
 1

Overhead Evaluation in Real-Time Network Intrusion

Detection System Using Snort

Suhad Abbas Yasir

Technical Institute / shattra

Abstract

A growing number of Internet threats have increased the need of

applying a defense in depth concepts to protect the information contained

on computer systems worldwide. Snort is a lightweight Network Intrusion

Detection System (NIDS) that widely used in network security. However,

to ensure that such an implementation is likely to be successful, the

system must be tested to provide decision makers with assurance to

reduce risks.

Typically, NIDS residing on the edge of a network performs deep

packet inspection on every packet that enters to the protected domain.

Real-Time NIDS obviously place some additional overhead into the

network traffic path. How much overhead introduced into the network

traffic by introducing of real-time NIDS. A simulation methodology had

been used to implements some experiments designed to evaluate Snort

effect, measured by end-to-end delay-time introduced by the engine.

These experiments proved that there is no noticeable effect introduced to

the network traffic.

NIDS, Defence in-Depth, Snort, Overhead

I. INTRODUCTION

Network Security is a large and growing area of concern for

corporations that have computers connected to the internet. At the same

time as the number of companies with computers and services accessible

to the Internet increases, so does the number of attacks against

companies. Furthermore, up to now there is no mechanism that can

promise to totally secure a network.]1 [

Intrusion Detection has been defined by [1] as “the problem of

identifying individuals who are using a computer system without

authorization (i.e., „crackers‟) and those who have legitimate access to the

system but are abusing their privileges (i.e., the „insider threat‟)”.

 2

Intrusion Detection Systems (IDSs) have evolved into a critical

component in secure network architecture. An IDS is any hardware,

software, or combination of thereof that monitor a system or network of

systems for malicious activity as defined by koziol [2].

Intrusion Detection Systems (IDSs) are classified by there

functionality, loosely grouped into three categories: Network IDS, Host

IDS and Distributed IDS. NIDS monitor traffic as it flows throw a

network; HIDS are reside on a particular host and monitors for intrusion

attempts; and DIDS is a combination of NIDSs, HIDSs, or both across the

enterprise and all reporting to central correlation system [3, 4].

Network intrusion detection systems (NIDS) are a major security

component in many network environments. These systems continuously

monitor network traffic for malicious activity, raising alerts when they

detect attacks and also enable real-time detection of network attack [5].

With the use of network intrusion detection systems, a network

administrators need to ensure that network traffic is not being unduly

delayed by overhead introduced from the real-time network intrusion

detection system. Network administrators do not want to endanger

network security or add unneeded overhead to the already extremely busy

networks by introducing a network detection system.

There are two broad categories analysis performed to look for signs of

intrusion. The first is misuse detection. Misuse detection works by apply

the knowledge accumulated about specific attacks and system

vulnerabilities. The intrusion-detection system contains information about

these vulnerabilities and looks for attempts to exploit them. When such an

attempt is detected, an alarm is triggered. The second type of analysis

performed is anomaly detection. Anomaly detection techniques assume

that an intrusion can be detected by observing a deviation from normal or

expected behavior of the system or the users [6, 7].

End-to-end method of delay measurement was used by Cisco in 2007

to test effect on the network when using IDS. These systems have the

potential to introduce delay. Generally the networks will similarly carry

voice, video or multimedia traffic, as well as data, needs to be some

standards for delay limits established. Such standards have been

established to assist in determining when the delay value becomes

unacceptable (refer to table 1). These standards suggest that overall per

packet delay should remain below 150 milliseconds to ensure acceptable

network performance [8].

Table 1: Delay Specifications.

RANGE IN

MILLISECONDS
DESCRIPTION

 3

2- SNORT

Snort was designed by Martin Roesch in 1998, is a free, cross-

platform, lightweight network intrusion detection tool [9] that can be used

to monitor small TCP/IP networks, capable of performing real-time

traffic analysis and packet logging on IP networks [10]. It can perform

protocol analysis, content searching/matching, and can be used to detect a

variety of attacks and probes, such as buffer overflows, stealth portscans,

CGI attacks, SMB probes, OS fingerprinting attempt, and much more

[11].

