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Abstract
The stopping power for a charged particle penetrating through matter differs from

the an anti — particle. This difference is called Barkas correction has been studied
theoretically as a function of velocity and projectile — target combination. In this
paper, the behavior of stopping power and Barkas correction of protons in Aluminum
(Al) and Gold (Au) has been studied. Moreover, in this research, a theoretical study
was made about the effect of Bark's correction on the density function C(x) and the
way of how it changes, particularly, at low energy and through the Barkas correction,
we can distinguish between the particle and anti-particle.

1. Introduction:

When a charged particle traverses matter, it will lose energy due to interaction
with the target atoms. The energy loss of the projectile per unit distance in the target
material is called the stopping power of the material(—dE /dx). It depends on the
charge and velocity of the projectile and, of course, the target material[1].

The stopping power of ions in matter have been considered theoretically since the
early days of atomic physics starting with Bohr, Thomson and Rutherford. The
interest was first motivated by the necessity to get a good theoretical understanding of
the slowing down process in order to extract information above the nature of the
studied atomic particles. Furthermore, the analysis of penetration phenomena offered
a testing ground for the theoretical treatments being developed, starting with classical
methods and subsequently turning to quantum mechanical methods and finally the
computer simulation codes which still remain a best tool in the iterative dialogue
between theory and experiment[2].

Accurate stopping power data in variety of materials and energies ranges are of
practical importance in a number of contemporary experiments used extensively in
materials science, such as ion implantation and ion — beam analysis, which require
accurate knowledge of stopping power and ranges values[2].

The theory of energy loss of fast charged particles in matter is based on the
calculations by Bethe, who derived the stopping power in the first Born
approximation. Hence, the Bethe result is proportional to the projectile charge
squared, Z2 [3,4]. It was thus a surprise when Barkas et al. found that the range of
negative pions was longer than that of negative pions of equal momentum[5]. Barkas
suggested that the effect was due to a difference in the stopping power stemming from



the opposite charge of the charge of the particles[6]. The reduction in the stopping,
responsible for the longer range of negative particles as compared to their positively
charged antiparticles was later investigated with sigma hyperons[6], pions[7], and
muons[8], but these measurements all suffered from the poor quality of the low —
velocity particle and antiparticle beams used.

This so — called Barkas effect has been interpreted as a polarization effect in the stopping
material depending on the charge of the projectile. It appears as the second term(proportional

to Z3) in the implied Born expansion of the energy loss[9].

2. Theory:

2.1 Modified Bethe — Bloch theory:
The basic stopping equation for high velocity particles, as traditionally, was
shown as[lO]:-
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Where the variable L, called the stopping number, was defined to include the
correction factors to the stopping equation for high velocity particles. Traditionally, it
is defined as the expansions of the particle's charge[10]

L(B) = Lo(B) + Z1L,(B) + Z7L,(B) (2)

The formalism of Bethe — Bloch theory of stopping power, including various
modifications, has been described extensively in several investigations. The stopping
power S of an elemental target of atomic number Z, and atomic weight A for a
projectile of atomic number Z; and velocity v (v = Bc, where c is the light velocity),
can be expressed by[2]
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Where k = 41Tmer(2)c2 (is a constant), and ry = # (classical electron radius),
Lo(B) is Born correction Z; L, () is the Barkas correction or the Z3 correction, and
Z2L,(B) is the Bloch correction or the Z3 correction.

2.2 Barkas correction:

In their derivation of a function for the Barkas effect, based on the harmonic
oscillator model, Ashley et al. argued that the effect could be neglected for close
collisions (in which the electrons are considered to be free). Thus they introduced a
lower limit a, of the impact parameter and assumed that the electrons were
unbounded for collisions at smaller distances. Using the statistical model, they



assumed that a,was given approximately by the radius r of the shell of charge
associated with the plasma frequency w(r), i.e., a, = nr, where 1 is of order 1. They
derived a function[11]
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The term y is a free — electron — gas parameter which corrects for binding forces, and
has value of about 21/2. b was expected to have value between 1 and 2.

Jackson and McCarthy gave a function which can be approximated to better than
+3% by [12]
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Where 1 <V < 10, v, is the Bohr velocity and for y? = 2, ¢=0.477, h=0.1385,
while for y? =3, g=0.607, h=0.175. Jackson and McCarthy suggest a different
minimum impact parameter a,, = (2mhw)/2,

Hill and Merzbacher obtained the same result with a quantum — mechanical
harmonic oscillator approximation[13].

