
 1 

Overhead Evaluation in Real-Time Network Intrusion 

Detection System Using Snort 
 

 

 

Suhad Abbas Yasir 

Technical Institute / shattra 

 

 

 

Abstract 

A growing number of Internet threats have increased the need of 

applying a defense in depth concepts to protect the information contained 

on computer systems worldwide. Snort is a lightweight Network Intrusion 

Detection System (NIDS) that widely used in network security. However, 

to ensure that such an implementation is likely to be successful, the 

system must be tested to provide decision makers with assurance to 

reduce risks. 

Typically, NIDS residing on the edge of a network performs deep 

packet inspection on every packet that enters to the protected domain. 

Real-Time NIDS obviously place some additional overhead into the 

network traffic path. How much overhead introduced into the network 

traffic by introducing of real-time NIDS. A simulation methodology had 

been used to implements some experiments designed to evaluate Snort 

effect, measured by end-to-end delay-time introduced by the engine. 

These experiments proved that there is no noticeable effect introduced to 

the network traffic. 

 

 

NIDS, Defence in-Depth, Snort, Overhead 

 

 

I. INTRODUCTION 

 

Network Security is a large and growing area of concern for 

corporations that have computers connected to the internet. At the same 

time as the number of companies with computers and services accessible 

to the Internet increases, so does the number of attacks against 

companies. Furthermore, up to now there is no mechanism that can 

promise to totally secure a network. ]1  [  

 

Intrusion Detection has been defined by [1] as “the problem of 

identifying individuals who are using a computer system without 

authorization (i.e., „crackers‟) and those who have legitimate access to the 

system but are abusing their privileges (i.e., the „insider threat‟)”. 
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Intrusion Detection Systems (IDSs) have evolved into a critical 

component in secure network architecture. An IDS is any hardware, 

software, or combination of thereof that monitor a system or network of 

systems for malicious activity as defined by koziol [2]. 

 

Intrusion Detection Systems (IDSs) are classified by there 

functionality, loosely grouped into three categories: Network IDS, Host 

IDS and Distributed IDS. NIDS monitor traffic as it flows throw a 

network; HIDS are reside on a particular host and monitors for intrusion 

attempts; and DIDS is a combination of NIDSs, HIDSs, or both across the 

enterprise and all reporting to central correlation system [3, 4]. 

  

Network intrusion detection systems (NIDS) are a major security 

component in many network environments. These systems continuously 

monitor network traffic for malicious activity, raising alerts when they 

detect attacks and also enable real-time detection of network attack [5]. 

With the use of network intrusion detection systems, a network 

administrators need to ensure that network traffic is not being unduly 

delayed by overhead introduced from the real-time network intrusion 

detection system. Network administrators do not want to endanger 

network security or add unneeded overhead to the already extremely busy 

networks by introducing a network detection system. 

 

There are two broad categories analysis performed to look for signs of 

intrusion. The first is misuse detection. Misuse detection works by apply 

the knowledge accumulated about specific attacks and system 

vulnerabilities. The intrusion-detection system contains information about 

these vulnerabilities and looks for attempts to exploit them. When such an 

attempt is detected, an alarm is triggered. The second type of analysis 

performed is anomaly detection. Anomaly detection techniques assume 

that an intrusion can be detected by observing a deviation from normal or 

expected behavior of the system or the users  [6, 7]. 

 

End-to-end method of delay measurement was used by Cisco in 2007 

to test effect on the network when using IDS. These systems have the 

potential to introduce delay. Generally the networks will similarly carry 

voice, video or multimedia traffic, as well as data, needs to be some 

standards for delay limits established. Such standards have been 

established to assist in determining when the delay value becomes 

unacceptable (refer to table 1). These standards suggest that overall per 

packet delay should remain below 150 milliseconds to ensure acceptable 

network performance [8]. 

 
Table 1: Delay Specifications. 

RANGE IN 

MILLISECONDS 
DESCRIPTION 
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2- SNORT 

 

Snort was designed by Martin Roesch in 1998, is a free, cross-

platform, lightweight network intrusion detection tool [9] that can be used 

to monitor small TCP/IP networks, capable of performing real-time 

traffic analysis and packet logging on IP networks [10]. It can perform 

protocol analysis, content searching/matching, and can be used to detect a 

variety of attacks and probes, such as buffer overflows, stealth portscans, 

CGI attacks, SMB probes, OS fingerprinting attempt, and much more 

[11]. 

