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Introduction:

The first step of generalized closed sets introduced by Levine [1]. After that there is a vast progress
occurred in the field of generalized open sets (compliment of respective closed sets) which became
the base for separation axioms in the respective context. Using the idea of pre-open sets, Fatima, M.
Mohammad proposed pre-Techonov and Pre-Hausdorff Separation Axioms in Intuitionistic Fuzzy
Special Topological Spaces [2] in 2006. In 2012 Sabih W. Askandar [3] defined another type of
separation axioms depend on an i - open sets. In 2020 F. Abbas [4] used h - open sets to produce the
concept of h-separation axioms. In this paper, we introduce the generalized forms of h- separation
axioms using the concepts of generalized h-open sets called gh - T, (briefly denoted by Ty4p)
spaces, k=0, 1, 2, 3, 4, 5, 6. Among other things, the concern basic properties and relative
preservation properties of these spaces are projected under gh- irresolute and gh-continuous
mapping [5]. We present our work in three sections. In section 1, the gh- separation axioms and lots
of examples have been described and provided, and the relationship with other classes of separation
axioms have been investigated. In section 2, in order to discuss the gh- separation axioms' property,
established a number of significant theorems have been established. Finally, in the third section,
some fundamental properties of gh-Regular space, gh-Normal space, gh-Completely Regular space,
gh-Completely Normal space and gh- Perfectly Normal space have been presented. y and vy,
respectively, have been used to indicate the topological spaces (x, t) and (y, o). Topological spaces
by TS, (0s), (cs), and open sets (vs. closed sets), the following definitions and notations have been
recalled. Throughout this paper (y, t9") a topological space is always, (where t9" is family of all
gh-open set) [5] of .
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Definition1.1. A subset A of a spaces (y, t) is defined
1. (h-0s)[4] stands for (h-open set),if for every non empty set U in y , U # y and U € T, s.t.
A C int(A U U). The complement of (h- 0s) is said h-closed set denoted by (h-cs).
2. generalized h-closed [5] (briefly, gh-closed) denoted by (gh-cs) set, if CL, (A) € U whenever
A <€ U and U is (0s) in (x,t). The complement of gh- closed set is said gh-open set
denoted by (gh-o0s).
3. ho(x), hc(y) and ghc(y) are family of h-open, h-closed and gh-closed sets respectively.

Definition1.2. Let y be a TS and let A subset of y. The intersection of all (gh-cs) containing A is
named gh-closure of A, denoted by CL ;, (A).[5]

Definition1.3. A mapping f :(x,t)— (¥, 0) is named
1. Continuous designated by (contm)[1], if f ™ (F) is (cs) in y.V F € (cs) iny.
2. h-continuous designated by (h-contm) [4], if f ™ (F) is (h-cs) in y.V F € (cs) iny.
3. gh-continuous designated by (gh-contm) [5], if f (F) is (gh-cs) in x.V F € (cs) iny.
4. gh-irresolute designated by (gh-irrem)[5].,if f ™ (F)is (gh-cs) set in y. V F € (gh — cs)
iny.
Theorem 1.4.
1. Each (cs)in TS is (g-cs) [1].

2. Each (cs) in TS is (h-cs) [4].
3. Each (cs) in TS is (gh-cs)[5].

Definition1.5. A TS (y, ) is said to be:
(1) Togn — space: if a, b are two distinct points in y, 3 U € (gh-os) s.t. either a € Uand b &
U,orbeUanda ¢ U.[5]
(2) Tign —space: if a,b € y and a # b, 3 U,V € (gh-0s) containing a,b respectively, s.t.
b¢U,and a ¢ V.[5]
(3) Tygn —space: if a,b€y and a=#b, 3IdisjointU,V € (gh-0s) containing a,b
respectively. [5]
2. Some Separation Axioms by Using gh-Closed Set.
In this chapter, we introduce and study the notion of (gh-cs) in TS and obtain some of its
basic properties.
Definition2.1. "A TS (y, t) is said to be:

1- gh-Regular space(shortly R,p,-space) if for every (gh- cs) F and each point x of y which is
not in F, there exists disjoint (gh-os) Uand Vs.t. x e U, F c V.

2- gh-Normal space (shortly Ny,-space) if for every pair of disjoint (gh-cs) F; and F, in y,there
exists disjoint (gh-os) Uand Vst. F, cU,F,cV.