Lindhard showed that there is a contribution from close collisions which is about
the same as that from the distant collisions. His model is too schematic to permit a
realistic calculation of the effect[14].
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w is the free electron gas plasma frequency and a,, is lower limit of the impact
parameter for the distant collisions. This high velocity limit is for v > wa,,.

The extracted Barkas correction values may be empirically fit using the
expression[15].
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L,y = 0.001E and Lhigh = (1.5/E°*) + 45000/2z,E** (8)

With the energy, E, having units of (KeV/a.m.u.). This expression goes to zero for
both low and high values of ion energy. Not that this empirical Barkas correction term



is dependent on the other terms in the stopping number, especially the shell
correction.

2.3 Barkas correction and density function:

The stopping power of ions moving with velocity smaller than the Fermi velocity
(v < vg) in @ahomogeneous electron gas is[16]
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Where

e, m is the charge and mass of an electron
Oy IS the transport cross section
O IS the scattering cross section
a is the atomic radius
is the electron gas density
6 s the scattering angle

Vg is the Fermi velocity
hoo, :
A = —— s the Fermi wave length[17]
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By substituting eqg.(11) into eq.(10), we get
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Eqg.(12) may be rewritten in the following form
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And by integrating the above equation, we get on
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And by taking the second order of the transport cross section in eq.(14), we get on
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Where

S2=t+4y*+4yx* and t=sin0/2

By substituting the transport cross section eq.(15) into the stopping power eq.(9)
becomes[16]
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Where
)(2 =0 is the density parameter
me
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me
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C; in eq.(18) is independent on the atomic number of the projectile (Z,) but it is
dependent on the first Born approximation and energy at low velocity. C, in eq.(19) is
dependent on the atomic number of the projectile (Z,), therefore it is possible to
consider C, as a Barkas effect which depends on the velocity of the projectile. The
calculation of stopping power for particle at low velocity dependence on the density
function as in eq.(17) in which C; is independent on Z; while C, is dependent on Z,,
therefore the density function eq.(17) may be rewritten as

Cpare(X) = C1 + C2 for particle (20)



Canti pare(X) = C1 + C3 for antiparticle (21)

(_ dE) =a(C; + () the stopping power for particle (22)
ax/part
(_ dE) = a(C — () the stopping power for antiparticle ~ (23)
ax/ gnti part
4 o ve?
a=— Zl —= (24)
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By division eq.(22) on eq.(23)
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3. Results and Discussion:

Figure(1) shows the results of stopping power for protons in Al (Z,=13) and Au
(Z,=79) target as a function of its energy at high velocity which are calculated from
the eq.(3) and taking into account all the corrections (Born , Barkas, and Bloch ) in
the calculations. From the figure, the magnitude of the stopping power decreases with
increasing the projectile velocity. At a given value of energy, there is a difference
between the stopping power in Al and Au target and the stopping power appears to be
increasing with decreasing the atomic number of the target (Z,), therefore the
stopping in Al target is larger than that in Au target at low velocity but at high
velocity, the difference becomes small and the stopping powers in both target are
approaching because the stopping power of ions shows a non monotonic dependence
on the atomic number of the target (Z) at low velocity.

Figure(2) shows the results of Barkas correction for protons in Al (Z,=13) and Au
(Z,=79) target as a function of its energy at high velocity which are calculated from



the eq.(7). From the figure, the magnitude of the Barkas decreases with increasing the
projectile velocity. At a given value of energy, there is a difference between the
Barkas correction in Al and Au target and the Barkas correction appears to be
increasing with decreasing the atomic number of the target (Z,), therefore the Barkas
correction in Al target is larger than that in Au target at low velocity but at high
velocity, the difference becomes small and Barkas correction in both target is
approaching because the effect of Barkas correction becomes insignificant.

Figure(3) shows the percent contribution of Barkas correction to stopping number
as a function of energy for protons in Al (Z,=13) and Au (Z,=79) which are
calculated from eq.(7) at high velocity. From the figure, the percent of Barkas
correction decreases with increasing the energy and becomes small at high velocity
and the Barkas correction for Al target contributes less than 1% for all energies above
(10MeV) while for Au target it contributes less than 1% for all energies (15MeV),
therefore there is a divergence in values at low velocities and convergence in values
of percent contribution of Barkas correction at high velocities because it becomes
significant at low velocity and it decreases with increasing the energy. The percent
Barkas correction in Au target is larger than that in Al target because the targets are
different and for each one a specific atomic number and there are a number of
corrections to the stopping number for each target. In Al target, the other corrections
to the stopping number are larger than that in Au target, therefore the percent
contribution of Barkas correction in Au to the stopping power is larger than that in Al.
In general, the corrections are more important at low velocity and they appear to be
decreasing with increasing the energy, therefore at high velocity, the values of
corrections are approaching and become very small.

