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Introduction:  
The first step of generalized closed sets introduced by Levine [1]. After that there is a vast progress 

occurred in the field of generalized open sets (compliment of respective closed sets) which became 

the base for separation axioms in the respective context. Using the idea of pre-open sets, Fatima, M. 

Mohammad proposed pre-Techonov and Pre-Hausdorff Separation Axioms in Intuitionistic Fuzzy 

Special Topological Spaces [2] in 2006. In 2012 Sabih W. Askandar [3] defined another type of 

separation axioms depend on an i - open sets. In 2020 F. Abbas [4] used h - open sets to produce the 

concept of h-separation axioms. In this paper, we introduce the generalized forms of h- separation 

axioms using the concepts of generalized h-open sets called gh - 𝑇𝑘 (briefly denoted by 𝑇𝑘𝑔ℎ) 

spaces, k= 0, 1, 2, 3, 4, 5, 6. Among other things, the concern basic properties and relative 

preservation properties of these spaces are projected under gh- irresolute and gh-continuous 

mapping [5]. We present our work in three sections. In section 1, the gh- separation axioms and lots 

of examples have been described and provided, and the relationship with other classes of separation 

axioms have been investigated. In section 2, in order to discuss the gh- separation axioms' property, 

established a number of significant theorems have been established. Finally, in the third section, 

some fundamental properties of gh-Regular space, gh-Normal space, gh-Completely Regular space, 

gh-Completely Normal space and gh- Perfectly Normal space have been presented. 𝜒 and 𝛾, 

respectively, have been used to indicate the topological spaces (𝜒, 𝜏) and (𝛾, 𝜎). Topological spaces 

by TS, (os), (cs), and open sets (vs. closed sets), the following definitions and notations have been 

recalled. Throughout this paper (𝜒, 𝜏𝑔ℎ) a topological space is always, (where 𝜏𝑔ℎ is family of all 

gh-open set) [5] of 𝜒. 
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Definition1.1. A subset A of a spaces  (𝜒, 𝜏) is defined 

1. (h-os)[4] stands for (h-open set),if for every non empty set U in 𝜒 , 𝑈 ≠ 𝜒 and 𝑈 ∈ 𝜏, s.t. 

 𝐴 ⊆ 𝑖𝑛𝑡(𝐴 ∪ 𝑈). The complement of (h- os) is said h-closed set denoted by (h-cs). 

2. generalized ℎ-closed [5] (briefly, gh-closed) denoted by (gh-cs) set, if hCL (A) ⊆ U whenever 

𝐴 ⊆ 𝑈 and U is (os) in (𝜒, 𝜏). The complement of   gh- closed set is said gh-open set 

denoted by (gh-os). 

3.  ho(𝜒), hc(𝜒) and ghc(𝜒) are family of h-open, h-closed and gh-closed sets respectively. 

Definition1.2. Let 𝜒  be a TS and let A subset of 𝜒. The intersection of all (gh-cs) containing A is 

named gh-closure of A, denoted by ghCL (A).[5] 

Definition1.3. A mapping f :(𝜒, 𝜏) (𝛾, 𝜎) is named 

1. Continuous designated by (contm)[1], if 1f (F) is (cs) in  𝜒. ∀ 𝐹 ∈ (𝑐𝑠) in 𝛾. 

2. h-continuous designated by (h-contm) [4], if 1f (F) is (h-cs) in 𝜒.∀ 𝐹 ∈ (𝑐𝑠) in 𝛾. 

3. gh-continuous designated by (gh-contm) [5], if 1f (F) is (gh-cs) in 𝜒. ∀ 𝐹 ∈ (𝑐𝑠) in 𝛾.  

4. gh-irresolute designated by (gh-irrem)[5],if 1f (F)is (gh-cs) set in 𝜒. ∀ 𝐹 ∈ (𝑔ℎ − 𝑐𝑠) 

in 𝛾. 

Theorem 1.4. 

1.  Each (cs) in TS is (g-cs) [1]. 

2.  Each (cs) in TS is (h-cs) [4]. 

3. Each (cs) in TS is (gh-cs)[5]. 

 

Definition1.5. A  TS  (𝜒, 𝜏) is said to be: 

(1)   𝑇0𝑔ℎ − space: if 𝑎, 𝑏 are two distinct points in 𝜒, ∃ 𝑈 ∈ (gh-os) s.t. either     𝑎 ∈ 𝑈 and 𝑏 ∉

𝑈, or 𝑏 ∈ 𝑈 and 𝑎 ∉ 𝑈.[5] 

(2)   𝑇1𝑔ℎ − space: if 𝑎, 𝑏 ∈ 𝜒 and 𝑎 ≠ 𝑏, ∃ 𝑈, 𝑉 ∈ (gh-os) containing  𝑎, 𝑏 respectively, s.t.  

𝑏 ∉ 𝑈, and 𝑎 ∉ 𝑉.[5] 

(3)   𝑇2𝑔ℎ − space: if 𝑎, 𝑏 ∈ 𝜒 and 𝑎 ≠ 𝑏, ∃ 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡 𝑈, 𝑉 ∈ (gh-os) containing 𝑎, 𝑏 

respectively. [5]                     

2. Some Separation Axioms by Using gh-Closed Set. 

          In this chapter, we introduce and study the notion of (gh-cs) in TS and obtain some of its 

basic properties.       

Definition2.1. "A  TS  (𝜒, 𝜏) is said to be: 

1- gh-Regular space(shortly 𝑅𝑔ℎ-space) if for every (gh- cs) F and each point x of 𝜒 which is 

not in F, there exists disjoint (gh-os) U and V s.t.  𝑥 ∈ 𝑈, 𝐹 ⊂ 𝑉. 

2- gh-Normal space (shortly 𝑁𝑔ℎ-space) if for every pair of disjoint (gh-cs) 𝐹1 and 𝐹2 in 𝜒,there 

exists disjoint (gh-os) U and  V s.t.   𝐹1 ⊂ 𝑈, 𝐹2 ⊂ 𝑉. 