Snort is primarily a misuse-based NIDS that uses a combination of

rules and preprocessors to analyze traffic [12]. Snort uses a flexible rules

language to describe traffic that it should collect or pass, as well as to

detection engine that utilizes modular plugin architecture. The

preprocessors code allows examination that is more extensive and

manipulation of data that cannot be done via rules alone [4].

Snort can run in three modes [13] that make it very powerful: packet

sniffing, packet logging, and intrusion detection system. Packet sniffing

mode simply reads the packets off the network and displays them in a

continuous stream on the console. Packet logger mode logs the packets to

the disk. Network intrusion detection mode is the most complex and

configurable; allowing Snort to analyze network traffic for matches

against a user-defined rule set and to perform several actions based upon

what it sees.

Snort is logically divided into multiple components. These components

(refer to figure 1) work together to detect particular attacks and to

generate output in a required format from the detection system.

0-150 µs Acceptable for most user applications.

150-400 µs

 Acceptable provided that administrators are aware of the

transmission time and the impact it has on the

transmission quality of user applications.

Above 400 µs

Unacceptable for general network planning purposes.

However, it is recognized that in some exceptional cases

this limit is exceeded.

 4

Figure 1: Snort Architecture.

The most important feature is using Snort as IDS mode. Snort is a

packet sniffer. However, it is designed to take packets and process them

through the preprocessors. Each packet observed on the network is first

passed through a set of preprocessors, which may extract information

and/or modify the packet and then check those packets against a series of

rules (through the detection engine). Then detection plug-ins matches the

packet against signature conditions. If a match was found, sent through

the alert system, it can be handled by whatever plug-ins has been chosen

to handle alerting [2,4].

2.1 -1 Snort Preprocessors

A preprocessor is a code that is compiled into the Snort engine upon

build in order to normalize traffic and/or examine the traffic for attacks in

a fashion beyond what can be done in normal rules. Although that might

seem like an overly simplistic explanation for what these complex pieces

of Snort do, it‟s important to realize their contribution to the overall

whole of the intrusion detection system (IDS) [4, 14].

Snort allows us to select which preprocessors should be enabled. From

this standpoint, this is done through the Snort configuration file

“snort.conf” [15]. Snort has many preprocessors available. The Snort

project team has certified some, while others are in testing and more yet

are still in development. These preprocessors are what make Snort such a

powerful and effective intrusion detection system. The preprocessors that

we are primarily concerned with this paper are the Frag3, Stream5, Http-

Inspect, Ftp-Telnet, and sfPortscan.

2-1`-2 Frag3

The frag3 preprocessor is applying for reassembling packets as a

target-based IP defragmentation module for Snort [16]. Target-based

analysis is a relatively new concept in network-based intrusion detection.

The idea of a target-based system is to model the actual targets on the

network instead of only modeling the protocols and looking for attacks

within them.

2.1.2 Stream5

 5

The Stream5 preprocessor is a target-based TCP reassembly module

for Snort [16]. It is intended to replace both the Stream4 and flow

preprocessors, and it is capable of tracking sessions for both TCP and

UDP. Many attacks are spread across several packets and are

undetectable to a non session-reassembling rule-matching IDS, that‟s the

whole reason for stream reassembly [4, 14, 17].

2.1.3 Http-Inspect

Http has become one of the most widely and diversely used protocols

on the Internet. Over time, researchers have found that Web servers will

often take a number of different expressions of the same URL as

equivalent [16]. For example, an IIS Web server will see these two URLs

as being identical:

http://www.example.com/foo/bar/iis.html

http://www.example.com/foo\bar\iis.html

Unfortunately, a pattern matcher such as Snort will only match the pattern

foo/bar against the first of these two. An attacker can use this “flexibility”

in the Web server to attempt to hide his probes and attacks from the

NIDS. http_inspect is stateless; it normalizes HTTP strings on a packet-

by-packet basis and will only process HTTP strings that have been

reassembled by the Stream4 which replaced by Strean5 preprocessor [4].

