝐺Γ∗AGFO =𝐵. 

          3- The system (11) defines Γ∗AGFO-estimator for 

𝑥(𝜉, 𝑡). 
         4- The purpose of  Γ∗AGFO-observer is to provide an 
approximation to the original system state gradient. This 
approximation is given by 

         𝑥 (𝑡) =  𝑀Γ∗AGFO𝑦(𝑡)  + 𝑁Γ∗AGFO 𝑧(𝑡). 
Definition 4.5: The systems (1)-(2) are regionally boundary 

asymptotically gradient full order observable on Γ∗ (Γ∗AGFO 
-observable), if there exists a dynamic system which is 

Γ∗AGFO -observer for this system. 
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Remark 4.6:If a system is Γ∗AGFO–observable then, the 

corresponding sensor is Γ∗AGFO- strategic sensor. 

• The regional boundary observer in Γ∗ may be seen as 

internal regional observer in ω𝑟 if we consider the following 

transformations. Let ℜ be the continuous linear extension 

operator [28], ℜ:(𝐻1/2(𝜕Ω))𝑛 → 𝐻1(Ω)𝑛such that  

          𝜒Γ𝛾 ∇ℛℎ(𝜇, 𝑡) = ℎ(𝜇, 𝑡),     for all  ℎ ∈ (𝐻1 2⁄ (Γ∗))
𝑛

       (13) 

• Let 𝑟 > 0 is an arbitrary and sufficiently small real and let 
the sets 

         𝐸 = ⋃ 𝐵(𝑥, 𝑟)𝑥∈Γ  and 𝜔̅𝑟 = 𝐸 ∩ Ω̅ 

where 𝐵(𝑥, 𝑟) is the ball of radius 𝑟centered in 𝑥(𝜉 , 𝑡) and 

where Γ∗ is a part of 𝜔̅𝑟 (Fig. 3). 
 

 
Fig. 3: Domain Ω, region 𝜔̅𝑟 and the sub-region Γ∗. 

• For the sub-region𝜔𝑟 of the domain Ω and let 𝜒𝜔𝑟  be the 

function defined by 

            𝜒𝜔𝑟 : (𝐿
2(Ω))𝑛 → (𝐿2(𝜔𝑟))

𝑛 

                           𝑥 → 𝜒𝜔𝑟𝑥 = 𝑥|𝜔𝑟 

where 𝑥|𝜔𝑟 is the restriction of 𝑥 to𝜔𝑟 for more derails see 

ref. s ([10-13]). 

Proposition 4.7:If the system (1)-(2) is 𝐸 𝜔̅𝑟𝐺-observable 

(respectively 𝑊𝜔̅𝑟𝐺), then it is 𝐸𝛤∗𝐺 -observable 

(respectively 𝑊𝛤∗𝐺-observable) (see [30]). 
From proposition 4.7, we can deduce the following  
important result. 

Proposition 4.8:A dynamical system is 𝜔̅𝑟AGFO-observer 

for the system (1)-(2), then it isΓ∗AGFO-observer. 

Proof: Let 𝑧(𝜉 , 𝑡) ∈ (𝐻1/2(Г))𝑛, 𝜒Γ∗
∗ 𝑧(𝜉 , 𝑡) ∈ (𝐻1/2(Ω))𝑛 

and 𝑧̅(𝜉, 𝑡) be an extension to (𝐻1/2(𝜕Ω))𝑛. By using 

equation (10) and trace theorem there exists 

            ℛ𝜒Γ∗
∗ 𝑧(𝜉, 𝑡) ∈ (𝐻1(Ω))𝑛, 

with bounded support [15] such that 

           𝛾∇ (ℜ𝜒Γ∗
∗ 𝑧(𝜉, 𝑡)) = 𝑧̅(𝜉, 𝑡)                                     (14)            

Since the system (12) is regional 𝜔̅𝑟𝐴𝐺𝐹𝑂-observer, then it 

is  𝜔𝑟𝐴𝐺𝐹𝑂-observer, there exists a dynamical system with 

𝑥(𝜉 , 𝑡)  ∈ 𝑋 such that 

          𝜒𝜔𝑟∇𝑇𝑥(𝜉, 𝑡) = 𝜒𝜔𝑟ℜ𝜒Γ∗
∗ 𝑧(𝜉, 𝑡) 

then we have 

            𝜒Γ(𝛾𝜒𝜔
∗ 𝜒𝜔∇𝑇𝑥)(𝜉, 𝑡) = 𝑥(𝜉, 𝑡)                             (15) 

The equations (2) and (15) allow 

          [
𝑦(𝜉, 𝑡)

𝑧(𝜉, 𝑡)
] = [

𝐶
𝜒𝛤(𝜒𝜔

∗ 𝜒𝜔∇𝑇)
] 𝑥(𝜉, 𝑡) 

and there exist two linear bounded operators 𝑅̅ and 𝑆̅satisfy 
the relation                    

          𝑅̅𝐶 + 𝜒𝛤∗(𝛾𝜒𝜔
∗ 𝜒𝜔∇𝑇) = 𝐼Γ∗  

There exists an operator 𝐹𝜔̅𝑟 is regionally stable on𝜔̅𝑟, then it 

is regionally stable on Γ∗ [21-20]. 

