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ABSTRACT 

A general mixed finite element formulation (u - w - n) is presented in this paper. This formulation 

includes the inertia effects and the soil skeleton is considered compressible. The application of this 

formulation in solving soil dynamic problems of saturated sand is made by governing the boundary 

conditions concerning the pore fluid. A problem of soil column subjected to an instantly applied 

surface 10Qd is solved. The solid skeleton and pore fluid pressure are each modelled with ten 4noded 

isoparametric elements. The results are compared with those obtained by Zienkiewicz et al. (1988). It 

is concluded that the undamped response of displacement and pore pressure oscillates significantly 

with the increase of time step length. 
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SOIL DYNAMIC PROBLEMS 

In a saturated soil, with free drainage conditions prevailing, the steady state pore fluid pressures 

depend only on the hydraulic conditions and they are independent of the soil skeleton response to 

external loads. Therefore, in that case, a single - phase continuum description of soil behaviour is 

certainly adequate. Similarly, a single - phase description of soil behaviour is also adequate when no 

drainage conditions prevail, i.e., there is an interaction between the skeleton strains and the pore fluid 

flow. 

The solutions of dynamic problemc require that the soil behaviour be analyzed by incorporating the 

effects of the transient flow of the pore fluid through the voids, and therefore they require that a two - 

phase continuum formulation be available for porous media, (Prevost,1987). 

As a consequence of the applied cyclic loads, the structure of the cohesionless soil tends to become 

more compact with a resulting transfer of stress to the pore water and a reduction in stress on the soil 

grains. As a result, the soil grain structure rebounds to the extent required to keep the volume constant, 

and this interplay of volume reduction and soil structure rebound determines the magnitude of the 
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increase in pore water pressure in the soil. The basic phenomenon is shown schematically in Fig. (1), 

(Seed, 1979). 

% 'Of = Effective Pressures , 

Initial and Final stages. 

Pressure, p 

Fig. (l) - Schematic illustration of the mechanism of pore pressure generation during cyclic loading, 

(after Seed, 1979). 

PORE WATER PRESS 

The first model for predicting pore water pressures generated by cyclic loading was proposed in 1975 

by Martin, Finn and Seed. This model was coupled later to a procedure for dynamic analysis by Martin 

et al. in 1975, giving the first method for dynamic effective stress analysis. A quantitative relationship 

between volume reductions occuring during drained cyclic tests and the progressive inclease of pore 

water pressure during undrained cyclic tests had been developed. The use of this relationship enables 

the build-up of pore water pressure during cyclic loading to be computed theoretically using the basic 

effective stress parameters of the sand, (Martin et al., 1975). Many other methods for both total and 

effective stress analyses have been developed. 

MODELLING THE DYNAMIC BEHAVIOUR OF SOILS 

Soil behaviour under dynamic loading depends on many factors, including, (Daghigh, 1993): 

I - The nature of the soil (permeability, relative density, fabric, etc.). 

2- The environment of the soil (static stress state and water pressure). 

3- The nature of the dynamic loading (strain magnitude, strain rate and number of cycles of loading). 

The proper modelling of dynamic behaviour of the soil must take into account the above factors. 

Biot (1956) developed the theory of propagation of elastic waves in a porous saturated solid. In this 

theory, the stress - strain relations for the solid-fluid aggregate were set and the equations that govern 

the propagation of the waves in a porous medium were derived. This theory predicts one rotational 

and two dilatational waves existing during vibrations. 
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Biot 

(1962a) extended his earlier theory of acoustic propagation in porous media to include anisotropy and 

visco-elastisity. A "viscodynamic operator" that provides a procedure for the evaluation of the dynamic 

properties of the fluid in its motion relative to the solid was introduced. A generalized form of Darcy's 

law from thermodynamic principles was derived in this theory. 

Bazant and Krizek (1975) extended Biot's linear elastic theory to the non-linear non-elastic case. An 

incremental stress - strain relationship that takes into account the nonlinearity and inelasticity of the 

soil was formulated. 

Zienkiewiez and Bettess (1982) extended Biot's formulation to rocks and other porous materials. A 

physical derivation of the governing equations was presented. Their formulation presented the basic 

model into which detailed constitutive relationships can be inserted when full analysis is to be carried 

out. 

GOVERNING EQUATIONS FOR DYNAMIC PROBLEMS 

The governing equations include the dynamic relations, continuity and the constitutive equations. A 

complete derivation of the dynamic equations is found in Biot (1956, 1962b). 

In a given problem, the loading rate and the permeability of the porous medium play a key role in 

determining the time scale and the method of solution to be used. When relatively rapid loads are 

applied and permeability is low, an undrained analysis is possible, i.e., the load rate is greater than the 

pore fluid diffusion rate. 