3- gh- 𝐶𝑁𝑔ℎ-space, also known as completely normal space, if it satisfies gh -Titus axiom: If 

𝐴1 ⊆ 𝜒, 𝐴2 ⊆ 𝜒, 𝐴1 ∩ 𝐴2 = ∅  ∃ 𝐼1, 𝐼2  ⊆ 𝜒 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐴1 ⊆ 𝐼1 , 𝐴2 ⊆ 𝐼2 𝑤ℎ𝑒𝑟𝑒 𝐼1 ∩ 𝐼2 =

∅ , 𝐼1, 𝐼2 are (gh-os). 

4- gh- Completely Regular space (shortly C𝑅𝑔ℎ-space) if the following axiom is true: If F is 

(gh-cs) in 𝜒 and 𝑥 ∈ 𝜒, 𝑥 ∉ 𝐹  there exists an (gh-contm) [5] 𝑓: 𝜒 ⟶ [0,1] s.t.   𝑓(𝐹) = 1,  

𝑓(𝑥) = 0. 
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5- gh- Perfectly Normal space (shortly 𝑃𝑁𝑔ℎ-space) if it satisfies the following axiom: If 

𝐶1 𝑎𝑛𝑑 𝐶2 are disjoint (gh-cs), there exists (gh-contm) [5]                   𝑓: 𝜒 ⟶ [0,1] 

s.t.   𝑓−1({0}) = 𝐶1and 𝑓−1({1}) = 𝐶2. 

6- 𝑇1/2-space [6] if each (g-cs) in it is (cs) 

Definition2.2. A 𝑇1𝑔ℎ − space is named 𝑇3𝑔ℎ − space if its 𝑅𝑔ℎ space. 

Definition2.3. A 𝑇1𝑔ℎ − space is named  𝑇4𝑔ℎ − space if its 𝑁𝑔ℎ space. 

Definition2.4. A 𝑇1𝑔ℎ − space is named  𝑇5𝑔ℎ − space if its 𝐶𝑁𝑔ℎ space. 

Definition2.5. A 𝑇1𝑔ℎ − space is named  𝑇6𝑔ℎ − space if its 𝑃𝑁𝑔ℎ space. 

Definition2.6. A 𝑇1𝑔ℎ − space is named  𝑇
(3

1

2
)𝑔ℎ

− space if its C𝑅𝑔ℎ space. 

Example2.6. Let       𝜒 ={1, 2}  and   𝜏 = {∅, 𝜒, {1}, {2}},    𝑔ℎ𝑐( 𝜒) = 𝜏    then  

  ℎ𝑜(𝜒) = {∅, 𝜒, {1}, {2}} = ℎ𝑐(𝜒) =  𝑔ℎ𝑐( 𝜒) 

1. 1, 2 ∈ 𝜒(1 ≠ 2)∃ {1}, {2} ∈ 𝜏𝑔ℎs.t. 1∈ {1}, 2 ∈ {2}.Therefore; (𝜒, 𝜏) is 𝑇1𝑔ℎ. 

2. 1, 2 ∈ 𝜒 (1 ≠ 2) ∃ {1}, {2} ∈ 𝜏𝑔ℎ s.t. 1∈ {1}, 2 ∈ {2}, {1} ∩ {2} = ∅ . Therefore; (𝜒, 𝜏) is   

𝑇2𝑔ℎ. 

3. {2} is  (gh-cs) and 1∉ {2} there is two (gh-os){1},{2} s.t. 1 ∈ {1}, {2} ⊆ {2}. Therefore; 

(𝜒, 𝜏) is 𝑅𝑔ℎ space. 

4. By (1) and (3) we have : (𝜒, 𝜏) is 𝑇3𝑔ℎ 

5. {1}, {2} are (gh-cs) there are two (gh-os) {1}, {2} s.t. {1} ⊆ {1}, {2} ⊆ {2}, {1} ∩ {2} = ∅. 

Therefore; (𝜒, 𝜏) is  𝑁𝑔ℎ space. 

6. By (1) and (5) we have : (𝜒, 𝜏) is 𝑇4𝑔ℎ 

7. {1}, {2} ⊆ 𝜒, there are two (gh-os){1}, {2} s.t. {1} ⊆ {1}, {2} ⊆ {2} 𝑤ℎ𝑒𝑟𝑒{1} ∩ {2} = ∅. 

Therefore; (𝜒, 𝜏) is 𝐶𝑁𝑔ℎ space.   

8. By (1) and (7) we have : (𝜒, 𝜏) is 𝑇5𝑔ℎ 

9. Let 𝑓: 𝜒 ⟶ [0,1] be (gh-contm) and {1}, {2} are disjoint (gh-cs) s.t. 𝑓−1({0}) = {1},  

𝑓−1({1}) = {2}. Therefore; (𝜒, 𝜏) is 𝑃𝑁𝑔ℎ space. 

10. By (1) and (9) we have : (𝜒, 𝜏) is 𝑇6𝑔ℎ 

Theorem 2.7. A TS (𝜒, 𝜏) is 𝑇0𝑔ℎ −𝑠𝑝𝑎𝑐𝑒 iff  for each pair of distinct points 𝑥, 𝑦  of 𝜒,  𝑐𝑙𝑔ℎ({𝑥}) ≠

𝑐𝑙𝑔ℎ({𝑦}). 

Proof: Suppose 𝜒 be a 𝑇0𝑔ℎ −space, and 𝑥, 𝑦 ∈ 𝜒 s.t. 𝑥 ≠ 𝑦, then there exists             (gh-os) 𝑈 

containing one of the points but not the other, then 𝑥 ∈ 𝑈 and 𝑦 ∉ 𝑈. Then 𝜒\𝑈 is (𝑔ℎ − cs) 

containing 𝑦 but not 𝑥. But 𝑐𝑙𝑔ℎ({𝑦}) is the smallest (gh−cs) containing 𝑦. Therefore;𝑐𝑙𝑔ℎ({𝑦}) ⊂

𝜒\𝑈 and hence 𝑥 ∉ 𝑐𝑙𝑔ℎ({𝑦}). Thus 𝑐𝑙𝑔ℎ({𝑦}) ≠ 𝑐𝑙𝑔ℎ({𝑥}). 