Finally the system (12) is aΓ∗AGFO-observer [30-31].■ 

 

4.2 Sufficient condition for 𝚪∗𝐀𝐆𝐅𝐎-observer 

 
As in (Refs. [21, 30-31]), we extend the characterization 

result that links the Γ∗AGFO-observer and Γ∗AGFO-
detectability which is described a sufficient condition for 

Γ∗AGFO-observer in the following main result.  

Theorem 4.8: If the system (1)-(2) is Γ∗AGFO-detectable, 

then, the dynamical system (12) is the associated Γ∗AGFO-
observer,i.e. 
‖𝑥(. , 𝑡) −  𝑇Γ∗AGFO𝑧(. , 𝑡)‖

𝐻
1
2(Γ∗)

=

lim
𝑡→∞

‖𝑥(. , 𝑡)− 𝐼Γ∗AGFO𝑧(. , 𝑡)‖ 𝐻1/2(Γ∗) =  

lim
𝑡→∞

‖𝑥(. , 𝑡)− 𝐼Γ∗AGFO𝑧(. , 𝑡)‖ 𝐻1/2(Γ∗)=   

lim
𝑡→∞

‖𝑥(. , 𝑡) − 𝑧(. , 𝑡)‖ 𝐻1/2(Γ∗) = 0                                     (16) 

Proof: From the assumptions of section 2, the system (1) can 

be decomposed by the projections 𝑃and 𝐼 − 𝑃on two parts, 
unstable and stable [5]. The state vector may be given by 

where 𝑥1(𝜉, 𝑡)is the state component of the unstable part of 
the system (1), may be written in the form 

           

{
 

 
𝜕𝑥1

𝜕𝑡
(𝜉, 𝑡) = 𝐴𝑥1(𝜉, 𝑡) + 𝐵𝑢(𝑡)      𝒬

𝑥1(𝜉, 𝑡) = 𝑥01(𝜉)                             Ω
𝜕𝑥1

𝜕𝑣
(𝜂, 𝑡) = 0                                     Θ

                     (17) 

and 𝑥2(𝜉, 𝑡) is the component state of the stable part of the 
system (1) given b 

         

{
 

 
𝜕𝑥2

𝜕𝑡
(𝜉, 𝑡) = 𝐴𝑥21(𝜉, 𝑡) + 𝐵𝑢(𝑡)   𝒬

𝑥2(𝜉, 𝑡) = 𝑥02(𝜉)                            Ω
𝜕𝑥2

𝜕𝑣
(𝜂, 𝑡) = 0                                    Θ

                        (18) 

The operator  𝐴1is represented by a matrix of order 

(∑ 𝑠𝑛
𝐽
𝑛=1 , ∑ 𝑠𝑛

𝐽
𝑛=1 ) given  

             𝐴1 = 𝑑𝑖𝑎𝑔[𝜆1 ,… , 𝜆1 ,… , 𝜆2 ,… , 𝜆2 ,… , 𝜆𝐽 ,… , 𝜆𝐽] 
and  

            𝑃𝐵 = [𝐺1
𝑡𝑟 , 𝐺2

𝑡𝑟,… , 𝐺𝐽
𝑡𝑟] 

Put𝑒(𝜉, 𝑡) = 𝑥(𝜉, 𝑡) − 𝑧(𝜉, 𝑡) where 𝑧(𝜉, 𝑡) is the solution of 
the system (12). By deriving the above equation and 

substituting equations (1) and (12), we obtain 

          
𝜕𝑒

𝜕𝑡
(𝜉, 𝑡) =

𝜕𝑥

𝜕𝑡
(𝜉, 𝑡) −

𝜕𝑧

𝜕𝑡
(𝜉, 𝑡) 

