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1. Introduction

Let A(p) denote the class of functions of the form:

oo

f(z) =zP + Z a,z" (ap = 0,p e N=1{1,23,...}), (1.1
k=p+1

which are analytic and p — valent in the open unit disk U = {z:z € C,|z| < 1}. If f and g are
analytic functions in U, we say that f is subordinate to g in U,written f < g or f(z) < g(2), if
there exists a Schwarz function w(z) analytic in U, with w(0) = 0 and [w(z)| < 1 such that
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(@) = g(w(@),(z € V)
In particular, if the function g is univalentin U, then f < g if

f(0) = g(0),and f(U)  g(U) ([9,18]).
For the function f given by (1.1) and g € A(p) given by

g(z) =2P + Z byzk.
k=p+1
The Hadamard product (or convolution ) of f and g is defined by

Fe@D =27+ ) abz* =g+ )@,

k=P+1

The set of all functions f that are analytic and injective on U / E(f), Denote by Q where
E(f) = {7 €U +limf(2) = oo},
Z—>

and are such that () # 0 for { € U \ E(f ) (see [19]).

Let ¥:C3 X U —» C, and h is univalent in U with g € Q. Miller and Mocanu [12] consider the
problem of determining conditions on admissible functions 1 such that

¥ (p(2),20(2),2°p(2); 2) < h(2) (1.2)

implies p(z) < q(z), for all functions p(z) € H[a,n] ={f € H: f(z) = a + a,z" + ap 12" +
.-« },where H be the linear space of all analytic functionsinU,a € Cand n € Z* that satisfy
the differential subordination (1.2), moreover, they found conditions so that g is the smallest
function with this property, called the best dominant of the subordination (1.2).

Let¢p: C3xU — C,and h € H with g € H[a,n]. Recently Miller and Mocanu [13,14] studied
the dual problem and determined conditions on ¢ such that

h(z2) < ¢(p(2),zp(2),2°D(2); 2) (1.3)

implies q(z) < p(2), for all functions p € Q that satisfy the above superordination. They also
found conditions so that the function q is the largest function with this property, called the best
subordinant of the superordination (1.3). See [1,2,3,4,5,6], the authors studied differential
subordination results for multivalent functions for other classes.

We define the integral operator c/lg (W, ®,T)f(2),f(z) € A(p) as follows :

AY(Y, D, Tf (2) = f(2)

ALY, D, T)f(2) = A,(¥, D, T)f(2) = (Qi?) () f e )=0+D (1) gt
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+ P _(p+®\ [? (p+P)_
?p+ T) (&) J (@)D 41w & TY (1)t
0

ALY, D, T)f (2) = (

and, in general

ALY, D, T)f (2) = (p al q)) - (55) fo ’ t(%)-@“)cﬂg-l(w, ®, T)f(t)dt

Y+T
(f(2) € A(p); q € No; z € U). (1.4)
We see that for f(z) € A(p), we have that
q S pto T
Ap (P, @, Df(2) = 27 + k;ﬂ (p + 0+ P +T)(k— p)) Tz

0<¥<1,9,T=0;peEN,q€EN,. (1.5)
From (1.5), it easy to verify that
@+ D)z (AT (D) = @ +p) (AT @) - (¢ +p(1 — (¥ + D)) (AT (D) .(16)

We note that :

1- AT(W,0,0)f (2) = I; /f (2) (see [17])
2- AF(L,1,0)f (2) = 1°f (2) (see [11]).
3- A (1,1,0)f(2) = I f(2) (see [19]).
4- A (1,1,0)f(2) = DUf (2) (see [16]).
5- A7 (1,1,0)f (2) = 1f(2) (see [10]).
6- A7 (1,0,0)f(2) = 1 (2) (see [18]).

