
Journal of Wasit for Science and Medicine              2025: 18, (1), 1-17 

1 
 

Electronic Structure of Proteins: Exciton Hamiltonian for a 

Dipeptide 

 

Sarah Badri  Jasim, and Mahdi Basim Najim 

 

Wasit University, College of Science, Department of Chemistry 

 

Abstract 

Protein folding has attracted a great deal of interest alongside the increased amount of 

structural information on proteins. Different spectroscopies, for example, X-ray crystallography 

and Nuclear Magnetic Resonance (NMR), are often used to study protein structure. Optical 

spectroscopy despite limited spatial resolution, for example, circular dichroism (CD), has 

considerable interest, arising from the ability to derive information about secondary structures of 

a protein from its CD spectrum. The aim of the present work is to explore whether fully ab initio 

Complete Active Space Self-Consistent Field (CASSCF) calculations of the electronic excited 

states of dipeptides can help to construct the exciton Hamiltonian for a dipeptide. Exciton theory 

is an approximate approach allowing the calculation of the CD of proteins. We have treated the 

problem of finding the exciton Hamiltonian matrix elements as an optimization problem in which 

the ab initio energies represent the “true” solutions and are used to compute the “error” that will 

be minimized. We use a Monte Carlo algorithm to conduct optimization. We find many possible 

solutions, all of which upon diagonalizing the exciton Hamiltonian give energies close to the ab 

initio energies. Some of the off-diagonal elements are also well-defined, while other distributions 

of some elements are more variable. More work will be needed to reduce the number of solutions. 

 

Key Words: Hamiltonian given energies, Hamiltonian matrix elements. 

 

1. Introduction 

1.1 . Protein Structure  

Proteins are ubiquitous in all living 

organisms no matter whether they are simple 

or complex. An essential building unit to 

make proteins is an amino acid. There are 

twenty commonly and naturally occurring 

standard amino acids. All of them are α-

amino acids with the general structure shown 

in (figure 1). They differ only in terms of the 

R group. 
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Figure 1: General structure of amino acid. 

 

Amino acids are linked together by a peptide 

bond, resulting from a condensation reaction 

of the α-carboxyl group of one amino acid, 

and the α-amino group of another [1]. 

Linking will lead to the creation of a polymer 

known as a polypeptide, the backbone of a 

protein as shown in (figure 2) with the R 

group side chains. 

 

Figure 2: A polypeptide chain structure. 

 

The polypeptide backbone comprises 

single bonds, either C-C or C-N, which give 

flexibility and contribute to the variety of 

complex shapes of proteins. The shape or 

structure of a protein can be defined by the 

dihedral angles φ and ψ, as shown in (figure 

3), where Φ is the angle of rotation about the 

N-Cα bond and ψ is the angle about the C-Cα 

bond. There is another dihedral angle known 

as ω, which is 1800 for trans–peptides and 00 

for cis-peptides [2]. 

 

 

 

Figure 3: Main chain dihedral angles φ and 

ψ. 

 

The two dihedral angles φ and ψ are 

the basis of the Ramachandran plot. In 1963, 

Ramachandran and his co-workers 

investigated the idea of a plot based on the 

dihedral angles φ and ψ [3]. Since that time, 

this plot (figure 4) [2], has become one of the 

simplest  methods to study the secondary 

structures of proteins [4, 5]. 
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Figure 4: The Ramachandran plot showing 

the different allowed regions corresponding 

different secondary structure types: β-sheets, 

Collagen triple helix, Lα and Rα [2]. 

 

Ramachandran used computer 

models of small polypeptides to 

systematically vary structure with the 

objective of finding stable conformations. 

For each conformation, the structure was 

examined for close contact between atoms. 

Atoms were treated as hard spheres with 

dimensions corresponding to their van der 

Waals radii. Therefore, values of angles 

which cause the hard spheres to collide 

correspond to sterically disallowed 

conformations of the polypeptide backbone. 

In (figure 4) the white areas correspond to 

conformations where atoms in the 

polypeptide come closer than the sum of their 

van der Waals radii. These regions are 

sterically disallowed for all amino acids 

except glycine which is unique in that it lacks 

a side chain. The dark blue regions 

correspond to conformations where there are 

no steric clashes. These are the allowed 

regions namely the α-helical and β-sheet 

conformations and right-handed α-helix. The 

light blue areas show the allowed regions if 

slightly shorter van der Waals radii are used 

in calculation. Therefore, atoms are allowed 

to come a little closer together. This brings 

out an additional region which corresponds to 

the left-handed α-helix [4, 5]. Protein 

structure, specifically protein folding, has 

become the intense focus for many 

researchers during the last several decades. 

Different types of important spectroscopies 

are used to study protein structures, for 

example, X-ray (crystallography), Nuclear 

Magnetic Resonance (NMR) and Circular 

Dichroism (CD) [6, 7]. 

 

1.2. Circular Dichroism of Protein 

Circular dichroism spectroscopy 

(CD) is a technique widely applied to a large 

biological system [6]. It is used successfully 

and specifically to study chiral molecules. 