 

Snort is primarily a misuse-based NIDS that uses a combination of 

rules and preprocessors to analyze traffic [12]. Snort uses a flexible rules 

language to describe traffic that it should collect or pass, as well as to 

detection engine that utilizes modular plugin architecture. The 

preprocessors code allows examination that is more extensive and 

manipulation of data that cannot be done via rules alone [4]. 

 

Snort can run in three modes [13] that make it very powerful: packet 

sniffing, packet logging, and intrusion detection system. Packet sniffing 

mode simply reads the packets off the network and displays them in a 

continuous stream on the console. Packet logger mode logs the packets to 

the disk. Network intrusion detection mode is the most complex and 

configurable; allowing Snort to analyze network traffic for matches 

against a user-defined rule set and to perform several actions based upon 

what it sees. 

 

Snort is logically divided into multiple components. These components 

(refer to figure 1) work together to detect particular attacks and to 

generate output in a required format from the detection system.  

 

0-150  µs Acceptable for most user applications. 

150-400  µs 

 Acceptable provided that administrators are aware of the 

transmission time and the impact it has on the 

transmission quality of user applications. 

Above 400  µs 

Unacceptable for general network planning purposes. 

However, it is recognized that in some exceptional cases 

this limit is exceeded. 
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Figure 1: Snort Architecture. 

 

The most important feature is using Snort as IDS mode. Snort is a 

packet sniffer. However, it is designed to take packets and process them 

through the preprocessors. Each packet observed on the network is first 

passed through a set of preprocessors, which may extract information 

and/or modify the packet and then check those packets against a series of 

rules (through the detection engine). Then detection plug-ins matches the 

packet against signature conditions. If a match was found, sent through 

the alert system, it can be handled by whatever plug-ins has been chosen 

to handle alerting [2,4]. 

 

2.1 -1 Snort Preprocessors 

 

A preprocessor is a code that is compiled into the Snort engine upon 

build in order to normalize traffic and/or examine the traffic for attacks in 

a fashion beyond what can be done in normal rules. Although that might 

seem like an overly simplistic explanation for what these complex pieces 

of Snort do, it‟s important to realize their contribution to the overall 

whole of the intrusion detection system (IDS) [4, 14]. 

Snort allows us to select which preprocessors should be enabled. From 

this standpoint, this is done through the Snort configuration file 

“snort.conf” [15]. Snort has many preprocessors available. The Snort 

project team has certified some, while others are in testing and more yet 

are still in development. These preprocessors are what make Snort such a 

powerful and effective intrusion detection system. The preprocessors that 

we are primarily concerned with this paper are the Frag3, Stream5, Http-

Inspect, Ftp-Telnet, and sfPortscan. 

 

2-1`-2 Frag3   

The frag3 preprocessor is applying for reassembling packets as a 

target-based IP defragmentation module for Snort [16]. Target-based 

analysis is a relatively new concept in network-based intrusion detection. 

The idea of a target-based system is to model the actual targets on the 

network instead of only modeling the protocols and looking for attacks 

within them.  

 

2.1.2 Stream5 
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The Stream5 preprocessor is a target-based TCP reassembly module 

for Snort [16]. It is intended to replace both the Stream4 and flow 

preprocessors, and it is capable of tracking sessions for both TCP and 

UDP. Many attacks are spread across several packets and are 

undetectable to a non session-reassembling rule-matching IDS, that‟s the 

whole reason for stream reassembly [4, 14, 17]. 

 

2.1.3 Http-Inspect 

Http has become one of the most widely and diversely used protocols 

on the Internet. Over time, researchers have found that Web servers will 

often take a number of different expressions of the same URL as 

equivalent [16]. For example, an IIS Web server will see these two URLs 

as being identical: 

http://www.example.com/foo/bar/iis.html 

http://www.example.com/foo\bar\iis.html 

  

Unfortunately, a pattern matcher such as Snort will only match the pattern 

foo/bar against the first of these two. An attacker can use this “flexibility” 

in the Web server to attempt to hide his probes and attacks from the 

NIDS. http_inspect is stateless; it normalizes HTTP strings on a packet-

by-packet  basis and will only process HTTP strings that have been 

reassembled by the Stream4 which replaced by Strean5  preprocessor [4]. 

 

2.1.4 sfPortscan 

This module is designed to detect the first phase in a network attack: 

Reconnaissance. In the Reconnaissance phase, an attacker determines 

what types of network protocols or services a host supports. This is the 

traditional place where a portscan takes place. This phase assumes the 

attacking host has no prior knowledge of what protocols or services are 

supported by the target, otherwise this phase would not be necessary[16]. 