Also we note that:

1- ﬂg(l,0,0)f(Z) =]gf(Z)

= {f(z)ilgf(Z) =zP + Z (%)q ayz®,q € Ny, z € U}.

k=n+p
2- Ap(LLO)f(2) = J(Df(2) =
= p+ 1\?
{f(z)ifg(l)f(Z) =zP + z ( ) ayz®,q € Ny,1 > 0,z € U}

k+1
k=n+p
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3- cﬂg(){, 0,0)f(Z) zjg,zf(z)

p

q
—_— k € N, =0,z € .
k+/1(k—p)) axz",q 0nA=0,zeU

= f@:Jyaf(2) = 2P + i (

k=n+p

4- AL(2,a8,0)f(2) = I} (4, a,8)f(2) [1]

p+ad
p+ad+ Ak —p)

> q
f(z):]g’lf(z)=zp+ z ( ) ayz®,q € Ny, > 0,a,6 >0,z € U .
k=n+p

In this paper, we shall determine some properties on the admissible functions defined
with operator Ay (¥, ®, T).

2- Preliminaries:
In order to prove our results, we shall make use of the following known results.

Lemma (2.1)[9] : Let g be univalent in U, { € C* and suppose that

Re {1 + Zj((zz))} > max {0, —Re (%)} (2.1)

If p(z) is analytic in U, with p(0) = q(0) and
p(2) + {zp(2) < q(z2) + {z4(2), (2.2)
then p(z) < q(z), and q(2) is the best dominant.

Lemma (2.2)[17] : Let the function q(z) be univalent in the unit disk, and let 6, ¢ be analytic
in domain D containing q(U) with ¢(w) # 0 when w € q(U). Set

Q(2) = 24(2)9(q(2)) and h(z) = 6(q(2)) + Q(2). Suppose that
1- Q is starlike univalent in U.

zh(2)

2-Re { e

} > 0forz e U.
If p is analytic with p(0) = q(0),p(U) € D and

0(p(2)) + zp(2)p(p(2)) < 6(q(2)) + 24(2)9(q(2)), (2.3)
then p < g, and q(2) is the best dominant.
Lemma (2.3)[7] :Let q(z) be convexin U,q(0) = aand { € C,Re({) > 0.
If p € H[a, 1] and p(z) + yzq(2) is univalent in U, then

q(2) +{zq(2) < p(2) + {zp(2), (2.4)
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implies q(z) < p(z), and q(z) is the best subordinant.

Lemma (2.4)[8] : Let q(z) be convex univalent in the unit disk U and let 6, ¢ be analytic in a
domain D containing q(U). Suppose that

6(q(2))
1- Re {(p(q(z))} >0, forzeU.

2- 2G(2)9(q(2)) is starlike univalent in U.

Ifp(z) € H[q(0),1]NQ, with p(U) € D, and 8(p(2)) + zp(2)¢(p(2)) is univalent in U, and
0(q(2)) +24(2)p(q(2)) < 6(p(2)) + 2B(2)0(p(2)), (2.5)

then q(z) < p(z), and q(z) is the best subordinant.

3- Main results:

Unless otherwise mentioned, we shall assume in the reminder of this paper that ¥ >
0,, T=0;peEN,qEN,=NU{0};z€ U and the powers are understood as principle
values.

Theorem (3.1): Let q(z) be univalent in U with q(0) = 0,y > 0 and suppose that

Re {1 + %} > max {O, —Re (%)} (3.1

If f € A(p) satisfies the subordination

AT @\ (AL @ (AFT (@) Try
( 2 ) +< ) \aPrm ) et G

then

(£22930<M@

VA4

and q(z) is the best dominant.

Proof : If we consider the analytic function

(cfzg“f(z)

VA4

o
),0‘>0,Z€U. (3.3)

Differentiating (3.3) logarithmically with respect to z and using the identity (1.6) in the resulting
equation, we have
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(@) _o(@+p) (ﬂﬁ“f @ _ 1>, (3.4

p(@  ¥YHT \Alf(2)

that is

Y+T
o(® +p)

ﬂ,ﬁi*zf(z))" (a‘lZ“f(Z) ~ 1)

- ( 2 ) \ 47 f @

Thus, the subordination (3.2) is equivalent to

p(z) + zp(z) < q(2) + zq(2). (3.5)

+T 17
a(® +p) o(®+p)

Y4+T
o(o+p)

Applying Lemma (2.1), with { = the proof of Theorem (3.1) is complete.