3- gh- CNyp,-space, also known as completely normal space, if it satisfies gh -Titus axiom: If
AT Sy, A, Sy, AiNA, =0 31,1, € ysuchthatA, S1,,A, S, wherelL, NI, =
@,1,,1, are (gh-0s).

4- gh- Completely Regular space (shortly CR,p,-space) if the following axiom is true: If F is
(gh-cs) in y and x € y, x € F there exists an (gh-contm) [5] f: x — [0,1] s.t. f(F) =1,
f(x)=0.
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5- gh- Perfectly Normal space (shortly PNg,-space) if it satisfies the following axiom: If
C; and C, are disjoint (gh-cs), there exists (gh-contm) [5] fix — [0,1]
st f7H{0}) = Giand fF7H({1D) = G

6- T, /,-space [6] if each (g-cs) in it is (cs)

Definition2.2. AT, 4, — space is named T34, — space if its Ry, space.
Definition2.3. AT, 4, — space is named T,,4, — space if its Ny, space.
Definition2.4. AT, 4, — space is named Tsg, — space if its CNg;, space.
Definition2.5. AT, 4, — space is named T,4p, — space if its PNy, space.

Definition2.6. A T4, — space is named T — space if its CRgy, space.

(35)gh
Example2.6. Let y={1,2} and 7= {(7),)(,{1},{2}}, ghc(y) =t then

ho(x) = {8, x,{1},{2}} = he(x) = ghc(x)

1. 1,2 € y(1 # 2)3{1},{2} € t9"s.t. 1€ {1}, 2 € {2}.Therefore; (x, ) is Ty gn.
1,2 e x(1#2)3{1},{2} e 19" st. 1€ {1},2 € {2}, {1} n {2} = @ . Therefore; (x,1) is
Tagh-

3. {2} is (gh-cs) and 1¢ {2} there is two (gh-0s){1},{2} s.t. 1 € {1},{2} < {2}. Therefore;
(x, 7) is Ryp, space.

4. By (1) and (3) we have : (x,1) is T34p

5. {1}, {2} are (gh-cs) there are two (gh-os) {1}, {2} s.t. {1} < {1}, {2} < {2}, {1} n {2} = @.
Therefore; (x,7) is Ny, space.

6. By (1) and (5) we have : (x,7) is Tygp

7. {13},{2} € y, there are two (gh-0s){1}, {2} s.t. {1} < {1}, {2} < {2} where{1} n {2} = @.
Therefore; (x, ) is CNgy, space.

8. By (1) and (7) we have : (x,T) is Tsgyp,

9. Let f:y — [0,1] be (gh-contm) and {1}, {2} are disjoint (gh-cs) s.t. f~1({0}) = {1},
f71({1}) = {2}. Therefore; (x,7) is PNy, space.

10. By (1) and (9) we have : (x, 7) is Tggp

Theorem 2.7. ATS (x, 1) is Togn, —space iff for each pair of distinct points x,y of y, cly,({x}) #
clgn({y}).
Proof: Suppose x be a Togy, —space, and x,y € y s.t. x # y, then there exists (gh-o0s) U
containing one of the points but not the other, then x € U and y &€ U. Then y\U is (gh — cs)
containing y but not x. But clg, ({y}) is the smallest (gh—cs) containing y. Therefore;cl,, ({y})
x\U and hence x & cly, ({y}). Thus clyn, ({y}) # clyn({x}).
Conversely, suppose x,y € x, x # y and cly,({y}) # clgn({x}). Letz € y s.t. z € clgp({x})
but z & cly, ({y}). If x € clyn,({y}) then cly, ({x}) < clyp({y}) and hence z € cly, ({y}). Thisis a
contradiction. Therefore; x & clg,({y}). Thatis x € y\clgn({y}). Therefore; X\cly,({y}) is (gh —
0s) containing x but not y. Hence (x, 7) is Ty, —space.m
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Theorem 2.8. ATS (x, 1) is Ty 4 —space iff for every k € y singleton {k} is (gh — cs) in y.

Proof: Assume that (x, 7) be T; 4, —space and let k € y, to prove that {k} is (gh—cs), we will prove
x\{k} is (gh—os) in y. Let y € y\{k}, implies k # y and since y is T1gn —space then, their
exists two (gh—os) U,V st. k¢ U, yeV cy\{k}. Since yeV c y\{k} then x\{k} is
(gh—os). Hence {k} is (gh—cs).