Conversely, suppose 𝑥, 𝑦 ∈ 𝜒, 𝑥 ≠ 𝑦 and 𝑐𝑙𝑔ℎ({𝑦}) ≠ 𝑐𝑙𝑔ℎ({𝑥}). Let 𝑧 ∈ 𝜒 s.t.          𝑧 ∈ 𝑐𝑙𝑔ℎ({𝑥}) 

but 𝑧 ∉ 𝑐𝑙𝑔ℎ({𝑦}). If 𝑥 ∈ 𝑐𝑙𝑔ℎ({𝑦}) then 𝑐𝑙𝑔ℎ({𝑥}) ⊂ 𝑐𝑙𝑔ℎ({𝑦}) and hence 𝑧 ∈ 𝑐𝑙𝑔ℎ({𝑦}). This is a 

contradiction. Therefore; 𝑥 ∉ 𝑐𝑙𝑔ℎ({𝑦}). That is  𝑥 ∈ 𝜒\𝑐𝑙𝑔ℎ({𝑦}). Therefore; 𝑋\𝑐𝑙𝑔ℎ({𝑦}) is (gℎ −

os) containing 𝑥 but not 𝑦. Hence (𝜒, 𝜏) is 𝑇0𝑔ℎ −space.∎ 
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Theorem 2.8. A TS (𝜒, 𝜏) is 𝑇1𝑔ℎ −𝑠𝑝𝑎𝑐𝑒 iff  for every k ∈ 𝜒 singleton {𝑘} is (gℎ − 𝑐𝑠) in 𝜒. 

Proof: Assume that (𝜒, 𝜏) be 𝑇1𝑔ℎ −space and let k ∈ 𝜒, to prove that {𝑘} is (gh−cs), we will prove 

𝜒\{𝑘} is (gh−os) in 𝜒. Let 𝑦 ∈ 𝜒\{𝑘}, implies 𝑘 ≠ 𝑦 and since 𝜒 is       𝑇1𝑔ℎ −space then, their 

exists two (gℎ − os) 𝑈, 𝑉 s.t. 𝑘 ∉ 𝑈,  𝑦 ∈ 𝑉 ⊂ 𝜒\{𝑘}. Since 𝑦 ∈ 𝑉 ⊂ 𝜒\{𝑘} then  𝜒\{𝑘} is 

(gh−os). Hence {𝑘} is (gh−cs). 

Conversely, let k ≠ 𝑦 ∈ 𝜒, then {𝑘}, {𝑦} are (gh−cs). That is 𝜒\{𝑘} is (gh−os), clearly, k ∉ 𝜒\{𝑘} 

and 𝑦 ∈ 𝜒\{𝑘}. Similarly, 𝜒\{𝑦} is (gh−os),  𝑦 ∉ 𝜒\{𝑦} and             𝑘 ∈ 𝜒\{𝑦}. Hence (𝜒, 𝜏) is 

𝑇1𝑔ℎ −space. ∎ 

Theorem 2.9.Aspace (𝜒, 𝜏) is 𝑇2𝑔ℎ −𝑠𝑝𝑎𝑐𝑒 iff (𝜒, 𝜏𝑔ℎ) is Hausdorff -space. 

Proof: Assumes n, m∈ 𝜒 with n≠ 𝑚 . Since χ is 𝑇2𝑔ℎ −space, there exists disjoint (gh-os) H and K 

in 𝜒 s.t. 𝑛 ∈ 𝐻 and 𝑚 ∈ 𝐾, HK=∅. Here  H, K∈ 𝜏𝑔ℎ, so, obviously (𝜒, 𝜏𝑔ℎ) ceases to be a 𝑇2𝑔ℎ 

−space i.e. a Hausdorff space. 

Conversely, whenever (𝜒, 𝜏𝑔ℎ) is a 𝑇2𝑔ℎ −space , there exists a pair of members of 𝜏𝑔ℎ, say, P & 

Q for a pair of distinct points  p & q of 𝜒 such that 𝑝 ∈ 𝑃 & 𝑞 ∈ 𝑄 &    𝑃 ∩ 𝑄 = ∅. But 

gho(𝜒, 𝜏)= 𝜏𝑔ℎ. Combing all these facts (χ, τ) is 𝑇2𝑔ℎ −space. ∎ 

Theorem 2.10. Each open subspace of a 𝑇2𝑔ℎ −𝑠𝑝𝑎𝑐𝑒 is 𝑇2𝑔ℎ . 

Proof: Suppose U be an open subspace of a  𝑇2𝑔ℎ −space (𝜒, 𝜏). Let k and p represent any two 

separate points on U. Since χ is 𝑇2𝑔ℎ −space and 𝑈 ⊂  𝜒, there exists two disjoint (gh-os) G and H 

in χ such that  k ∈ 𝐺 & 𝑝 ∈ 𝐻. Let 𝐴 = 𝑈 ∩ 𝐺 & 𝐵 = 𝑈 ∩ 𝐻. Then A & B are (gh-os) in U 

containing k and p. Also, 𝐴 ∩ 𝐵 = ∅. Hence (𝑈, 𝑇𝑢) is 𝑇2𝑔ℎ. ∎ 

Theorem 2.11. Each subspace of  𝑅𝑔ℎ −  space is 𝑅𝑔ℎ . 

Proof: let (𝜒, 𝜏) be an 𝑅𝑔ℎ − space  and 𝐴 a subset,  k ∈ 𝐴 and 𝐶 is (cs) in 𝐴, "now 𝑘 is a point in 𝜒, 

𝐷 is an (gℎ − cs) subset of 𝜒 s.t. 𝐷 ∩ 𝐴 = 𝐶. Such  𝐷 exists by the way that the subspace topology 

is defined. Clearly, whatever 𝐷 is picked up for the purpose, 𝑘 cannot lie in D because the only 

points in 𝐷 ∩ 𝐴 are in a set not containing 𝑘. Since  𝜒 is 𝑅𝑔ℎ , we can find (gh-os) 𝑈 and 𝑉 in 𝜒 s.t. 