For situations with relatively slow loading and high permeability, i.e., where load rate is less than the 

pore fluid diffusion rate, a drained analysis is possible. 

The class of problems to be considered here lies between the undrained and drained extremes where 

dynamic loading is applied and transient pore fluid motion is significant, (Simon et al., 1986). 

EFFECTIVE STRESS AND CONSTITUTIVE RELATIONS 

Pure statics allows dividing the total stress state into two parts, one of these being the hydrostatic 

pressure, P, acting externally and internally on the pore fluid (principle ofeffective stress), thus: cij = 

- Di.P (1) 

where  is the total stress, G'l] is the effective stress and is Kronecker's delta. 

This separation is useful in the description of the stress effects. In soil mechanics, the slight 

deformations of volumetric nature caused by a pore pressure increase are generally neglected, but in 

less porous materials, these deformations can be computed as (Zienkiewicz and Bettes, 1982): where 

KS is the average bulk modulus of the solid grains forming the skeleton. 

dc = öl/dP/3K (2) 

Having postulated the virtually negligible effect of the pressure P on the total strain, €ij, it is possible 

to imply that most of deformations are due to the effective stresses or other extraneous causes such as 

for instance temperature. Thus, it is possible to write: 

  (3) 

where: clt0Jj strains due to stresses. 

de ij strains due to temperature, creep, etc, (autogeneous strains). 

The rate-independent constitutive law relates dc-so to  by, (Zienkiewicz and Bettess, 1982): 

d0i. = Dijkl d&kl (4) where Di.jkl describes the components of the 

elasticity tensor. 

The stress • strain equations for a porous medium are given by Biot (1941) as: 
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 (5b) 

where: — the components of the strain tensor,  

¯ the components of the stress tensor, v 

Poisson's ratio of the soil skeleton, 

E Young's modulus of the soil skeleton, 

 Kronecker's delta, o' effective major 

principal stress, 

+ c;yy +Gzz 

 P pore water pressure, 

1 

a coefficient which is a measure of the compressibility of the soil for a change in pore water 

pressure, 

0 = a measure of the amount of fluid that has flowed in or out of the soil sample, and 

1 

— a coefficient which measures the change in water content for a given change in water 

pressure. 

The above equations were derived assuming that the soil is an elastic material. On the other hand, the 

plastic behaviour of soils can be accounted for using a more general constitutive relation such as: 

 ijkl Ell) (6) 

where € i.i is the permanent plastic strain tensor. 

The permanent plastic strain is related to the residual pore pressure by (Zienkiewicz et al., 

1982): 

 (7) 

where: 

1 

 

 1 n 

K T = tangent bulk modulus of the skeleton, 

Kf bulk modulus of water, and 

= volumetric plastic strain =  

DYNAMIC RELATIONS FOR POROUS MEDIA 

Biot (1956) developed the theory of propagation of elastic waves in a fluid-saturated porous medium 

in the absence and presence of dissipation forces, i.e., without or with viscosity, respectively. 

The Lagrangian co-ordinates were selected, and Biot started his analysis by considering the kinetic 

energy, T, of a unit volume of solid-fluid mixture in terms of the average displacement of the solid, u, 

and the average displacement of the fluid, UI: 
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  (8) where PI l, P12, are mass coefficients that take into 

account the relative fluid flow through the pores which is considered variable and C) represents 

differentiation with respect to time. 

Biot (1962b) reformulated his theory of propagation of stress waves in a porous medium and rewrote 

the dynamic equations of equilibrium in an alternative form. This form is expressed in terms of total 

stresses and pore water pressures and uses actual mass densities. 

The equations consist of the equation of motion of the bulk soil, of the mixture of fluid and solid and 

the equation of motion of the liquid relative to the solid, respectively as follows: 

 j + ptgi = pt  PW Wi 

 Pi + pwgi =  Wi+  (9b) n where: = the total stress 

tensor, 

P = pressure acting on the fluid, 

displacement vector of the solid skeleton, 

Wi = displacement vector of the fluid with respect to solid, n (Ui-lli) , n is the effective porosity and 

nIJi is the volume of the liquid displaced through a unit area perpendicular to the i-direétion, pt — 

bulk mass density of the liquid-solid mixture, — (1 -n) ps + npw ps = intrinsic mass density of the 

solid, 

= intrinsic mass density of the fluid, gi = the component of the 

gravitational constant in the i-direction, k = Darcy's coefficient of 

permeability, 

 = kinetic energy correction factor, and 

= second derivative of( ) with respect to time. 