Conversely, let k # y € y, then {k}, {y} are (gh—cs). That is y\{k} is (gh—os), clearly, k & y\{k}
and y € y\{k}. Similarly, y\{y} is (gh—os), y & x\{y} and k € Y\{y}. Hence (x,7) is
T14n —space. m

Theorem 2.9.Aspace (x, 7) is To4, —space iff (¥, 79" is Hausdorff -space.

Proof: Assumes n, me y with n# m . Since y is T, 4, —space, there exists disjoint (gh-os) H and K
iny st.n€Handme K, HNnK=@. Here H, Ke 79", so, obviously (x,79") ceases to be a T, 4,
—space i.e. a Hausdorff space.

Conversely, whenever (x,t9"%) is a T,4n —space , there exists a pair of members of 19" say, P &
Q for a pair of distinct points p & g of y suchthat peP & g€ Q & PNnQ=¢. But
gho(y, t)=19". Combing all these facts (x, t) is T,gn —space. ®

Theorem 2.10. Each open subspace of a T, 4, —space is Tpgp, .

Proof: Suppose U be an open subspace of a T,4, —space (x,7). Let k and p represent any two
separate points on U. Since y is T,,, —space and U <, there exists two disjoint (gh-os) G and H
in x such that ke G&p€eH. Let A=UNG&B=UNH. Then A & B are (gh-0s) in U
containing k and p. Also, An B = @. Hence (U, T,,) is T,g,. ®

Theorem 2.11. Each subspace of R, — space is Ry, .
Proof: let (¥, 7) be an Ry, — space and A asubset, k€ A and C is (cs) in A, "now k is a point in y,
D is an (gh — cs) subset of y s.t. D N A = C. Such D exists by the way that the subspace topology
is defined. Clearly, whatever D is picked up for the purpose, k cannot lie in D because the only
points in D N A are in a set not containing k. Since y is Ry, , we can find (gh-os) U and V in y s.t.
keU,CcVandU and V are disjoint. Now, U n A and V N A are disjoint (gh—os) subsets of A4,
with k € U n A and CSVNA" m
Theorem 2.12.Let (y, 7) be TS then the following statements are equivalent.

1- xis Ty4, — space.

2- Letk € y.For each k# p, there exists(gh-0s) U containing k s.t. p& cl, (U).

3- Foreachke y n{cl,,(U): Ue 9" & k eU}={k}
Proof:(1) — (2): Assumes (x, 1) is T,4, — space, there exists disjoint (gh-os) U and G containing k
and p respectively. So, U c Y\G. Therefore; clyn(U) < x\G. So pé& cly, (V).
(2) —(3): If possible for some &+ p , we have p€ clg, (U) for every (gh-os) U containing k, which
is contradiction (2).
(3) —(1): Suppose k, p € x & k# p . Then there exists (gh-os) U containing k s.t. p & cl,,(U). Let
V= x\clg, (U), then peV and keU and alsoU nV=0.m

3. The Relation Ships among gh-Separation Axioms.

In this part, we compared among Togpn, T1gn, T2gn: T3gn, T(gg)gh’ Tygn, Tsgn and Te g~ Space.

Also we obtain some of its basic properties.
Theorem 3.1. Each T, 4, — space is Ty 4, and also is Ty gp.[5]
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Theorem 3.2. Each Regular space is Ry, .

Proof: Assume that (y, t) be a regular space. Let k € y and F be any (cs) on y, s.t. k & F, and let

U, V beany (0s) in y,s.t. UnV=@. Form Theorem (1.4) (3) each (cs) is (gh-cs). Then F is (gh-cs)
& k & F. Each (os) being (gh-os), U and V are then (gh-os). Hence (x,7) is Ry, . ®

"The converse of theorem 3.2 is not true in general as shown in the following example”.

If x={1,23}, t={0,x{1},{1,3}.

Then x is Ry, space but not Regular space.

Theorem 3.3. Each Normal space is Ny, — space .

Proof: Suppose that (x, t) be Normal space and let F, F, be disjoint (cs) in y and U,V are
disjoint (0s) in x,s.t. FcU, F,cVand UnV=0 . Form Theorem (1.4) each (cs) is (gh-cs) and
every (0s) is (gh-os) in y. Then F,, F, are (gh-cs) and U, V are (gh-0s). Hence (x,7) is Ngp

The converse of theorem 3.3 is not true in general as shown in the following example.

If y={ab,c}, T ={0, x,{b},{a,b},{b, c}}.

Then y is Ny, space but not Normal space.

Theorem 3.4. Each Tsg4p- space is T, p-Space.