2.1.4 sfPortscan

This module is designed to detect the first phase in a network attack:

Reconnaissance. In the Reconnaissance phase, an attacker determines

what types of network protocols or services a host supports. This is the

traditional place where a portscan takes place. This phase assumes the

attacking host has no prior knowledge of what protocols or services are

supported by the target, otherwise this phase would not be necessary[16].

2.1.5 Ftp-Telnet Preprocessor

Ftp_telnet is composed of two parts: the FTP preprocessor and the

telnet preprocessor. ftp_telnet can be stateful or stateless; it receives this

data from the stream4 preprocessor which replaced by stream5, thus we

need to combine it with ftp-telnet preprocessor [4].

When a telnet data buffer available, ftp_telnet will normalize the

buffer with respect to telnet commands and option negotiation,

eliminating telnet command sequences per RFC 854. When FTP

command channel buffers (on port 21) are used, ftp_telnet will interpret

the data, identifying FTP commands and parameters, as well as

appropriate FTP response codes and messages. It will enforce the

correctness of the parameters, determine when an FTP command

connection is encrypted, and furthermore determine when an FTP data

channel is opened [16]. ftp_telnet is extremely versatile, having the

 6

capability through the dynamic preprocessor to be able to configure every

last parameter, which makes for a very powerful emulation engine.

2.2 Advantages and Disadvantages of Snort

Snort is a very flexible application. Due to the modular design and

ability to add or break in specialized software components Snort can be a

powerful tool in a defense/security in-depth implementation. This design

allows anyone capable of programming to build and implement their own

preprocessor modules to customize Snort‟s operation to their specific

environment. Customization can also be accomplished through

specialized configurations of the existing pre-processor modules, as well

as alert output operations [4].

Snort also has a large following and according to the Snort website

snort.org, Snort is the effectively standard in intrusion detection systems.

There are many commercialized systems available, but many

organizations use Snort because it is an effective intrusion detection

system, and free cost. Snort is a signature based detection system and

with the large user base new signatures are constantly being added. This

large user and support base has led to what is described as a highly

effective and efficient detection engine [16].

Snort does have some limited shortfalls when it comes to anomaly

detection. The system was not designed for this type of operation, but

some pre-processor modules attempt to add this functionality [18].

Currently these modules are not considered effective in detection. There

is also concern about how efficient the detection engine actually is in

terms of processing performance. The base engine is considered quite

efficient, but there is speculation as to how efficient the system becomes

when used with the pre-processor modules. The added functionality is

good, but what price do you have to pay for that functionality [16].

3- THE EXPERIMENT FRAMEWORK

An experiment was designed to evaluate the snort performance from

its effect on the environment viewpoint. A simulation methodology had

been used to implement these experiments. This research will attempt to

answer the following question "How much overhead, measured by

elapsed time or delay time in network traffic, will be introduced by the

implementation of a real-time intrusion detection system?". The null

hypothesis for this question is the delay added by the intrusion detection

system will not be noticeable.

3.1 Assumptions

While testing effect of the Snort intrusion detection system, the scope

of the test is specific to certain indications of performance. The test and

 7

performance measurements must then be controlled and should not be

effected by other processing components of the software. To ensure this

the following assumptions will be made.

i. Assumption 1

Snort is an intrusion detection system that is designed to detect

network intrusions through both pattern matching and detection of

anomalous network behavior. For this study, it will be assumed that Snort

is capable of performing both functions efficiently and effectively.

ii. Assumption 2

Snort can be installed and used within a few minutes of installation.

However, there are many customizable components designed in the Snort

system that will not be considered for this research. This study will use

the default configuration assuming that it is sufficiently optimized for

basic testing to determine the amount of delay or elapsed time from end-

to-end traffic introduced by the intrusion detection system.

iii. Assumption 3

It will also be assumed that the sample traffic used for testing the

intrusion detection system will be representative of normal network

traffic on the live network.