Kim and Blouin (1984) generalized Biot's approach for the high frequency range by the inclusion of 

a mass increment factor (r). The values of r range from 1/5 to 1/3 depending on the shape of pores. 

Thus, the final equations of equilibrium of the fluid will be: 

Wi(ß + r) + (10) n 

CONTINUITY EQUATION 

Zienkiewicz and Bettess (1982) assumed that both the solid grains and water to be incompressible. 

Mei and Foda (1982) reasoned that the volume changes are due to the existence of air pockets 

entrapped in the pores. Their equation for a two-phase material in the Eulerian space is given as: 

n 

(1 1) 

where: ß = the effective bulk modulus of elasticity. 

Zienkiewicz (1981) presented another form of the equation in Lagrangian description as follows: 

 (12) 

On the other hand, Prevost et al. (1986) argued that in some soil dynamic applications, the fluid phase 

could be regarded as incompressible, thus: 
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Cii+ Wi i = 0 (13) 

Zienkiewicz and Bettes (1982) derived a general form of the continuity 

equation considering the solid grains and fluids to be compressible, thus: 

tii,i+ Wi,i+ p i + —I-Pi = 0 (14) 
w where: Kb = the bulk modulus of the soil-

water sample. 

 (15) 

KS — the bulk modulus of the solids. 

Kw the bulk modulus of water. 

BOUNDARY CONDITIONS 

Two types of boundaries exist; the first, S, surrounds the bulk, and the other, S , surrounds the fluid. 

At each boundary, the stresses at any time, t, are taken at a portion and the displacement is known at 

the remaining portion. This can be written mathematically as follows: 

on Sl (16) on S2 (17) 

wi(x,t) = on S' (18) 

P(x,t)ni(x) = P (x, t) on S 2 (19) 

where n) is a unit normal vector and the superscript ( A ) represents a known function. 

SOME APPROXIMATIONS TO DYNAMIC EQUATIONS 

The use of the full solution of equations (l) to (15) in terms of the u/w variables represents six variables 

in three dimensions (or four in two dimensions). This formulation is called (u-w) formulation, (Simon 

et al., 1986). 

It is often preferable to reduce the problem by retaining u: and P as the basic variables. The 

elimination of the variable WI is simple if the terms are dropped from the equations on the assumption 

that the ratio: 

 

This formulation is called (u-p) formulation, (Zienkiewicz and Bettess, 1982). 

In this work, a more general formulation will be used which is called (U-W-7t) model where is the 

nodal pore fluid pressure in the finite element discretizalion. In this model, both the solid grains and 

fluids are assumed to be compressible. This model also takes into account the fluid inertia effects. 

It is rational to think that this model best represents the behaviour of granular materials under dynamic 

loading and especially blast loading due to the large voids of such materials. This is attributed to the 

shape, size and arrangement of particles, which allow easy movement of the pore fluid, and this, in 

turn, increases the fluid inertia. 

This formulation can be verified when high frequency loads are applied, (Zienkiewicz and Bettess, 

1982). 
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STAGGERED SOLUTION OF COUPLED PROBLEMS 

The staggered solution procedure may be described conceptually as a partitioned solution that can be 

organized in terms of sequential execution of single-field analyzers. The staggered qualifier arises 

from the "zigzagging" appearance of the "solution state walkthrough" in the temporal flow diagram 

representation of the computation process, as illustrated in Fig. (2), (Felippa and Park, 1980). 

This approach offers two potentially important advantages: 

a- program modularity enhancement, and b- computational 

efficiency. 

The first advantage occurs from the fact that relatively few modifications of the single-field analyzers 

are required in comparison to the field elimination and simultaneous solution approaches. 

Field X 

Time t p 

 s s p s 

Field Y 

 Step Size h  

Fig. (2) - Temporal flow diagram illustrating the staggered solution approach for a two - field 

problem (P = predictor phase, S = substitution phase), (after, Felippa and Park, 1980). 

As regards«computational efficiency, the staggered solution time step length is roughly the same as 

that incurred in processing the component fields as separate entities. This is because that the overhead 

introduced by the flow of information among analyzers becomes comparatively insignificant in large-

scale problems. It follows that this approach is attractive and time step size restrictions can be excluded 

from consideration, (Felippa and Park, 1980). 

Zienkiewicz et al. (1980) found that this approach permits decoupling of high frequency and low 

frequency components of a single system, so that an alternative time marching algorithm can be used 

in each part. 