𝑘 ∈ 𝑈, 𝐶 ⊆ 𝑉 and 𝑈 and 𝑉 are disjoint. Now, 𝑈 ∩ 𝐴 and 𝑉 ∩ 𝐴 are disjoint (gh−os) subsets of 𝐴, 

with 𝑘 ∈ 𝑈 ∩ 𝐴 and               𝐶 ⊆ 𝑉 ∩ 𝐴". ∎ 

Theorem 2.12.Let (𝜒, 𝜏) be TS then the following statements are equivalent. 

1- 𝜒 is  𝑇2𝑔ℎ − 𝑠𝑝𝑎𝑐𝑒. 

2- Let k ∈ 𝜒.For each k≠ p, there exists(gh-os) U containing k s.t. p∉ 𝑐𝑙𝑔ℎ(𝑈). 

3- For each k ∈  𝜒  {𝑐𝑙𝑔ℎ(𝑈): U∈ 𝜏𝑔ℎ &  k ∈U}={k} 

Proof:(1) (2): Assumes (𝜒, 𝜏) is 𝑇2𝑔ℎ − space, there exists disjoint (gh-os) U and G containing k 

and p respectively. So, U  ⊂ 𝜒\G.    Therefore;   𝑐𝑙𝑔ℎ(𝑈) ⊂ 𝜒\G. So p∉ 𝑐𝑙𝑔ℎ(𝑈). 

 (2)  (3): If possible for some k≠ p , we have p∈ 𝑐𝑙𝑔ℎ(𝑈) for every (gh-os) U containing k, which 

is contradiction (2). 

(3)  (1): Suppose k, p ∈ 𝜒 & k≠ p . Then there exists (gh-os) U containing k s.t.  p ∉ 𝑐𝑙𝑔ℎ(𝑈). Let 

V= 𝜒\𝑐𝑙𝑔ℎ(𝑈), then  p∈V and k∈U and also U V=∅.∎ 

 

3. The Relation Ships among gh-Separation Axioms. 

       In this part, we compared among 𝑇0𝑔ℎ, 𝑇1𝑔ℎ, 𝑇2𝑔ℎ, 𝑇3𝑔ℎ, 𝑇
(3

1

2
)𝑔ℎ

, 𝑇4𝑔ℎ, 𝑇5𝑔ℎ and 𝑇6𝑔ℎ- space. 

Also we obtain some of its basic properties. 

Theorem 3.1. Each 𝑇2𝑔ℎ − space is 𝑇1𝑔ℎ and also is 𝑇0𝑔ℎ.[5] 
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Theorem 3.2. Each Regular space is 𝑅𝑔ℎ . 

Proof: Assume that (𝜒, 𝜏) be a regular space. Let k ∈ 𝜒 and F be any (cs) on 𝜒, s.t. k ∉ 𝐹, and let  

U, V  be any (os) in 𝜒 , s.t. UV=∅. Form Theorem (1.4) (3) each (cs) is (gh-cs). Then F is (gh-cs) 

&  k ∉ 𝐹. Each (os) being (gh-os), U and V are then (gh-os). Hence (𝜒, 𝜏) is 𝑅𝑔ℎ . ∎ 

"The converse of theorem 3.2 is not true in general as shown in the following example". 

If    𝜒 = {1, 2, 3} ,    𝜏 = {∅, 𝜒, {1}, {1, 3}.  

Then 𝜒 is 𝑅𝑔ℎ  space but not Regular space. 

Theorem 3.3. Each Normal space is  𝑁𝑔ℎ −  space . 

Proof: Suppose that (𝜒, 𝜏) be Normal space and let 1F , 2F  be disjoint (cs) in 𝜒 and  U , V  are 

disjoint (os) in  𝜒 , s.t. 1F ⊂U, 2F ⊂V and UV=∅ . Form Theorem (1.4)  each (cs) is (gh-cs)  and  

every (os) is (gh-os) in 𝜒. Then 1F , 2F  are (gh-cs) and U, V are (gh-os). Hence (𝜒, 𝜏) is  𝑁𝑔ℎ . ∎ 

The converse of theorem 3.3 is not true in general as shown in the following example. 

If    𝜒 = {𝑎, 𝑏, 𝑐} ,        𝜏 = {∅, 𝜒, {𝑏}, {𝑎, 𝑏}, {𝑏, 𝑐}}.  

Then 𝜒 is  𝑁𝑔ℎ  space but not Normal space. 

Theorem 3.4. Each  𝑇3𝑔ℎ- space is 𝑇2𝑔ℎ-space. 

Proof:  Suppose (𝜒, 𝜏) be 𝑇3𝑔ℎ- space and let  n, 𝑚 ∈ 𝜒  s.t.  n ≠ 𝑚 . Since 𝜒 be      𝑇1𝑔ℎ-space, 

then {n} is (gh-cs),  since n ≠ 𝑚, then m ∉ {𝑛}.  Now,  since  𝜒  be                gh- Regular space, 

there exists disjoint (gh-os) U and V s.t.   𝑚 ∈ 𝑈, {n}⊂ 𝑉 and        UV=∅. Therefore; (𝜒, 𝜏) is 

𝑇2𝑔ℎ-space. ∎ 

"The converse of theorem 3.4 is not true in general as shown in the following example". 

Example 3.5. If   𝜒 = ℝ ,               𝝉 = {(−𝑷, 𝑷)\ {
𝟏

𝒏
: 𝒏𝝐𝑵} : 𝑷 > 𝑶} 

 Then (𝜒, 𝜏) is  𝑇2𝑔ℎ −  space but not  𝑇3𝑔ℎ. 

Theorem 3.6. Each 𝑇
(3

1

2
)𝑔ℎ

 space is 𝑇3𝑔ℎ. 

Theorem 3.7. Each 𝑇4𝑔ℎ-  space is 𝑇
(3

1

2
)𝑔ℎ

. 