3.2 Scope and Limitations

 The tests will be implements in isolated local area network (LAN)

using windows operating system. Isolated LAN will use because many of

the tests required direct control over the amount of computing activity in

the environment. This research will be limiting by the following

boundaries:

 This study will be limited to the study of select pre-processor

modules used by the Snort intrusion detection system. There are

several such modules available for Snort; some have been tested

and verified for enterprise usage, while others are still being

developed and tested. We will limit this study to the Frag3,

Stream5, Http-Inspect, Ftp-Telnet, and sfPortscan preprocessor

modules available in Snort.

 Several different methods for alert output are available in Snort.

This study will limit the alert options to the standard default, which

processes alerts to a basic log file. The system alert output will not

be reviewed for this study, as this information would be use to

determine detection accuracy.

3.3 Design the Simulation Model

To get a better idea of how the detection engine operates in a live

environment this traffic should be tested in it. This can be quite disruptive

 8

to the network, so traffic needs to be obtaining from a live network that

can be use in a test environment. Better control of the testing environment

can be maintained using this type of scenario.

 To prepare a test bed, setting three computer computers will be

required. The machines being used in this study will be identical, one

machine will have a second network interface card (NIC) installed that

need to be configure as a bridge to allow network traffic to pass through

them. The machines contain Dual-Core 1.83GHz, 512 RAM, and Realtek

RTL8168/8111 PCI-E Gigabit network interface cards. The additional

NIC was Intel Pro/ 100+ management adapter. Each machine loaded with

windows XP, these machines will be called IDSSource, IDS, and

IDSDest depend on the machine‟s purpose on the simulation network. All

the three machines will also require having the Wirshark and WinPcap

softwares installed. IDSSource will have the Colasoft Packet Player

application, while IDS will have the Snort 2.8.1 software installed.

Machine IDS will have two network interface cards installed, as it will be

used for the network intrusion detection system engine. The experiment

procedures are designed for testing Snort that monitors a network

computer. The best environment to use for these tests is isolated area

networks because of the tests require direct control over the amount of

computing activity in the environment.

Figure 2: Simulation Test-Bed Model

Analysis & Evaluate the Results

ddd

Problem Definition

Design the Simulation Model

Configuration the Simulation Model

Design the Experiments

Conduct the Experiments

 9

 Figure 3: Intrusion Detection Simulated Network

The sample test traffic captured using the Wireshark packet sniffer

application from a live network and will be saved in file named

Test.pcap. The Colasoft Packet Player will be used to read the file

Test.pcap and then send the packets on a specified network interface

using the exact timing recorded when the traffic was captured. This

assists in ensuring that the data being used is as close to live traffic as

possible. The data will then leave the IDSSource machine and it will be

sent to IDSDest. However, it must be cross IDS before reaching its

destination. IDS computer set the Snort sensor‟s on the bridge connection

where the packets will be processed and then it will be forwarded on to

IDSDest. Once the packet is received at IDSDest it will be read by the

Wireshark application.

3.4 Design the Experiments

Due to the numerous possible combinations of preprocessors that may be

used, this study will use a full-factorial experimental design. Under

consideration are five preprocessor modules and each module can be

turned either on or off. The pre-processor modules are Frag3, Stream5,

Http-Inspect, Ftp-Telnet and, sfPortscan, the last three modules need to

turn on with Stream5 preprocessor. This indicates that there are 17

possible combinations, which require 18 test passes. To help ensure that

unknown factors do not affect the results, each test will be performed

with ten replications. The replications will allow a determination of how

each preprocessor module combination affects the total end-to-end delay

of the network traffic by averaging multiple passes that may encounter

noise effects, thus reducing the effect of the noise and providing results

that are more reliable. using a simulation scripts to generate data

conforming to the statistical distribution in a real environment; third,

collected from a real environment and replicated in the experimental

environment as described by wan & yang in (2001).

4- ANALYSIS EXPERIMENTAL RESULTS

Once the data has been collected, an analysis will be made of the

obtained results. To start, a statistical analysis will be performed on the

results obtained to determine the amount of overhead introduced into the

end-to-end delay by the intrusion detection system.