For the problem under consideration, the discretized form of the equations of motion, which are a 

system of ordinary differential equations with constant coefficients, can be integrated using the finite 

difference method to approximate the accelerations and velocities in terms of displacements. Newmark 

(1959) integration scheme is used herein. This scheme is a forward integration method and requires 

that the field equations be written at time t+At. The accelerations and velocities are given as, (Bathe, 

1996): 

1 1 ut+At — 2 (lit + At 14)(20) 

a At and 

ut+At = (1 )At + (14 + At (21) a 2a a At where u and ö are parameters 

controlling integration accuracy and stability. The scheme is unconditionally stable if: 

(5 2 0.5  +0.5) (22) 

On the other hand, the time derivative of the pore pressure is approximated as follows: 
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2 

 At -Pt)-Pt (23) 

At 

Once the finite difference expressions for the velocity and acceleration are substituted in the 

discretized equation, the finite element equations become: 

(24) 

 — t+At where is the effective stiffness matrix and is the effective force 

vector. 

Certain "nonsymmetries" exist in the equation system, and the primary variables u, w and P have a 

different structure (and indeed different physical units). Therefore, standard time step algorithms are 

not easy to apply. It is best to adopt a "staggered" solution process, (Zienkiewicz et al., 1982). The 

following steps are followed to obtain a solution of the dynamic problem: 

l- Form the mass matrix, M, the damping matrix, C and the stifTness matrix K. 

2- Set time = 0, and select time step, At. 

 
3- 3. Form the effective stiffness matrix, JS , and the effective force vector, F 

 

4- 4. Determine the displacement changes, Au at time t+At, using some "extrapolated" value of P, or 

conversely. 

5- 5. Determine U, U and U at t+At. 

6- 6. Use the available values ofU to determine P at time t+At. 

7- 7. Update the effective force vector, , and go to step 4 or step 3 if the effective stiffness matrix 

need to be updated. 

THE CAP PLASTICITY MODEL 

The cap model is an incremental work-hardening plasticity theory for materials having time and 

temperature independent properties and undergoing permanent as well as recoverable strain at each 

loading increment. The loading function for the model is assumed to consist of two parts, (see Fig.(3): 

1- An ultimate failure envelope which limits the shear stresses in the material, denoted by: 

f = 11(11, J2) (25) 2. A strain hardening surface or "cap" denoted by: 

L = H(ll, .12 , K) (26) where: Il = the first invariant of stress tensor. 

J2 the second invariant of deviatoric stress tensor. 

K a hardening parameter, which is a function of plastic volumetric strain, € I 

 

The cap changes as the plastic deformation occurs. As shown in Fig. (3), the associated flow rule 

requires that during cap action, the plastic strain rate vector be directed upward and to the right (if 

isotropic stress is applied). This implies that the plastic strain rate produces an irreversible decrease 

in volume in conjunction with the irreversible shear strain, (Sandler and Rubin, 1987). The equation 

of the failure envelope was selected to be Chen and Baladi's (1 985): 

 J2  - C.exp(-B.11)] (27) 

O. F Al-Damiuji, Y. J. Al-Shakarchi 

and M. Y. Fattah 
A COUPLED DYNAMIC FINITE ELEMENT ANALYSIS 

OF SATURATED SANDS 



58 

 1 2 

 [{x(kl ) — L (kl ) }  (28 ) 

and the hardening surface: 

and the following hardening function is assumed, (Dimaggio and Sandler, 1 971): 

  WII — (29) 

KK where A, B, C, D, R and W are constants. W is the maximum plastic volumetric strain. 

 

Fig. (3) - Yield surfaces for the selected cap model. 

The plastic loading criteria for the function f2 is given as, (Chen and Baladi, 1985): 

> 0 Loading 0 Neutral Loading (30) 

< 0 Unloading 

The plastic strain increment tensor is given by Drucker (1950): 

ij f = 0 and d/ > 0 
(31) 

if f < 0 or f = 0 and [If C O 

where CIR is a positive factor of proportionality. 

The plastic strain can be divided into two components, namely the volumetric, € kk., and deviatoric, eP 

then: 

1 
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  (32) 

where SO is the stress tensor. 

A full description of the model is found in the text by Chen and Baladi (1985). The cap model parameters 

are given in Table (1). 

Table (1) — Cap Model Parameters (from Chen and Baladi, 1985). 

Parameter Value 

 15.0 MPa 

 0.0025 (MPay 

c 
14.9 MPa 

D 0.50 (MPay 

 0.02 

THE COMPUTER PROGRAM 

The program (MBLAST) was developed which is an extensive modification of the program (BLAST) 

developed by Awad (1990) at Colorado State University. The program is modified to take into decount 

different types of loading such as blast, impact and earthquake loading. It is arranged into a modular form 

in order to minimize the run time. 