Proof: A TS (𝜒, 𝜏) satisfies  2.3  of 𝑇4𝑔ℎ- space, This results in 2.6 of  𝑇
(3

1

2
)𝑔ℎ

- space and by 2.1(2), 

we get that the proof is complete. ∎ 

Theorem 3.8. Each  𝑇4𝑔ℎ- space is 𝑇3𝑔ℎ. 

Proof: A TS (𝜒, 𝜏) satisfies 2.3 of 𝑇4𝑔ℎ- space, This results in 2.2 of  𝑇3𝑔ℎ- space and since every 

two discrete (gh-cs) are separated, we get that the proof is complete. ∎ 

Theorem 3.9. Each  𝑇5𝑔ℎ- space is 𝑇4𝑔ℎ. 

Proof: A TS (𝜒, 𝜏) satisfies 2.4 of 𝑇5𝑔ℎ- space, This results in 2.3 of  𝑇4𝑔ℎ- space and since every 

two discrete (gh-cs) are separated, We realize the proof is clear. ∎ 

Corollaries 3.10. 

1. Each 𝑇3𝑔ℎ (respect. 𝑇
(3

1

2
)𝑔ℎ

 ,𝑇4𝑔ℎ, 𝑇5𝑔ℎ and 𝑇6𝑔ℎ- space ) is 𝑇1𝑔ℎ but the converse is not true 

because 𝑇1𝑔ℎ -space is not necessary to be  𝑅𝑔ℎ space (respect. C𝑅𝑔ℎ, 𝑁𝑔ℎ, 𝐶𝑁𝑔ℎ and 𝑃𝑁𝑔ℎ 

space). 

2.  Each  𝑇1𝑔ℎ is 𝑇0𝑔ℎ-space but the converse is not true.[5] 

3.  From above we have the following diagram: 

 

                                                                   𝑇0𝑔ℎ                      
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                                                                    𝑇1𝑔ℎ                                                        

                                                                     

                                                                                                                                                                                         

                                         𝑇5𝑔ℎ                  𝑇4𝑔ℎ              𝑇
(3

1

2
)𝑔ℎ

           𝑇3𝑔ℎ        𝑇2𝑔ℎ 

 

                                                                           Fig. 1 

 

4. Property of gh- Separation Axioms 

           In this section, we discuss the properties of gh-separation axioms.  

Theorem 4.1.Let f :(𝜒, 𝜏) (𝛾, 𝜎) be bijection, (gh-contm) and 𝛾 is 𝑇0 − 𝑠𝑝𝑎𝑐𝑒, then 𝜒 is 𝑇0𝑔ℎ −

𝑠𝑝𝑎𝑐𝑒.     

Proof: Let f :(𝜒, 𝜏) (𝛾, 𝜎) be bijection, (gh-contm) and 𝛾 is" 𝑇0 − space". Demonstrating that 𝜒 

is a "𝑇0𝑔ℎ − space" . Let 1x , 2x ∈  𝜒 with 1x ≠ 2x . Since f is a bijection, there exists 1y , 2y  ∈

𝛾with 1y ≠ 2y  s.t. 1(xf )= 1y  and f ( 2x ) = 2y , then  1x = 1f ( 1y ) and 2x =
1f ( 2y ). Since 𝛾 is" 

𝑇0 − space", there exists an (os)U in 𝜒 s.t.  1y  ∈U & 2y ∉U. Since f is (gh- contm), 1f (U) is a 

(gh-os) in 𝛾. We now have, 1y  ∈U then 1f ( 1y ) ⊂ 1f (U) then  1x ∈ 1f (U) and 2x ∉ 1f (U). 

Henceforth, for any two separate points 1y , 2y in 𝛾, there is (gh-os) 1f (U) in 𝛾 s.t. 1x ∈ 1f (U) & 

2x ∉ 1f (U). This shows that 𝑋 is a 𝑇0𝑔ℎ. ∎ 

Theorem 4.2. If f :(𝜒, 𝜏) (𝜒, 𝜏) be an 1-1, (gh-irrem) and 𝛾 is 𝑇0𝑔ℎ − 𝑠𝑝𝑎𝑐𝑒, then 𝜒 is  "𝑇0𝑔ℎ −

𝑠𝑝𝑎𝑐𝑒".     

Proof: Assumes that n, m ∈  𝜒 with n≠ m. Since f is 1-1 and  𝛾 is "𝑇0𝑔ℎ − space" there exists (gh- 

os) U in 𝛾 s.t.  f(n) ∈U and f(m) ∉U or there exists (gh- os) G in 𝛾 s.t.  f(m) ∈G and f(n) ∉G with f(n) 

≠ f(m). By (gh-irrem) of  f, 𝑓−1(𝑈) is (gh-os) in 𝜒  such that n ∈  𝑓−1(𝑈) and  m ∉ 𝑓−1(𝑈) or 

𝑓−1(𝐺) is (gh-os) in 𝜒  such that 𝑚 ∈  𝑓−1(𝐺) and  n ∉ 𝑓−1(𝐺). This demonstrates 𝜒 is "𝑇0𝑔ℎ −

space". ∎ 

Theorem 4.3. If f :(𝜒, 𝜏) (𝜒, 𝜏) be an 1-1, "(gh-irrem)" and 𝛾 is "𝑇1𝑔ℎ − 𝑠𝑝𝑎𝑐𝑒", then 𝜒 is  

𝑇1𝑔ℎ − 𝑠𝑝𝑎𝑐𝑒.     

Proof: "Theorem 4.2's" mention of the argument is accurate, with the necessary modifications. 

Theorem 4.4. Let (𝜒, 𝜏) be TS and 𝛾 is 𝑇1 − 𝑠𝑝𝑎𝑐𝑒. If f :(𝜒, 𝜏) (𝛾, 𝜎) is 1-1 and  (gh- contm) , 

then 𝜒 is  𝑇1𝑔ℎ − 𝑠𝑝𝑎𝑐𝑒. 