Taking the convex function q(z) = %, in the Theorem (3.1), we have the following corollary.

Corollary (3.1): Let ABe C,A#B,|B| <1, Re(() >0 and ¢ > 0. If f(z) € A(p) satisfies the
subordination

<Jlg+2f(z))6 . <dqg+2f(z)>d (u‘lZ“f(Z) 1) Jltdz WAT (A-B)

zP zP u‘lg+2f(z) B 1+ Bz + o(® +p)(1+ Bz)?
then
AT F )\ 1+ Az
<
zP 1+ Bz
and 1Az is the best dominant.
1+Bz

Taking g = 0 in Theorem (3.1), we obtain the following result:

Corollary (3.2): Let q(z) be univalent in U, with qg(0) = 1,0 > 0, and suppose that (3.1) holds. If
f(2) € A(p) satisfies the subordination

AL\ | (AR (Apf(2) Y+T
( ZP ) +< ZP ) <d4129f(z) B 1) <q@)+ a(‘P+p)Zq(Z)'
then
<%,,(Z)> <q(2).

and q(z) is the best dominant.
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Taking @ = W = 1 in the Theorem (3.1), we have the following result.

Corollary (3.3): Let q(2) be univalent in U, with q(0) = 1,8 € C*,0 > 0, and suppose that (3.1) holds. If
f(2) € A(p) satisfies the subordination

(a@*%x@)”+<J$+%x@)”(ﬂg”f@)_

zb zP

1) <q(2) + zq(2),

o(1+p)

then

and q(z) is the best dominant.

Theorem (3.2): Let q(z) be univalent in U, with q(0) =1 and q(z) #0 forallz€ U, let L, 0 €C*, f €
A(p) and suppose that f and q satisfy the next conditions:

cﬁ”ﬂdi

5 0, (3.6)
and
Re {1 + Z;’((ZZ)) - qu((zz))} >0, (zeU). 3.7)
If
Ay f(2) (¥ +Tzq(2)
4% e@ @ ©®
then
.:/lq+2 g
Ql;§9)<q@)
and q(z) is the best dominant of (3.6).
proof : Let
q+2 g
p(2) = (#) , z€U. (3.9)

According to (3.4) the function p(z) is analytic in U, and differentiating (3.9) logarithmically
with respect to z, we obtain
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2p(z) _o(®+p) (v‘lfo’“f @ _ 1)_ (3.10)

p() VAT \alf(z)
In order to prove our result we will use Lemma (2.2). In this lemma consider

Y+ T

0 = 1land = —
W) = Land p(w) = oo
then 6 is analytic in C and ¢ (w) # 0 is analytic in C*. Also if we let

(¥ +T)zq(2)

Q(2) = ZC?(Z)QD(Q(Z)) = m,

and

(Y +T)z4(2)
o(® +p)q(2)

from (3.7), we see that Q(z) is a starlike function in U. We also have

2h(z)) 24 24@)
Re{Q(z)}‘Re{”qm )

and then, by using Lemma (2.2), we deduce that the subordination (3.6) implies

h(z) =0(q(2))+Q(z) =1+

}>O, (zel)

p(2) < q(2)
and the function q(z) is the best dominant of (3.8).

izi (-1<B<A<1) in Theorem (3.2), it is easy to check that the

assumption (3.5) holds, hence we obtain the next result.

Taking q(z) =

Corollary (3.4): Let 0 € C*. Let f(z) € A(p) and suppose that

AT (2) )

) 0, (zel).
If
AT (2) (¥ + T)z(A — B)
AT7F(2) ST @ A+ A1+ B2
then
A F()\ 1+ Az
zP = 1+ Bz

Az | .
and q(z) = % is the best dominant.
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Taking q(z) = g in Theorem (3.2), it is easy to check that the assumption (3.5) holds,
hence we obtain the next result.