Since the (U-W-Tt) formulation adopted in this research results in an unsymmetric effective stiffness 

matrix, the subroutines ACTCOL and UACTCL (Zienkiewicz, 1977) are used instead of subroutine 

LDUSKY of the program (BLAST). These subroutines are utilized for symmetric and unsymmetric 

equations solving, respectively. 

DESCRIPTION OF THE PROBLEM - STEP LOADING 

Fig (4) shows a soil column subjected to an instantly applied surface load of 1.0 kN/m2 . The boundary 

conditions are shown in the same figure. The solid skeleton and pore fluid pressure are each modelled 

with ten 4-noded isoparametric elements. At the vertical boundary of the solid skeleton, only vertical 

movement is permitted. Pressures at the free surface are taken as zero, (Paul , 1982). The material 

properties are shown in Table (2). The water level is assumed to be at the ground surface. 

 Table (2) - Soil parameters for the problem, (from Zienkiewicz et al., 1988). 

Pro e Value 
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Modulus of elasticity (E) 

Poisson's ratio (v) 

Bulk density (pt) 

Fluid bulk modulus (Kf) 

Solid bulk modulus (KS) 

Fluid density (Pf) 

Porosity (n) 

Permeability (k) 

30 MN/m 

0.2 

2000 k /m3 

0.10 x 10 N/m2 

0.10 x 10 12 N/m2 

I ooo kg/m3 

0.001 m/se. 

Newmark's Integration 

Constants: 
0.50 

0.25 

Figs. (5) and (6) show the undamped response (displacement and pore pressure) obtained by the program 

(MBLAST) for two time steps; At 0.025 and 0.05 sec. 

The results of Figs. (5) and (6) compare well with those obtained by Zienkiewicz et al. (1988) who used 

the SSPJ method (single step p-order polynomial, j =l or 2, the order of the equation, Zienkiewicz et al., 

1984) for time integration for the solution of the same problem. The results are accepted in spite of 

oscillation in displacements and pore pressures. 

It is observed that the undamped response of displacement and pore pressure oscillates significantly with 

the increase of time step length. When large time step lengths are used to obtain the undamped response; 

At 0.05 sec., the higher frequencies introduce errors and they are the cause of oscillations. Zienkiewicz et 

al. (1988) reported that improved results are obtained when iterations and 

numerical damping are introduced or when very small time steps are used to 

introduce a smooth start. 

i .0 k N/rn 2 

 Node 2 1 and Pressure zero 

 8 1.0 kN/m 

Node 12 
()nlv Verticai 

M o velnent Pertnitted, 

B ounclary 

Node 2 
Impert»eable and 

 Fixed B outndary O  ( ft) 

Fig. (4) - Saturated soil column subjected to step loading problem (one- dimensional problem). 
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CONCLUSIONS 

l . A general mixed finite element formulation (U-W-TC) is presented in this paper . This formulation  

included the fluid inertia effects and the soil skeleton is considered compressible, The cap plasticity 

model is used as a constitutive relation. A computer program is developed by the authors which is 

capable of analysing coupled dynamic problems including different types of dynamic loads. 

2. A problem of soil column subjected to an instantly applied surface load is solved. The solid skeleton 

and pore fluid pressure are each modelled with ten 4-noded isoparametric elements. The results are 

compared with those obtained by Zienkiewicz et al. (1988). It is observed that the undamped response of 

displacement and pore pressure oscillates significantly with the increase of time step length. When large 

time step lengths are used to obtain the undamped response; At 0.05 sec., the higher frequencies introduce 

errors and are the cause of oscillations. 

100 0 

80.0 

 60.0 

 40.0 

20.0 

0.0 "e 
0.0 5.0 10.0 15.0 20.0 25.0 30.0 Time , 

sec. 

(a) 
0.0 5.0 10.0 15.0 20.0 25.0 30.0 Time , 

sec. 

(b) 

Fig. (5) - A comparison between the predicted displacements and pore pressures at three nodes in the 

layer with the results of Zienkiewicz et al. (1988) , time step 0.025 sec. 

 
 Zienkiewicz et at. (1988) Zienkiewicz et al. (1988) 

 80.0  Predicted 

(Cap Model) 

é 60.0 

8 

40.0 

20.0 
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0.0 

0.0  5.0 10.0 15.0 20.0 25.0 30 0  0.0  5.0 10.0 15.0 20.0 25.0 30.0 

Time , sec. Time , sec. 

(a) (b) 
Fig (6) - A comparison between the predicted displacements and pore pessures at three nodes in 

the layer with the results obtained by Zienkiewicz et al., (1988), time step = 0.05 sec. 
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