 

2.1.5 Ftp-Telnet Preprocessor 

Ftp_telnet is composed of two parts: the FTP preprocessor and the 

telnet preprocessor.  ftp_telnet can be stateful or stateless; it receives this 

data from the stream4  preprocessor which replaced by stream5, thus we 

need to combine it with  ftp-telnet preprocessor [4]. 

When a telnet data buffer available, ftp_telnet will normalize the 

buffer with respect to telnet commands and option negotiation, 

eliminating telnet command sequences per RFC 854. When FTP 

command channel buffers (on port 21) are used, ftp_telnet will interpret 

the data, identifying FTP commands and parameters, as well as 

appropriate FTP response codes and messages. It will enforce the 

correctness of the parameters, determine when an FTP command 

connection is encrypted, and furthermore determine when an FTP data 

channel is opened [16]. ftp_telnet is extremely versatile, having the 
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capability through the dynamic preprocessor to be able to configure every 

last parameter, which makes for a very powerful emulation engine.   

 

2.2  Advantages and Disadvantages of Snort 

 

Snort is a very flexible application. Due to the modular design and 

ability to add or break in specialized software components Snort can be a 

powerful tool in a defense/security in-depth implementation. This design 

allows anyone capable of programming to build and implement their own 

preprocessor modules to customize Snort‟s operation to their specific 

environment. Customization can also be accomplished through 

specialized configurations of the existing pre-processor modules, as well 

as alert output operations [4]. 

Snort also has a large following and according to the Snort website 

snort.org, Snort is the effectively standard in intrusion detection systems. 

There are many commercialized systems available, but many 

organizations use Snort because it is an effective intrusion detection 

system, and free cost. Snort is a signature based detection system and 

with the large user base new signatures are constantly being added. This 

large user and support base has led to what is described as a highly 

effective and efficient detection engine  [16]. 

 

Snort does have some limited shortfalls when it comes to anomaly 

detection. The system was not designed for this type of operation, but 

some pre-processor modules attempt to add this functionality [18]. 

Currently these modules are not considered effective in detection. There 

is also concern about how efficient the detection engine actually is in 

terms of processing performance. The base engine is considered quite 

efficient, but there is speculation as to how efficient the system becomes 

when used with the pre-processor modules. The added functionality is 

good, but what price do you have to pay for that functionality  [16]. 

 

3- THE EXPERIMENT FRAMEWORK       

 

An experiment was designed to evaluate the snort performance from 

its effect on the environment viewpoint. A simulation methodology had 

been used to implement these experiments. This research will attempt to 

answer the following question "How much overhead, measured by 

elapsed time or delay time in network traffic, will be introduced by the 

implementation of a real-time intrusion detection system?". The null 

hypothesis for this question is the delay added by the intrusion detection 

system will not be noticeable. 

3.1 Assumptions 

While testing effect of the Snort intrusion detection system, the scope 

of the test is specific to certain indications of performance. The test and 
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performance measurements must then be controlled and should not be 

effected by other processing components of the software. To ensure this 

the following assumptions will be made. 

 

i. Assumption 1 

Snort is an intrusion detection system that is designed to detect 

network intrusions through both pattern matching and detection of 

anomalous network behavior. For this study, it will be assumed that Snort 

is capable of performing both functions efficiently and effectively. 

 

ii. Assumption 2 

Snort can be installed and used within a few minutes of installation. 

However, there are many customizable components designed in the Snort 

system that will not be considered for this research. This study will use 

the default configuration assuming that it is sufficiently optimized for 

basic testing to determine the amount of delay or elapsed time from end-

to-end traffic introduced by the intrusion detection system. 

 

iii. Assumption 3 

It will also be assumed that the sample traffic used for testing the 

intrusion detection system will be representative of normal network 

traffic on the live network. 

3.2  Scope and Limitations 

  

 The tests will be implements in isolated local area network (LAN) 

using windows operating system. Isolated LAN will use because many of 

the tests required direct control over the amount of computing activity in 

the environment. This research will be limiting by the following 

boundaries: 

 This study will be limited to the study of select pre-processor 

modules used by the Snort intrusion detection system. There are 

several such modules available for Snort; some have been tested 

and verified for enterprise usage, while others are still being 

developed and tested. We will limit this study to the Frag3, 

Stream5, Http-Inspect, Ftp-Telnet, and sfPortscan preprocessor 

modules available in Snort. 

 Several different methods for alert output are available in Snort. 