                           = 𝐴𝑥(𝜉, 𝑡) − 𝐴𝑧(𝜉, 𝑡) −
𝐻Γ∗AGFO𝐶(𝑥(. , 𝑡) − 𝑧(𝜉, 𝑡)) 
                           = (𝐴 −𝐻Γ∗AGFO𝐶)𝑒(𝜉, 𝑡) 
Since the system (1)-(2) is Γ∗AG-detectable, there exists an 

operator 𝐻Γ∗AGFO ∈ 𝐿(𝑅
𝑞 ,  𝐻1/2(Γ∗)),such that the operator 

(𝐴 −𝐻Γ∗AGFO𝐶),generates a stable, strongly continuous 

semi-group (𝑆𝐻Γ∗AGFO(𝑡))𝑡≥0 on the space𝐻1/2(Γ∗), that 

means ∃ 𝑀Γ∗AGFO ,  𝛼Γ∗AGFO > 0, which is satisfied the 
following inequality 

              ‖𝜒Γ∗γ∇𝑆𝐴(. )‖ 𝐻1/2(𝛤∗) ≤ 𝑀Γ∗AGFO𝑒
−𝛼Γ∗AGFO𝑡 

Finally, we have  

            ‖𝑒(. , 𝑡)‖ 𝐻1/2(𝛤∗) ≤

‖𝜒Γ∗γ∇𝑆𝐻Γ∗AGFO(. )‖ 𝐻
1
2⁄ (𝛤∗)

‖𝑒0(. )‖𝐻1/2(𝛤∗) 

                                        ≤
𝑀Γ∗AGFO𝑒

− 𝛼Γ∗AGFO𝑡‖𝑒0(. )‖𝐻1/2(𝛤∗) 

and  

            𝑒0(𝜉, 𝑡) = 𝑥(𝜉, 𝑡) − 𝑧(𝜉, 𝑡) 
therefore  

           lim
𝑡→∞

‖𝑒(. , 𝑡)‖ 𝐻1/2(Γ∗) = 0. 

Consequently, the dynamical system (12) is a Γ∗AGFO-
observer for the considered system (1)-(2).■  
Remark 4.9.From theorem 4.8., we can deduce the following 
results: 

 1. A dynamical system which is an ∂ΩAGFO-observer is 

Γ∗AGFO-observer.  

2. If a system is Γ1
∗AGFO-observer, then it is Γ2

∗AGFO-

observer in every Γ1
∗ ⊂ Γ2

∗, but the converse is not true. This 
may be proven in the following application 

 

4.3 Counter Application to Diffusion System 

 

Consider two-dimensional of system (1)which is given by the 
following diffusion parabolic equations 
            

{
 
 

 
 
𝜕𝑥

𝜕𝑡
(𝜉1 , 𝜉2 , 𝑡) = Δ𝑥(𝜉1 , 𝜉2 , 𝑡) + 𝛿𝑏̅(𝜉1, 𝜉2)𝑢(𝑡)         𝒬

𝑥(𝜉1, 𝜉2 , 𝑡) = 𝑥0(𝜉1, 𝜉2)                                                 Ω
𝜕𝑥

𝜕𝑣
(𝜂1 , 𝜂1 , 𝑡) = 0                                                              Θ

𝑦(𝑡) = 𝛿𝑏(𝑏1, 𝑏2)𝑥(𝜉1 , 𝜉2 , 𝑡)                                         𝒬

    (19)  

where  

Ω =]0, 1[×]0, 1[, 𝛿𝑏̅(𝜉1, 𝜉2) = 𝛿(𝜉1 − 𝑏̅1 , 𝜉2 − 𝑏̅1) 
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and  𝑏̅ = (𝑏𝑏̅1 , 𝑏̅2) ∈  Ω is location of the internal pointwise 

control (𝑏̅, 𝛿𝑏̅). Then, and  the operator 𝐵𝑢(𝑡) in system (19) 
is given by  

         𝐵𝑢(𝑡) = 𝛿𝑏̅(𝑏̅1, 𝑏̅2)𝑢(𝑡)                                          (20) 

Consider the  internal filament sensor where σ = 𝐼𝑚(𝛾 ) ⊂ Ω 

is symmetric with respect to the line 𝑏 =(𝑏1 , 𝑏2) as in and 

𝑓(𝑏1 , 𝑏2) = cos𝜋𝑏1 cos𝜋𝑏2 . 
The augmented output function (2) can be written by   

          𝑦(𝑡) = ∫ 𝛿𝑏(𝜉1 − 𝑏1 , 𝑏2 − 𝜉2)𝑥(𝜉1 , 𝜉2 , 𝑡)𝑑𝜉1𝑑𝜉2Ω
 (21)  

Since the pointwise sensor is a couple (𝑏, 𝛿𝑏) of  𝑏 and 𝛿𝑏, 
then  
          𝑦(𝑡) = 𝐶𝑥(𝜉1, 𝜉2 , 𝑡) =  𝛿𝑏(𝑏1, 𝑏2)𝑥(𝜉1 , 𝜉2 , 𝑡)         (22) 