Corollary (3.5): Let g € C*, f(z) € A(p) and suppose that

A2 F (2
Ay /(@) #0, (zeU).
zP
If
q+1
Ay f(2) <14 2(P+T)z
AT f(2) o(@+p)(1-2)(1+2)
then
dqq+2 g
D f(Z) < 1+z
zP 1—2z
and q(z) = g is the best dominant.

Theorem (3.3): Let q(z) be univalent in U, with q(0) = 1, let ¢ € C*, and let ¢,v,n € C with v +
n # 0. Let f € A(p) and suppose that f and g satisfy the next conditions:

vy f (@) + Ay P (2)

W+ )2 #0, (z€U) (3.11)
and
Re {1 + M} > max{0, —Re(y)}, (z € V). (3.12)
q(2)
If
q+1 q+2 a q+1 ¢ q+2 <
wo- AR [ )
and
K(z) < Yq(z) + @, (3.14)
q(2)
then

VAT (@) + AT f(2)
(v +m)zP

‘ <q(2)
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and q(z) is the best dominant of (3.11).

Proof: Let

VAT (2) + 1AL (2)
(v+n)z?

p(z) = ] , z€U. (3.15)

According to (3.8) the function p(z) is analytic in U, and differentiating (3.15) logarithmically
with respect to z, we obtain

zp(z) _ VZ(AZHf(Z)) + nz(Angzf(z))
p(z) ? vAﬁ“f(z) + TlAﬁJrzf(Z) - P (3.16)
and hence
(D) = o VAT (@) + 145 F @] [v2Al F @) + nz AP F (D)
' v+ mz AT @ Al @)

In order to prove our result, we will use Lemma (2.2). In this lemma consider
1
O(w) =Yw and oWw) = "

then 6 is analytic in € and ¢(w) # 0 is analytic in C*. Also if we let

v44?7@n+n44?7@n_p]
VAL f(2) + AL f (2)

Q(2) = 24(2)¢(q(2)) = o

and

h(z) = 6(q(2) + Q(2)
VATTf (2) + A F ()]
v +n)z?

_ (vz(AZ*lf(z))+—nz<AZ+2f(z))__p)]
vAy " f(2) + AT f(2)

from (3.11), we see that Q(z) is a starlike function in U. We also have

Re{ZQH((ZZ))}zRe{Y+1+%}> 0, (zeU)

and then, by using Lemma (2.2), we deduce that the subordination (3.14) implies

p(2) < q(2).

1+Az
1+Bz
condition (3.12) becomes

Taking q(z) = (-1<B<A<1) in Theorem (3.3) and according to(3.4), the
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1—|B|

0,—Re(Y)} < .
max{ e(V)} 17 1B]

Hence, for the special case v = 1 and n = 0, we obtain the following result.

Corollary (3.6) : Let Y € C with

1—|B|
max{0,—Re(Y)} < 1718l
Let f(z) € A(p) and suppose that
40+1
p—f(Z) #0, (z€el).
yAY
If
VAT f ()] 2(ATf (2)) 1+ Az (A—B)z
Y[ 7| Y\ P TivBt v ana Ty
then

A @\ 1+ 4z
zP 1+ Bz

1+4z .
and q(z) = ﬁ is the best dominant.

Taking p=v=q=1n=0and q(z) = g in Theorem (3.3), we obtain the next result.

Corollary (3.7) : Let f(2) € A(p) and suppose that

2
wio, (z € ).

VAL

and 0 € C*. If
22 2(A%f(2)) 1+z 27
Y= ]*“(—Azﬂz) -1 <Y1—z+(1+z)(1—z)’
then
Af@\ 1+z
< z )<1—Z

14z, .
and q(z) = 2% is the best dominant.
1-z
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