Proof: Suppose n, m ∈ 𝜒. s.t.  n≠ m. Since f  is 1-1 then f (n)≠ f (m). Since  𝛾 is" 𝑇1𝑔ℎ − space" 

then there are two (gh- os) H and K in 𝛾 s.t. f (n) ∈H , f (m)∉H and f (m) ∈K, f (n) ∉K. Since f

is (gh- contm) then  1f (H) , 1f (K) are two (gh-os) in 𝜒 , n∈ 1f (H), m∉ 1f (H) and m∈ 1f (K), 

n∉ 1f (K). This shows that 𝜒 is  𝑇1𝑔ℎ. ∎ 

Theorem 4.5. Let (𝜒, 𝜏) be TS and 𝛾 is 𝑇2𝑔ℎ − 𝑠𝑝𝑎𝑐𝑒. If f :(𝜒, 𝜏)  (𝛾, 𝜎) is 1-1 and ( gh- irrem) , 

then 𝜒 is  𝑇2𝑔ℎ − 𝑠𝑝𝑎𝑐𝑒.     

Proof: Suppose n, m ∈ 𝜒.  s.t.  n≠ m. Since " f  is 1-1 " then f (n)≠ f (m). Since  𝛾 is" 𝑇2𝑔ℎ −

space" then there are two (gh- os) H and K in 𝛾 s.t. f (n) ∈H , f (m) ∈K and HK=∅,  since f is 

(gh- irrem) then  1f (H) , 1f (K) are two  (gh-os) in 𝜒, n∈         1f (H), m∈ 1f (K) and 1f (K) 


1f (H)= ∅. This shows that 𝜒 is 𝑇2𝑔ℎ. ∎ 
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Theorem 4.6. Let (𝜒, 𝜏) be TS and 𝛾 is 𝑇2 − 𝑠𝑝𝑎𝑐𝑒. If f :(𝜒, 𝜏) (𝛾, 𝜎) is 1-1 and  (gh- contm) , 

then 𝜒 is  𝑇2𝑔ℎ − 𝑠𝑝𝑎𝑐𝑒.     

Proof: Suppose n, m ∈ 𝜒. s.t.  n ≠ m. Since " f  is 1-1" then f (n)≠ f (m). Since 𝛾 is "𝑇2 − space" 

then there are two (os) H and K in 𝛾 s.t. f (n) ∈H , f (m) ∈K and                   HK=∅,  since f is 

(gh- contm) then  1f (H) , 1f (K) are two ( gh-os) in 𝜒, n∈        1f (H), m∈ 1f (K) and 1f (H) 


1f (K)= ∅. This shows that 𝜒 is a 𝑇2𝑔ℎ. ∎ 

Theorem 4.7.If f is a (gh- irrem) and gh-closed map injection of a  TS (𝜒, 𝜏) in to         𝑅𝑔ℎ − 

space 𝛾, then 𝜒 is 𝑅𝑔ℎ. 

Proof: Suppose k ∈ 𝜒 and A be a (gh-cs) in 𝜒 not containing k . Since f  is (gh-cs),          f (A) is a 

(gh-cs) in 𝛾 not containing f (k). Since 𝛾 is 𝑅𝑔ℎ, there exists disjoint (gh-os) U and V in 𝛾 s.t. f (k) 

∈U and f (A) ⊂V. Since f is (gh- irrem), 1f (U) and 1f (V) are disjoint (gh-os) in 𝜒 containing k 

and A respectively. Hence (𝜒, 𝜏) is 𝑅𝑔ℎ − 𝑠𝑝𝑎𝑐𝑒. ∎ 

Remark 4.8. Let (𝑋∗, 𝜏∗) be a partial topological space of TS (𝜒, 𝜏) and let 𝐹 ⊆ 𝑋∗ then 𝜏∗ ⊆ 𝜏 ⊆

𝜏𝑔ℎ if and only if 𝑋∗ ∈ 𝜏. 

Theorem 4.9.  A TS (𝜒, 𝜏) is 𝐶𝑁𝑔ℎ  iff  each partial TS of it is 𝑁𝑔ℎ.  

Proof: 1.  Assumes that (𝜒, 𝜏) is 𝐶𝑁𝑔ℎ and let (𝑋∗, 𝜏∗) is a partial  space of X  . Let 1F  and 2F  be 

two discrete (gh-cs) in 𝜒, then: 

𝐹1 ∩ 𝐶𝐿𝑔ℎ(𝐹2) = 𝐶𝐿𝑔ℎ
∗ (𝐹1) ∩ 𝐶𝐿𝑔ℎ(𝐹2) = 𝑋∗ ∩ 𝐶𝐿𝑔ℎ(𝐹1) ∩ 𝐶𝐿𝑔ℎ(𝐹2) 

                                      = 𝐶𝐿𝑔ℎ
∗ (𝐹1) ∩ 𝐶𝐿𝑔ℎ

∗ (𝐹2) = 1F ∩
2F =∅ 

Then 1F  and 2F  are separated sets in 𝜒. By definition of 𝐶𝑁𝑔ℎ there exists two (gh-os) 𝐼1 𝑎𝑛𝑑 𝐼2  

s.t. 𝐹1 ⊆ 𝐼1 𝑎𝑛𝑑 𝐹2 ⊆ 𝐼2 then 𝑋∗ ∩ 𝐼1, 𝑋∗ ∩ 𝐼2 are discrete (gh-os) in 𝑋∗. Where  𝐹1 ⊆ 𝑋∗ ∩ 𝐼1, 𝐹2 ⊆

𝑋∗ ∩ 𝐼2. Hence, (𝑋∗, 𝜏∗) is 𝑁𝑔ℎ. 