This study will limit the alert options to the standard default, which 

processes alerts to a basic log file. The system alert output will not 

be reviewed for this study, as this information would be use to 

determine detection accuracy.  

 

3.3     Design the Simulation Model 

 

To get a better idea of how the detection engine operates in a live 

environment this traffic should be tested in it. This can be quite disruptive 
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to the network, so traffic needs to be obtaining from a live network that 

can be use in a test environment. Better control of the testing environment 

can be maintained using this type of scenario. 

       

 To prepare a test bed, setting three computer computers will be 

required. The machines being used in this study will be identical, one 

machine will have a second network interface card (NIC) installed that 

need to be configure as a bridge to allow network traffic to pass through 

them.  The machines contain Dual-Core 1.83GHz, 512 RAM, and Realtek 

RTL8168/8111 PCI-E Gigabit network interface cards. The additional 

NIC was Intel Pro/ 100+ management adapter. Each machine loaded with 

windows XP, these machines will be called IDSSource, IDS, and 

IDSDest depend on the machine‟s purpose on the simulation network. All 

the three machines will also require having the Wirshark and WinPcap 

softwares installed. IDSSource will have the Colasoft Packet Player 

application, while IDS will have the Snort 2.8.1 software installed. 

Machine IDS will have two network interface cards installed, as it will be 

used for the network intrusion detection system engine. The experiment 

procedures are designed for testing Snort that monitors a network 

computer. The best environment to use for these tests is isolated area 

networks because of the tests require direct control over the amount of 

computing activity in the environment.  
 

  

 

 

 

 

 

 

Figure 2: Simulation Test-Bed Model  
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 Figure 3: Intrusion Detection Simulated Network 

The sample test traffic captured using the Wireshark packet sniffer 

application from a live network and will be saved in file named 

Test.pcap. The Colasoft Packet Player will be used to read the file 

Test.pcap and then send the packets on a specified network interface 

using the exact timing recorded when the traffic was captured. This 

assists in ensuring that the data being used is as close to live traffic as 

possible. The data will then leave the IDSSource machine and it will be 

sent to IDSDest. However, it must be cross IDS before reaching its 

destination. IDS computer set the Snort sensor‟s on the bridge connection 

where the packets will be processed and then it will be forwarded on to 

IDSDest. Once the packet is received at IDSDest it will be read by the 

Wireshark application. 

 

3.4  Design the Experiments 

 

Due to the numerous possible combinations of preprocessors that may be 

used, this study will use a full-factorial experimental design. Under 

consideration are five preprocessor modules and each module can be 

turned either on or off. The pre-processor modules are Frag3, Stream5, 

Http-Inspect, Ftp-Telnet and, sfPortscan, the last three modules need to 

turn on with Stream5 preprocessor. This indicates that there are 17 

possible combinations, which require 18 test passes. To help ensure that 

unknown factors do not affect the results, each test will be performed 

with ten replications. The replications will allow a determination of how 

each preprocessor module combination affects the total end-to-end delay 

of the network traffic by averaging multiple passes that may encounter 

noise effects, thus reducing the effect of the noise and providing results 

that are more reliable. using a simulation scripts to generate data 

conforming to the statistical distribution in a real environment; third, 

collected from a real environment and replicated in the experimental 

environment as described by wan & yang in (2001).                                  

 

 

4- ANALYSIS EXPERIMENTAL RESULTS 

 

Once the data has been collected, an analysis will be made of the 

obtained results. To start, a statistical analysis will be performed on the 

results obtained to determine the amount of overhead introduced into the 

end-to-end delay by the intrusion detection system. 

The observations showing the average value per treatment run and the 

delay introduced per packet listed in Table 2. As well, examine the 

practical significance of the end-to-end delay time introduced by the 

Real-Time Intrusion Detection System will be made. This will be 
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determined by looking at the per-packet delay (refer to Table 2). The 

delays calculated will be compared to the information in Table 1 to see if 

any treatment factor combination will generate a per packet delay greater 

than 150 µs.  

Reviewing these data shows that the delay time introduced by using 

SNORT  Real-Time NIDS per packet ranged from 58.988883 µs to 

58.986858 μs. This overhead is well below the 150 µs mark for 

acceptable delay in end-to-end traffic. 

Table 2: End-to-End Delay Time Introduced by IDS Engine per Packet. 