Proof: Suppose (x,t) be Ts4,- space and let n, m € y s.t. n = m. Since y be Ty gn-space,
then {n} is (gh-cs), since n # m, then m & {n}. Now, since y be gh- Regular space,
there exists disjoint (gh-os) U and V s.t. m e U, {n}c V and UnNV=@. Therefore; (x, 1) is
Togn-Space. m

"The converse of theorem 3.4 is not true in general as shown in the following example".

Example 35. If ¥ =R, r={(-P,P)\{>:neN}: P > 0}

Then (x,7) is T,gn — space but not Tg,.

Theorem 3.6. Each T(%)gh space is T gp,.

Theorem 3.7. Each T,,4p,- space is T(3%)gh'

Proof: ATS (x, 1) satisfies 2.3 of T,4,- space, This results in 2.6 of T - space and by 2.1(2),

(33)9h
we get that the proof is complete. m

Theorem 3.8. Each T4y~ space is Tsgp.

Proof: ATS (x, ) satisfies 2.3 of T, .- space, This results in 2.2 of T;,,- space and since every
two discrete (gh-cs) are separated, we get that the proof is complete. m

Theorem 3.9. Each Tsgp,- space is Tygp,.

Proof: ATS (x, ) satisfies 2.4 of Ts 4, - space, This results in 2.3 of T,,,- space and since every
two discrete (gh-cs) are separated, We realize the proof is clear. m

Corollaries 3.10.

1. Each T5g4, (respect. T Tygn, Tsgn and Tegp- Space ) is Ty 4, but the converse is not true

(33gh’
because T, 45, -space is not necessary to be Ry, space (respect. CRyp, Ngp, CNgp and PNgy,
space).

2. Each Tygp is Tyg4pn-Space but the converse is not true.[5]

3. From above we have the following diagram:

TOgh

T

-
<

40




// %’hﬂ\\\\
Tsgh — 3 Tagn —»T(%)gh —> T390 —>Togn

Fig. 1

4. Property of gh- Separation Axioms

In this section, we discuss the properties of gh-separation axioms.
Theorem 4.1.Let f :(x,7)—> (v, 0) be bijection, (gh-contm) and y is T, — space, then y is Togp, —
space.
Proof: Let f :(x,7)— (y,0) be bijection, (gh-contm) and y is" T, — space". Demonstrating that y
is a "Togp —space” . Let x;, X, € y with X;# X,. Since f is a bijection, there exists y,, y, €
ywith y,# vy, st. f(x)=y, and f(x,)=Y,,then x,=f*(y,)and x,=f*(y,). Since y is"
T, — space", there exists an (os)U in y s.t. y, €U & vy, &U. Since f is (gh- contm), f*(U) is a
(gh-0s) iny. We now have,y, €U then f(y,) c f*(U) then x€f*(U)and x,¢& f *(U).
Henceforth, for any two separate points y,, Y, in y, there is (gh-os) f *(U)iny st x,€ f*(U) &
X, & f (V). This shows that X isa Tygp. ®
Theorem 4.2, If f :(x,7) > (x,7) be an 1-1, (gh-irrem) and y is To4y, — space, then y is "Togp, —
space".
Proof: Assumes that n, m € y with n# m. Since f is 1-1 and y is "Ty,, — space” there exists (gh-
0s) U iny s.t. f(n) €U and f(m) €U or there exists (gh- 0s) G in y s.t. f(m) €G and f(n) €G with f(n)
+ f(m). By (gh-irrem) of f, f~1(U) is (gh-o0s) in y such that ne f~1(U) and me f~1(U) or
f71(G) is (gh-0s) in y suchthat m € f~*(G) and n¢& f~1(G). This demonstrates y is "Togn —
space”. m
Theorem 4.3. If f:(x,7)—> (x,7) be an 1-1, "(gh-irrem)" and y is "T,,4, — space”, then x is
Tign — space.
Proof: "Theorem 4.2's" mention of the argument is accurate, with the necessary modifications.
Theorem 4.4. Let (y,7) be TS andy is Ty — space. If f :(x,7)— (y,0) is 1-1 and (gh- contm) ,

then y is T; 4, — space.

Proof: Suppose n, m € x. s.t. n# m. Since f is 1-1then f (n)# f (m). Since y is" T4, — space”
then there are two (gh- os) Hand Kiny s.t. f (n) eH, f (m)¢H and f (m) €K, f (n) K. Since f
is (gh- contm) then f *(H), f*(K) are two (gh-o0s) in y , ne f *(H), me f ~*(H) and me f ~*(K),
ng f 7 (K). This shows that x is T; . ®

Theorem 4.5. Let (x,7) be TSand y is T, 4, — space. If f :(x,7) > (y,0) is 1-1 and ( gh- irrem) ,
then y is T4, — space.