2.  On the other hand assume that each partial TS of (𝜒, 𝜏) is 𝑁𝑔ℎ and we must prove that 𝜒 is 𝐶𝑁𝑔ℎ. 

Let 𝐴1 𝑎𝑛𝑑 𝐴2 be separated sets in 𝜒 and assumes that (gh-os) [𝐶𝐿𝑔ℎ(𝐴)  ∩ 𝐶𝐿𝑔ℎ(𝐵)]
𝐶

= 𝑋∗ be 

partial space of 𝜒. This space is 𝑁𝑔ℎ (by suppose) and   𝑋∗ ∩ 𝐶𝐿𝑔ℎ(𝐴), 𝑋∗ ∩ 𝐶𝐿𝑔ℎ(𝐵) are two 

discrete (gh-cs) in 𝑋∗. Then there exists two discrete (gh-os) 𝐺𝐴 𝑎𝑛𝑑 𝐺𝐵 in 𝑋∗, s.t.  𝑋∗ ∩ 𝐶𝐿𝑔ℎ(𝐴) ⊆

𝐺𝐴, 𝑋∗ ∩ 𝐶𝐿𝑔ℎ(𝐵) ⊆ 𝐺𝐵. Since 𝑋∗is  (gh-os) in 𝜒, then 𝐺𝐴 𝑎𝑛𝑑 𝐺𝐵 are (gh-os) in 𝜒 too (4.8). Then 

A ⊆ 𝑋∗ ∩ 𝐶𝐿𝑔ℎ(𝐴) ⊆ 𝐺𝐴 , 𝐵 ⊆ 𝑋∗ ∩ 𝐶𝐿𝑔ℎ(𝐵) ⊆ 𝐺𝐵. Therefore; (𝑋, 𝜏) is 𝐶𝑁𝑔ℎ ∎ 

 

Definition4.10. A mapping f : (𝜒, 𝜏)  (𝛾, 𝜎) is said to be point gh-closure 1-1 iff 𝑛, 𝑚 ∈ 𝜒 such 

that 𝐶𝐿𝑔ℎ{𝑛} ≠ 𝐶𝐿𝑔ℎ{𝑚} then 𝐶𝐿𝑔ℎ{𝑓(𝑛)} ≠ 𝐶𝐿𝑔ℎ{𝑓(𝑚)} 

Theorem 4.11. If f :(𝜒, 𝜏)  (𝛾, 𝜎) is point gh-closure 1-1 and 𝜒 is 𝑇0𝑔ℎ − 𝑠𝑝𝑎𝑐𝑒, then f is 1-1. 

Proof: suppose 𝑛, 𝑚 ∈ 𝜒 with 𝑛 ≠ 𝑚. Since 𝜒 is 𝑇0𝑔ℎ − space, then 𝐶𝐿𝑔ℎ{𝑛} ≠ 𝐶𝐿𝑔ℎ{𝑚} by 

theorem 2.7. But f is point gh-closure 1-1 implies that 𝐶𝐿𝑔ℎ{𝑓(𝑛)} ≠ 𝐶𝐿𝑔ℎ{𝑓(𝑚)}. Hence  𝑓(𝑛) ≠

𝑓(𝑚) Thus,  f is 1-1. ∎ 

Theorem 4.12. A point gh-closure 1-1mapping f :(𝜒, 𝜏)  (𝛾, 𝜎) from 𝑇0𝑔ℎ-space 𝜒 in to 𝑇0𝑔ℎ −

𝑠𝑝𝑎𝑐 𝛾 exists iff  f is 1-1. 

Proof: The necessity follows from the fact mentioned in theorem 4.2  

For sufficiency, let  f : (χ, τ)  (γ, σ) from 𝑇0𝑔ℎ-space 𝜒 in to 𝑇0𝑔ℎ − spac 𝛾 be an 1-1 mapping. 

Now for every pair of distinct points n & m∈ 𝜒, 𝐶𝐿𝑔ℎ{𝑛} ≠ 𝐶𝐿𝑔ℎ{𝑚} as 𝜒 is 𝑇0𝑔ℎ − space. Since, f 
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is 1-1 mapping 𝑓(𝐶𝐿𝑔ℎ{𝑛}) ≠ 𝑓(𝐶𝐿𝑔ℎ{𝑚}).i.e., 𝐶𝐿𝑔ℎ{𝑓(𝑛)} ≠ 𝐶𝐿𝑔ℎ{𝑓(𝑚)}. Consequently, f   is 

point gh-closure 1-1mapping. ∎        

Definition4.13. A mapping f : (𝜒, 𝜏)  (𝛾, 𝜎) is called gh-closed denoted by         (gh-cm) if the 

image f(F) of each (cs) F in (𝜒, 𝜏) is (gh-cs) in (𝛾, 𝜎). 

Theorem4.14. Let (𝜒, 𝜏) and (𝛾, 𝜎) be TS and 𝛾 is 𝑅𝑔ℎ space. If f : (𝜒, 𝜏)  (𝛾, 𝜎) is (gh-cm), (gh-

irrem) and 1-1, then 𝜒 is 𝑅𝑔ℎ .  

Proof: Assumes that H be (cs) in 𝜒 , n ∉ 𝐻. Let f  (gh-cm), then f(H) is (gh-cs) in 𝛾.  f(n)= 𝑚 ∉

𝑓(𝐻) . But 𝛾 is 𝑅𝑔ℎ space, then there are two (gh-os)   𝐼1 and 𝐼2 in Y  such that 𝑓(𝐻) ⊆ 𝐼2, 𝑚 ∈

𝐼1 𝑎𝑛𝑑 𝐼1 ∩ 𝐼2 = ∅ . Since f is (gh-irrem) and one to one , so 𝑓−1(𝐼1), 𝑓−1(𝐼2) are two (gh-os) in 𝜒 

and 𝑛 ∈ 𝑓−1(𝐼1), 𝐻 ⊆ 𝑓−1(𝐼2), 𝑓−1(𝐼1) ∩ 𝑓−1(𝐼2) = ∅. Hence (𝜒, 𝜏) is 𝑅𝑔ℎ space. ∎ 

Definition4.15. A space  (𝜒, 𝜏) is called a 

1. 𝑇ℎ- space if each (h-cs) in it is (cs). 

2. 𝑇𝑔ℎ- space if each (gh-cs) in it is (cs). 