The operator 𝐴 = ∆ generates a strongly continuous semi-

group (𝑆𝐴(𝑡))𝑡≥0 on the Hilbert space 𝐻1(Ω) given by  

         𝑆𝐴(𝑡)𝑥 = ∑ 𝑒𝜆𝑛𝑚𝑡〈𝑥, 𝜑𝑛𝑚〉𝐻1(Ω)𝜑𝑛𝑚
∞
𝑛,𝑚=0                (23) 

where 

         𝜆𝑛𝑚 = −(𝑛
2 ,𝑚2)𝜋2                                                 (24) 

are the eigenvalues and 

         𝜑𝑛𝑚(𝜉1, 𝜉2) = 2𝑎𝑛𝑚 cos(𝑛𝜋𝜉1) cos(𝑛𝜋𝜉2)             (25) 
are eigenvectors with  

         2𝑎𝑛𝑚 = (1− 𝜆𝑛𝑚)
−1/2                                            (26) 

Consider now, the dynamical system 

          

{
 
 

 
 
𝜕𝑧

𝜕𝑡
(𝜉1, 𝜉2, 𝑡) = Δ𝑧(𝜉1, 𝜉2, 𝑡) + 𝛿𝑏̅(𝜉1, 𝜉2)𝑢(𝑡)                 

−𝐻𝛿𝑏(𝑏1, 𝑏2)(𝑥(𝜉1, 𝜉2, 𝑡) − 𝑧(𝜉1, 𝜉2, 𝑡))                       𝒬

𝑧(𝜉1, 𝜉2, 0) = 𝑧0(𝜉1, 𝜉2)                                                     Ω
𝜕𝑧

𝜕𝑣
(𝜂1 , 𝜂1, 𝑡) = 0                                                                  Θ

 (27) 

where 𝐻 ∈ 𝐿(𝑅𝑞 , 𝑍), 𝑍 is a Hilbert space and 𝐶:𝐻1(Ω̅) → 𝑅𝑞 

is a linear operator. If the state 𝑥0 is defined in Ω by  

       𝑥0(𝜉1, 𝜉2) = cos(𝜋𝜉1) cos(2𝜋𝜉2),                              (28) 

then the system (19) is not WΩG-observable, i.e. (𝜎, 𝑓) is not 

ΩG-strategic sensor [17-18]and therefore the system (19) is 

not ΩAG-detectable. 

Thus, the dynamical system (27) is not ΩAGFO-observer [30] 

for the system (19 (see [21]). Now, consider the regionΓ∗ =
]0,1[× {1} ⊂ 𝜕Ω (figure 4) with previous results, then 

 
Fig. 4: Domain Ω, region Γ∗ and locations σ of filament 

pointwise sensor. 
The dynamical system 

           

{
 
 

 
 
𝜕𝑧

𝜕𝑡
(𝜉1 , 𝜉2, 𝑡) = Δ𝑧(𝜉1, 𝜉2, 𝑡) + 𝛿𝑏̅(𝜉1, 𝜉2)𝑢(𝑡)                     

−𝐻Γ∗𝐴𝐺𝐹𝑂𝛿𝑏(𝑏1, 𝑏2)(𝑧(𝜉1, 𝜉2 , 𝑡) − 𝑥(𝜉1 , 𝜉2, 𝑡))                𝒬

𝑧(𝜉1 , 𝜉2, 0) = 𝑧0(𝜉1 , 𝜉2)                                                          Ω
𝜕𝑧

𝜕𝑣
(𝜂1 , 𝜂1 , 𝑡) = 0                                                                      Θ

       (29) 

where 𝐻 ∈ 𝐿(𝑅𝑞 , 𝐻1/2(Γ∗)), then in this case, the system 

(19) is WΓ∗𝐺-observable. Thus, the sensor (𝜎, 𝛿𝑏) is Γ∗𝐺-
strategic [20] if, 

𝑛𝑏1 ∉ 𝑁 and 𝑛𝑏2 ∉ 𝑁for every 𝑛,𝑚 = {1,… , 𝐽}. 
Hence, the system (19) is Γ∗AG-detectable [1]. Finally, the 

dynamical system (27) isΓ∗AGFO-observer for the system 

(19) [21].∎ 

 

Remark 4.11: If the system is Γ∗AG-detectable, then it is 

possible to construct Γ∗AGFO-observer for the original 
system. 
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6. Conclusion 

 
We have extended the original results related to the concept 

of Γ∗AGFO-observerfor parabolic distributed system in where 
the dynamic system generates a strongly continuous semi-
group Hilbert space.  
More precisely, we have shown that, the possibility to design 

a dynamic system which is enable to observe asymptotically 

the state gradient in sub-region Γ∗ of the boundary 𝜕Ω using 
the corresponding detectability and strategic sensors in 
different situations.  
The problem of passage form internal region to regional 
boundary case is proved and analyzed with an application to 
diffusion system.  Moreover, many problem still opened like 
the development of these results to case of hyperbolic 
distributed parameter systems as in [25]. 
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