Proof: Suppose n, m€ y. s.t. n# m. Since " f is 1-1 " then f (n)# f (m). Since y is" Toqp —
space” then there are two (gh- os) Hand Kiny s.t. f (n) eH, f (m) eKand H~K=@, since f is
(gh- irrem) then f *(H), f *(K) are two (gh-0s) in y, ne f 1 (H), me f *(K) and f *(K)
N f 7 (H)=@. This shows that y is T, ;. m
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Theorem 4.6. Let (y,7) be TSandy is T, — space. If f :(x,t)—> (y,0) is 1-1 and (gh- contm) ,
then y is T4, — space.

Proof: Suppose n, m € y.s.t. n#m. Since " f is 1-1" then f (n)# f (m). Since y is "T, — space"
then there are two (os) Hand Kiny s.t. f (n) eH, f (m) eK and HNK=@, since f is
(gh- contm) then f *(H), f *(K) are two ( gh-0s) in y, n€ f 1 (H), me f *(K) and f *(H)
N f 7 (K)= 0. This shows that y isa T, . ®

Theorem 4.7.1f f is a (gh- irrem) and gh-closed map injection of a TS (x, ) in to Ryn

space y, then y is Rgp,.
Proof: Suppose k € y and A be a (gh-cs) in y not containing k . Since f is (gh-cs), f (A)isa
(gh-cs) in y not containing f (k). Since y is Ry, there exists disjoint (gh-os) U and V in y s.t. f (k)
€U and f (A) cV. Since f is (gh- irrem), f *(U)and f (V) are disjoint (gh-0s) in y containing k
and A respectively. Hence (, 7) is Ry, — space. m
Remark 4.8. Let (X*,t*) be a partial topological space of TS (y,t) and let F € X* thent* S 1 C
9" if and only if X* € 7.
Theorem 4.9. ATS (y,7) is CNg, iff each partial TS of it is Ny,
Proof: 1. Assumes that (x,7) is CNgy, and let (X*, %) is a partial space of X . Let F, and F, be
two discrete (gh-cs) in y, then:

F,n CLgh(Fz) = CL;h(Fl) N CLgh(FZ) =X"N CLgh(Fl) N CLgh(Fz)

= CLgp (F1) N0 CLy, (F) = F1/7|:2 =0

Then F, and F, are separated sets in y. By definition of CN, there exists two (gh-os) I; and I,
st.F, €I,and F, € I, then X* nI;, X" n I, are discrete (gh-0s) in X*. Where F;, € X*nI,,F, €
X* N1, Hence, (X*,T") is Nyp,.
2. On the other hand assume that each partial TS of (), ) is Ny, and we must prove that y is CNg.
Let A, and A, be separated sets in y and assumes that (gh-os) [CLgx(4) N CLgh(B)]C = X* be
partial space of y. This space is Ny, (by suppose) and X* N CLgxp(A), X" N CLyx(B) are two
discrete (gh-cs) in X*. Then there exists two discrete (gh-0s) G4 and Gp in X*, s.t. X* N CLyp(A) S
Ga, X" N CLgp(B) S Gg. Since X*is (gh-os) in yx, then G4 and Gg are (gh-0s) in x too (4.8). Then
ACSX"NCLyu(A) S Gy, B S X" NCLy,(B) € Gp. Therefore; (X, 1) is CNyp,

Definition4.10. A mapping f : (x,t) = (y,0) is said to be point gh-closure 1-1 iff n,m € y such
that CLyp{n} # CLgp{m} then CLyp{f (n)} # CLyp{f (m)}

Theorem 4.11. If f :(x,7) — (y,0) is point gh-closure 1-1 and y is Ty 45, — space, then fis 1-1.
Proof. suppose n,m € y with n # m. Since y is Ty, — space, then CLyp{n} # CLgyp{m} by
theorem 2.7. But f is point gh-closure 1-1 implies that CLy,{f (n)} # CLgp{f (m)}. Hence f(n) #
f(m) Thus, fisl-1. m

Theorem 4.12. A point gh-closure 1-1mapping f :(x,7) = (y, o) from Ty p-space y into Togp —
spac y exists iff fis 1-1.