Figure(4)shows the results of stopping power (a) for particle (Z;=2) and
antiparticle (Z;=-2) and (b) for particle (Z,=5) and antiparticle (Z;=-5) as a function of
density parameter (y) which are calculated from eq.(16). From the figure, the
stopping power of both particles increases with decreasing the density parameter (y)
since this mean increasing energy. The stopping power depends on the atomic number
of the projectile (Z;) and it increases with increasing atomic number of it (Z),
therefore the stopping power of particle is larger than that of antiparticle. At high
values of density parameter (y) (low velocity), there is a difference in stopping
between particle and antiparticle, therefore we can distinguish between them because
this belongs to the effect of Barkas correction, but at low value of density parameter
(x) ( high velocity), the stopping powers of particle and antiparticle are approaching
and the difference becomes small because the Barkas correction decreases with
increasing the velocity and becomes insignificant at high velocity.



Figure(5) shows the results of proportion of stopping power (a) of particle (Z;=2)
to antiparticle (Z;=-2) and (b) of particle (Z;=5) to antiparticle (Z;=-5) as a function
of density parameter (y) which are calculated from eq.(25). From the figure, when the
density parameter (y) increases (velocity decreases), the difference in stopping power
between particle and antiparticle will also increase because the effect of Barkas
correction appears clearly at low velocity.

Figure(6) shows the results of proportion of density function to the first Born
approximation (C/C;) for (a) particle (Z;=2) and antiparticle (Z;=-2) and for (b)
particle (Z;=5) and antiparticle (Z;=-5) as a function of density parameter (x) which
are calculated from eq.(28). From the figure, when the density parameter (x) is very

c : . . N
small, (c_ - 1) and the proportion of stopping power of particle to antiparticle
1

becomes nearly one, therefore we can not distinguish between particle and antiparticle

C
but when the density parameter (x) is large, . is given by the eq.(28). C, is
1

C
dependent on the atomic number of the target (Z), therefore o changes in opposite
1

direction related to particle and antiparticle.
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4. Conclusions:

The phenomena of ionization in ion — atom collisions is closely related to the
associated energy loss by the colliding ion. According to Bethe, the stopping power of
a point fast charged particle penetrating through matter is proportional to Z2, the
square of its charge, which is based on the first Born approximation. When the
projectile velocity(v) decreases, there is a deviation from simple first — order
perturbation theory stopping predictions (higher — order Z; effect). In addition to the
Z? dependence for stopping power, terms with odd powers (Z3) in Z, lead to a
different stopping behavior of positively and negatively charged particles (particle and
antiparticle), this difference is called the Barkas correction which is interpreted as
being due to polarization of the target material.

Barkas correction depends on the projectile velocity and it decreases with
increasing velocity of the projectile, and reaches a maximum when this is comparable
to the velocity of the electrons in the medium. At high velocity the Barkas effect
becomes insignificant because the ion will be moving too fast to cause initial motion
of target electrons. Barkas correction also depends on the projectile and target atomic
number (Z;) and (Z,). At a given projectile velocity the magnitude of Barkas
correction increases with increasing Z; and decreasing Z,.

Moreover, Barkas correction is dependent on the sign of the projectile. However,
a positive charge will pull these target towards it as it approaches, increasing the local
electron density and increasing its energy loss relative to that of a negatively charged
particle, while a negative charge will repel target electrons, decreasing local electron
density. For the positive projectile charge, Z;L, will be positive, hence the Barkas
correction will contribute to the stopping (increasing its magnitude) while it will be
subtracted from the negative projectile stopping (decreasing its magnitude) because of
the negative value of Z;L;. Hence Barkas effect may be extracted directly by
assuming it was proportional to exact one — half the difference between particle and
antiparticle (positive and negative) stopping power in the same target, at the same
velocity. The Barkas factor was determined by dividing this stopping difference by
the Bethe — Bloch prefactor.

The stopping power of particle is larger than that of antiparticle at low velocity
because of the effect of Barkas correction therefore we can distinguish between
particle and antiparticle at low velocity through the density function which consists of
two terms C; and C,. C; is independent on the atomic number of projectile (Z;) while
C, is dependent on (Z;) therefore, C, represents the Barkas correction which
decreases with increasing the projectile energy and its effect becomes very small at
high energy.
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