 

Total Packets Number (N) = 8254 

Delay (per Packet) = Average Observe Time / N   

 

Preprocessors Options 

Average 

Observe 

Time 

Delay/packet 

Frag3*Stream5 486.894243 0.058988883 

Stream5 486.891141 0.058988508 

Frag3 486.889177 0.05898827 

Frag3*Stream5*Http-Inspect 486.884414 0.058987693 

Frag3*Stream5*Ftp-Telnet 486.8833637 0.058987565 

Stream5*Http-Inspect*Ftp-Telnet 486.883207 0.058987546 

Frag3*Stream5*Http-Inspect*Ftp-Telnet 486.8830503 0.058987527 

Stream5*sfPortscan 486.8828936 0.058987508 

Frag3*Stream5*sfPortscan 486.8827369 0.058987489 

Stream5*Http-Inspect*sfPortscan 486.8825801 0.05898747 

Stream5*Ftp-Telnet*sfPortscan 486.8824234 0.058987451 

Frag3*Stream5*Http-Inspect *sfPortscan 486.8822667 0.058987432 

Frag3*Stream5*Ftp-Telnet *sfPortscan 486.88211 0.058987413 

Stream5*http-Inspect*Ftp-Telnet* sfPortscan 486.8819533 0.058987394 

Frag3*Stream5*Http-Inspect*Ftp-Telnet * 

sfPortscan 
486.8817966 0.058987375 

Stream5*Ftp-Telnet 486.87884 0.058987017 

Stream5*Http-Inspect 486.877529 0.058986858 

 

 

 

 

 

5- CONCLUTIONS 

 

Through the methodology followed, try to answer the question   “how 

much end-to-end delay is introduced by the implementation of Snort as a 

real-time network intrusion detection system”. Using the Snort in a real-

time network intrusion detection system and considering the many 

various combinations of options and configurations the amount of end-to-

end delay per packet will range from 58.988883 µs to 58.986858 μs. This 

is a very small in relative terms and would be very difficult to notice in a 
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normal operating environment. It is clear that, delay per packet is 

considerably less than the 150 µs, which means that there is no practical 

significance added to the end-to-end delay. The conclusion is to fail to 

reject the null hypothesis.   

Overall, there is a good indication that the Snort is capable of carrying 

the load of a production network with minimal statistical impact and 

virtually no practical impact. This is an unexpected result as much larger 

delays were thought to be introduced by the real-time intrusion detection 

system associated with a variance between treatment factors. The Snort 

pre-processors obviously require processing cycles to complete their 

work, which in theory should increase the end-to-end delay of network 

traffic. However, the preprocessors save processor cycles by reducing the 

amount of traffic that must pass through the pattern matching engine, 

offsetting the increased processing cycles, creating a very operationally 

efficient security tool.  
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 الملخص

   
 كٍفٍاةعولٍة التً ٌْلً لِاا الوتتواْى  اً ه اال التاهوا  ُْال م ّالْصْل إلى الٌتائجإى الاُتوا

بزًاهج لاكتتاف الاختزاق  اً  snort)التملٍل هي الاختزالا  الوْجْدة على التهوة حٍث ٌعد ) 

 ً أهٌٍة التاهوا    ّلرازا التدكاد هاي ً ااخ اساتتداهَ ٌ ا   ةالتهوة ُّْ هي الهزاهج الْاسع

بتول الذي ٌضوي سلاهة التهوة هي الاختزالا  هي خلال ُذا الاختهار الاذي ٌتاٍل لوال  اختهارٍ 

غالها تستتدم ًظن اكتتااف  ّالاٌ ابٍة . جبالٌتائ ُنتزٌّدالعاهلٍي  ً ُذا الو ال  العول هي خلال 

ة ّاختزاق التهوة  ً أطزاف التهوة لوً تمْم بالفحص الدلٍك لحزم الهٍاًا  الداخلاة إلاى الوٌ ما

الوحوٍااة   ّاى اسااتتدام ًظاان الاكتتاااف الاختاازاق  ااً التااهوة  ااً الْلاا  الحمٍمااً ٌضااٍ  حواال 

أضا ً إلاى التاهوة   لاذلم تان اعتوااد طزٌماة الوحاكااة لتٌفٍاذ بعا  الت اارع لتمٍاٍن  عوال تاد ٍز 

( على أطزاف التهوة . ّاى ُذٍ الت ارع   end-to- endهماسا بْل  التدخٍز )  snortبزًاهج  

توثلة بوعال ا  رئٍسٍة أ هت  بعدم تد ٍز هحسْس على سٍز الهٍاًا   ً التهوة ًتٍ ة استتدام الو

 ُذا الهزًاهج .

       

 

 

 