Proof: The necessity follows from the fact mentioned in theorem 4.2

For sufficiency, let f: (x,T) > (y,0) from Ty4,-space y in to Ty, — spacy be an 1-1 mapping.
Now for every pair of distinct points n & me y, CLyp{n} # CLyp{m} as y is To,, — space. Since, f
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is 1-1 mapping f(CLgp{n}) # f(CLgp{m}).i.e., CLyp{f (M)} # CLgn{f (m)}. Consequently, f is
point gh-closure 1-1mapping. m
Definition4.13. A mapping f : (x,7)— (y,0) is called gh-closed denoted by (gh-cm) if the
image f(F) of each (cs) F in (x, t) is (gh-cs) in (y, 0).
Theorem4.14. Let (y,7) and (y,0) be TS and y is Ry, space. If f: (x,7)—> (y,0) is (gh-cm), (gh-
irrem) and 1-1, then y is Ry, .
Proof: Assumes that H be (cs) in y , n € H. Let f (gh-cm), then f(H) is (gh-cs) in y. f(n)=m ¢
f(H) . Buty is Ry, space, then there are two (gh-0s) I;and [, inY such that f(H) S I,,mE€
Iy and I; NI, = @ . Since f is (gh-irrem) and one to one , so f~1(1;), f ~1(1,) are two (gh-0s) in y
andn € f~1(1,),H € f~'(I), f 1) N f~1(U;) = @. Hence (x,T) is Ry Space. m
Definition4.15. A space (y,t) iscalled a

1. T,- space if each (h-cs) in it is (cs).

2. Tyn-space if each (gh-cs) in it is (cs).

Example4.16. If x={1,2} and t={0,x,{1}}, ho(x) =7t then
ghe (x) ={0.x. 2}}=C(»)

C(7) = {0, x,{2}} = hc (x)
This shows that y is T,-space. Also y is Tj.

Example4.17. If y={1,2,3} and 7 ={0,x,{1},{2},{1,2}}, ho(x) =7 then

ghe (x ) = {0, x, {3}, {1,3},{2,3}}=C(7), C(v) ={0,x,{3},{1,3},{2,3}} = hc(x)
This shows that y is T,,-space. Also y is Tj.

Theorem 4.18. If (y, 7) is T,,-space then, for each k € x, {k} is (gh-cs) or open.

Proof: Let TS (x, 7) be T,p,-space. Let us Suppose that for some ke y, {k} is not (gh-cs) in y.
By theorem 1.4(3) {k} is not (cs) in y. So y\{k} is not (0s) in y and y is the only (0s) containing
x\{k}. So y\{k} is (gh-cs) in y, by (suppose), x\{k} is (cs) in y, it means {k} is (0S) in y. m
Theorem4.19. Each T, -space is T,-space.

Proof: Suppose (x,t) be Ty,-space and let k be (h-cs) in x. Since each (h-cs) is (gh-cs),
therefore; k is (gh-cs) in y, by (suppose), kis (cs) in y. This shows that y isT),. m

"The converse of theorem 4.19 is not true in general as shown in the following example".

Example 4.20. If y={1,2} and 7= {0, x} then

C(t) =1 =hc(x)=ho(x)=1{0,x} Hence (x,1) is T,- space. but (x,T) is not Ty, because
{1}is (gh-cs) in (x, T) but {1} is not (cs) in (x, 7).

Example 4.21. If y={1,2,3} and 7 = {@,x,{1},{2,3}} then

C(t)=t=hc(x)=ho(x)=1{0,x{1},{2,3}}. Hence (x,7) is T,- space. but (x, t) is not Ty,
because {2}is (gh-cs) in (), 7) but it is not (cs) in (x, 7).

Theorem4.22. Each Tg,-space is Ty /,-space .
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Proof: Suppose (x, t) be T,,-space and let n be (g-cs) in y. Since each (g-cs) is (gh-cs), therefore;
nis (gh-cs) in x, by (suppose), nis (cs) in x. This shows that y isT;/,. m
The converse of theorem 4.22 is not true in general as shown in the following example.

Example4.23. If y={5,4,7} and 7 = {@,x,{4},{5,4},{4,7}} then

g — closed sets are = {@, x,{5,7},{ 7}, {5}} = c(z). Hence (x, 1) is Ty .- space. but (x, 1) is not
Tyn, because {4, 7}is (gh-cs) in (x, 7) but {4, 7} is not (cs) in (x, 7).
Remark 4.24. From above we have the following diagram:

Th &< Tgh =——= 2Ty
Fig. 2
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