Example4.16. If    𝜒 ={1, 2}  and   𝜏 = {∅, 𝜒, {1}},     ℎo (𝜒 ) = 𝜏    then 

        ghc (𝜒 ) = {∅, 𝜒, {2}}= 𝐶(𝜏) 

       𝐶(𝜏) = {∅, 𝜒, {2}} = ℎc (𝜒 )    

This shows that 𝜒 is  𝑇𝑔ℎ-space. Also 𝜒 is 𝑇ℎ. 

Example4.17. If    𝜒 ={1, 2,3}  and   𝜏 = {∅, 𝜒, {1}, {2}, {1,2}},     ℎo (𝜒 ) = 𝜏    then 

ghc (𝜒 ) = {∅, 𝜒, {3}, {1,3}, {2,3}}= 𝐶(𝜏),   𝐶(𝜏) = {∅, 𝜒, {3}, {1,3}, {2,3}} = ℎc (𝜒 )    

This shows that 𝜒 is  𝑇𝑔ℎ-space. Also 𝜒 is 𝑇ℎ. 

 

Theorem 4.18. If (𝜒, 𝜏) is 𝑇𝑔ℎ-space then,  for each  𝑘 ∈ 𝜒, {k} is (gh-cs) or open. 

Proof: Let TS (𝜒, 𝜏) be 𝑇𝑔ℎ-space. Let us Suppose that for some k∈ 𝜒, {k} is not         (gh- cs) in 𝜒.  

By theorem 1.4(3) {k} is not (cs) in 𝜒. So 𝜒\{𝑘} is not (os) in 𝜒 and 𝜒 is the only (os) containing 

𝜒\{𝑘}. So 𝜒\{𝑘} is (gh-cs) in 𝜒, by (suppose), 𝜒\{𝑘} is (cs) in 𝜒, it means {k} is (os) in 𝜒. ∎ 

Theorem4.19. Each 𝑇𝑔ℎ-space is 𝑇ℎ-space. 

 Proof: Suppose (𝜒, 𝜏) be 𝑇𝑔ℎ-space and let k be (h-cs) in 𝜒. Since each (h-cs) is          (gh-cs), 

therefore; k is (gh-cs) in 𝜒, by (suppose),  k is (cs) in 𝜒. This shows that 𝜒            is 𝑇ℎ. ∎ 

"The converse of theorem 4.19 is not true in general as shown in the following example". 

Example 4.20. If    𝜒 ={1, 2}  and   𝜏 = {∅, 𝜒}   then  

 𝐶(𝜏) = 𝜏 = ℎc (𝜒 ) = ℎo (𝜒 ) = {∅, 𝜒}. Hence  (𝜒, 𝜏) is 𝑇ℎ- space. but (𝜒, 𝜏) is not 𝑇𝑔ℎ, because 

{1}is (gh-cs) in (𝜒, 𝜏) but {1} is not (cs) in (𝜒, 𝜏).  

Example 4.21.  If    𝜒 ={1, 2,3}  and   𝜏 = {∅, 𝜒, {1}, {2,3}}   then  

 𝐶(𝜏) = 𝜏 = ℎc (𝜒 ) = ℎo (𝜒 ) = {∅, 𝜒{1}, {2,3}}. Hence  (𝜒, 𝜏) is 𝑇ℎ- space. but (𝜒, 𝜏) is not 𝑇𝑔ℎ, 

because {2}is (gh-cs) in (𝜒, 𝜏) but it is not (cs) in (𝜒, 𝜏). 

Theorem4.22. Each 𝑇𝑔ℎ-space is 𝑇1/2-space . 
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 Proof: Suppose (𝜒, 𝜏) be 𝑇𝑔ℎ-space and let n be (g-cs) in 𝜒. Since each (g-cs) is (gh-cs), therefore; 

n is (gh-cs) in 𝜒, by (suppose),  n is (cs) in 𝜒. This shows that 𝜒  is 𝑇1/2. ∎ 

The converse of theorem 4.22 is not true in general as shown in the following example. 

Example4.23. If    𝜒 ={5, 4, 7}  and   𝜏 = {∅, 𝜒, {4}, {5, 4}, {4, 7}}   then  

 𝑔 − closed sets are = {∅, 𝜒, {5, 7}, { 7}, {5}} =  𝑐(𝜏). Hence (𝜒, 𝜏) is 𝑇1/2- space. but (𝜒, 𝜏) is not 

𝑇𝑔ℎ, because {4, 7}is (gh-cs) in (𝜒, 𝜏) but {4, 7} is not (cs) in (𝜒, 𝜏). 

Remark 4.24. From above we have the following diagram: 

 

                                        𝑇ℎ                      𝑇𝑔ℎ                      𝑇1/2       

                                                                   Fig. 2 
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  h-بديهيات الفصل باستخدام المجاميع المغلقة المعممة من النمط
 *صبيح وديع اسكندر ،بيداء سهيل عبد الله

 الموصل، العراق، جامعة تربية للعلوم الصرفةة ال، كليرياضياتقسم ال

 البحث:معلومات   الخلاصة:
في البحث الحالي درسنا صنف جديد من بديهيات الفصل سمي بديهيات الفصل 

. حيث ناقشنا  h-باستخدام المجاميع المفتوحة المعممة من النمط h-المعممة من النمط

الخصائص مع عدد من المميزات لهذا الصنف. ايضا شرحنا العلاقة بين بديهيات 

عدة امثلة عن ذلك. من ناحية اخرى برهننا مع اعطاء  h-الفصل المعممة من النمط

واعطينا امثلة  h-بان بديهيات الفصل تؤدي الى بديهيات الفصل المعممة من النمط

 h-تبين بان العكس غير صحيبح. ايضا قدمنا تعريف الفضاء المنتظم المعمم من النمط
، h-النمط، الفضاء المنتظم الكامل المعمم من h-، الفضاء السوي المعمم من النمط

 h-والفضاء السوي التام المعمم من النمط h-الفضاء السوي الكامل المعمم من النمط
واوجدنا العلاقة بينه وبين  𝑇𝑔ℎعرفنا الفضاءوقمنا ببرهان بعض خصائصها. اخيرا 
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