The observations showing the average value per treatment run and the

delay introduced per packet listed in Table 2. As well, examine the

practical significance of the end-to-end delay time introduced by the

Real-Time Intrusion Detection System will be made. This will be

 10

determined by looking at the per-packet delay (refer to Table 2). The

delays calculated will be compared to the information in Table 1 to see if

any treatment factor combination will generate a per packet delay greater

than 150 µs.

Reviewing these data shows that the delay time introduced by using

SNORT Real-Time NIDS per packet ranged from 58.988883 µs to

58.986858 μs. This overhead is well below the 150 µs mark for

acceptable delay in end-to-end traffic.

Table 2: End-to-End Delay Time Introduced by IDS Engine per Packet.

Total Packets Number (N) = 8254

Delay (per Packet) = Average Observe Time / N

Preprocessors Options

Average

Observe

Time

Delay/packet

Frag3*Stream5 486.894243 0.058988883

Stream5 486.891141 0.058988508

Frag3 486.889177 0.05898827

Frag3*Stream5*Http-Inspect 486.884414 0.058987693

Frag3*Stream5*Ftp-Telnet 486.8833637 0.058987565

Stream5*Http-Inspect*Ftp-Telnet 486.883207 0.058987546

Frag3*Stream5*Http-Inspect*Ftp-Telnet 486.8830503 0.058987527

Stream5*sfPortscan 486.8828936 0.058987508

Frag3*Stream5*sfPortscan 486.8827369 0.058987489

Stream5*Http-Inspect*sfPortscan 486.8825801 0.05898747

Stream5*Ftp-Telnet*sfPortscan 486.8824234 0.058987451

Frag3*Stream5*Http-Inspect *sfPortscan 486.8822667 0.058987432

Frag3*Stream5*Ftp-Telnet *sfPortscan 486.88211 0.058987413

Stream5*http-Inspect*Ftp-Telnet* sfPortscan 486.8819533 0.058987394

Frag3*Stream5*Http-Inspect*Ftp-Telnet *

sfPortscan
486.8817966 0.058987375

Stream5*Ftp-Telnet 486.87884 0.058987017

Stream5*Http-Inspect 486.877529 0.058986858

5- CONCLUTIONS

Through the methodology followed, try to answer the question “how

much end-to-end delay is introduced by the implementation of Snort as a

real-time network intrusion detection system”. Using the Snort in a real-

time network intrusion detection system and considering the many

various combinations of options and configurations the amount of end-to-

end delay per packet will range from 58.988883 µs to 58.986858 μs. This

is a very small in relative terms and would be very difficult to notice in a

 11

normal operating environment. It is clear that, delay per packet is

considerably less than the 150 µs, which means that there is no practical

significance added to the end-to-end delay. The conclusion is to fail to

reject the null hypothesis.

Overall, there is a good indication that the Snort is capable of carrying

the load of a production network with minimal statistical impact and

virtually no practical impact. This is an unexpected result as much larger

delays were thought to be introduced by the real-time intrusion detection

system associated with a variance between treatment factors. The Snort

pre-processors obviously require processing cycles to complete their

work, which in theory should increase the end-to-end delay of network

traffic. However, the preprocessors save processor cycles by reducing the

amount of traffic that must pass through the pattern matching engine,

offsetting the increased processing cycles, creating a very operationally

efficient security tool.

REFERANCES

[1] Mukherjee B., Heberlein L. T., and Levitt K. N., "Network

Intrusion Detection", IEEE Network, vol. 8, pp. 26-41, 1994.

[2] koziol j., Intrusion Detection with Snort: Sams Publishing, 2003.

[3] Baker A. R., Caswell B., and Poor M., Snort 2.1 Intrusion

Detection, 2nd ed. USA: Syngress Publishing, Inc., 2004.

[4] Baker A. R. and Esler J., Snort IDS and IPS Toolkit. Burlington:

Syngress Publishing, Inc., 2007.

[5] Attig M. and Lockwood J., "SIFT:Snort Intrusion Filter for TCP,"

Proc. of IEEE COMPUTER SOCIETY2005.

[6] Wu Y.-S., Foo B., Mei Y., and Bagchi S., "Collaborative Intrusion

Detection System (CIDS): A Framework for Accurate and

Efficient IDS", Proc. of 19th Annual Computer Security

Applications Conference (ACSAC 2003), IEEE, 2003.

[7] Debar H., Dacier M., and Wespi A., "Towards a Taxonomy of

Intrusion Detection Systems," Elsevier, 1999.

[8] Cisco, "Understanding Delay in Packet Voice Networks", 2007,

Retrieved from http://www.cisco.com/warp/public/788/voip/delay-

details.html.

[9] Roesch M., "Snort - Lightweight Intrusion Detection for

Networks," 1999, Retrieved from

http://www.snort.org/docs/lisapaper.txt.

[10] Caruso L. C., Guuindani G., Schmitt H., neycalazans, and Moraes

F., "SPP-NIDS - A Sea of Processors Platform for Network

Intrusion Detection Systems," Proc. of 18th IEEE/IFIP

International Workshop on Rapid System Prototyping(RSP07),

IEEE, 2007,

[11] Hutchings B. L., Franklin R., and Carver D., "Assisting Network

Intrusion Detection with Reconfigurable Hardware", Proc. of 10th

http://www.snort.org/docs/lisapaper.txt

 12

Annual IEEE Symposium on Field-Programmable Custom

Computing Machines (FCCM‟02), 2002.

[12] Sourdis I. , Dimopoulos V., Pnevmatikatos D. , and Vassiliadis S. ,

"Packet Pre-filtering for Network Intrusion Detection", ACM, pp.

183 -192, 2006.

[13] Guerrero J. H. and Cardenas R. G., "An example of

communication between security tools: Iptables - Snort," ACM, pp.

34 - 43, 2005.

[14] Beale J. and Foster J. C. , Snort 2.0 Intrusion Detection. USA:

Syngress Publishing, 2003.

[15] Rehman R. U., Intrusion Detection Systems with Snort, 1st ed. New

Jersey Printice Hall PTR, 2003.

[16] Snort, "Snort Users Manual 2.8.2", 2008.

[17] Novak J. and Sturges S., "Target-Based TCP Stream Reassembly,"

Sourcefire Incorporated, 2007.

[18] Lippmann R.,. Haines J. W, Fried D. J., Korba J., and Das K., "The

1999 DARPA Off-Line Intrusion Detection Evaluation," Lincoln

Laboratory MIT, 2000.

 الملخص

 كٍفٍاةعولٍة التً ٌْلً لِاا الوتتواْى اً ه اال التاهوا ُْال م ّالْصْل إلى الٌتائجإى الاُتوا

بزًاهج لاكتتاف الاختزاق اً snort)التملٍل هي الاختزالا الوْجْدة على التهوة حٍث ٌعد)

 ً أهٌٍة التاهوا ّلرازا التدكاد هاي ً ااخ اساتتداهَ ٌ ا ةالتهوة ُّْ هي الهزاهج الْاسع

بتول الذي ٌضوي سلاهة التهوة هي الاختزالا هي خلال ُذا الاختهار الاذي ٌتاٍل لوال اختهارٍ

غالها تستتدم ًظن اكتتااف ّالاٌ ابٍة . جبالٌتائ ُنتزٌّدالعاهلٍي ً ُذا الو ال العول هي خلال

ة ّاختزاق التهوة ً أطزاف التهوة لوً تمْم بالفحص الدلٍك لحزم الهٍاًا الداخلاة إلاى الوٌ ما

الوحوٍااة ّاى اسااتتدام ًظاان الاكتتاااف الاختاازاق ااً التااهوة ااً الْلاا الحمٍمااً ٌضااٍ حواال

أضا ً إلاى التاهوة لاذلم تان اعتوااد طزٌماة الوحاكااة لتٌفٍاذ بعا الت اارع لتمٍاٍن عوال تاد ٍز

(على أطزاف التهوة . ّاى ُذٍ الت ارع end-to- endهماسا بْل التدخٍز) snortبزًاهج

توثلة بوعال ا رئٍسٍة أ هت بعدم تد ٍز هحسْس على سٍز الهٍاًا ً التهوة ًتٍ ة استتدام الو

 ُذا الهزًاهج .