Chirality is an important feature of the three-

dimensional structures of peptides and 

proteins. The chirality of the secondary 

structure is key for protein CD; thus, the 

application of this spectroscopy is possible 
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because proteins rotate the plane of the 

circularly polarized light [2]. Although CD is 

one of the most helpful spectroscopies for 

examining protein structure, other 

spectroscopies are used to achieve similar 

purposes [6, 7]. However, CD spectroscopy 

has advantages, such as using lower 

concentrations and having no size limitations 

in contrast to NMR. Compared with X-ray 

crystallography, results have been gained 

without any of the problems in a structure that 

may occur during crystallization [7].  

CD is the difference in absorption of 

left and right circularly polarized light. For 

chiral molecules, the extinction coefficients 

for the left and right circularly polarized light 

are different (ε_l  ≠ ε_r). When the 

differential absorbance,  ∆ε, is plotted against 

wavelength, the CD spectrum will be 

generated [6]. The CD signal is related to the 

scalar product of an electric transition dipole 

moment 𝜇⃗ and magnetic transition dipole 

moment 𝑚⃗⃗⃗ . Therefore, the non-zero values 

of these two quantities during the excitation 

process of a chiral molecule leads to the CD 

signal [7]. The CD strength or rotational 

strength for an excitation is analogous to the 

oscillator strength of normal absorption. It is 

the integral of ∆A over a particular 

wavelength range for the transition. The 

rotational strength (R0k) for excitation from 

the ground state 0 to an electronic excited 

state k is the imaginary part of the product of 

the electric transition dipole moment, 𝜇⃗ , and 

the magnetic transition dipole moment, 𝑚⃗⃗⃗ , 

given by the Rosenfeld equation [8]. 

 

𝑅0𝑘 = Im(⟨𝜓0|𝜇⃗|𝜓𝑘⟩⟨𝜓𝑘|𝑚⃗⃗⃗|𝜓0⟩)            

(1) 

In Equation (1), ψ0 and ψk represent 

the wave functions of the ground state and 

excited state respectively. By using the 

Rosenfeld equation, it is possible to find the 

rotational strengths of a particular molecule, 

and the CD spectrum can be calculated. The 

wave functions for the ground and excited 

states can only be determined fully ab initio 

for relatively small compounds. For large 

systems, such as proteins, there are 

computational challenges. However, some 

approximate approaches are well established, 

for example, matrix method [9]. CD 

spectroscopy on proteins provides 

characteristic bands in the near- and far-

ultraviolet (UV) region. The far–UV region 

(190-250 nm) arises in large part from the 

secondary structure. This spectrum is 

affected by the backbone structure of a 

protein as shown in (Figure 5) [10], while the 

near-UV bands (>250 nm) arise from 

aromatic side chains. 
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Figure 5: CD spectra of different secondary 

structures: The helix, β -form, and R 

unordered form [10]. 

 

For an α-helix, there is an intense 

positive band at 190 nm and a negative band 

at 208 nm which are from the electronic 

transition from the amide non-bonding π 

orbital (πnb) to the anti-bonding π orbital 

(π*), as shown in (figure 6) [11]. There is 

another band arising from the oxygen lone 

pair orbital n to π* orbital located at around 

222 nm [12-14]. 

 

Figure 6: Molecular orbitals relevant to 

transitions in the far-UV [11]. 

 

The calculation of the CD spectrum is 

successful for small molecules. Some 

development methods for computing the CD 

spectrum of a large molecule, such as 

proteins, have been reported as well. A 

widely used technique is the matrix method 

[9]. The matrix method is suitable and 

successful in protein CD calculations, 

especially for highly helical proteins [15]. 

This work forms a part of an ongoing effort 

to explore whether ab initio Complete Active 

Space Self-Consistent Field (CASSCF) 

calculations, of the electronic excited states 

of dipeptides, which were performed 

previously by Oakley et al. (2006) [16], can 

help inform the construction of the required 

exciton Hamiltonian for calculations of the 

electronic structure of dipeptides and, 

ultimately, proteins. 

  

2. Methods 

 2.1. The matrix method 

The matrix method, which is based on 

the exciton theory [17], is widely used for 

large molecular systems [18-23], particularly 

for proteins. Its use as an improved version of 

a simple approach was introduced by Tinoco 

in 1962 [24]. One begins by considering the 

protein as a system with M independent 

chromophoric groups; each group, i, is solved 

separately and excitations are only 

considered into higher electronic states of the 

same chromophore. The wave functions ψκ of 
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excited states  are constructed as a linear 

combination of electronic configurations in 

which one chromophoric group is excited and 

the others are in the ground state, Φia, is the 

wave function of the monomer i in the excited 

state a, as shown in the two equations below 

[25]. 

Φia = ϕ10 ⋯ ϕia ⋯ ϕj0 ⋯ ϕM0                (2) 

𝜓𝜅 = ∑  ∑ 𝑐𝑖𝑎   Φ𝑖𝑎  
𝑘𝑛𝑖

𝑎
𝑀
𝑖                          (3) 

𝑐𝑖𝑎  
𝑘 are expansion coefficients which 

represent the interactions of the states. The 

wave function 𝜓𝑘 for protein’s kth excited 

state is needed to use the Rosenfeld equation 

to calculate the rotational strength of a 

transition in CD spectrum. The wave function 

𝜓𝑘 of electronic excited state k of protein, 

and its corresponding energy, can be 

calculated by solving the Schrödinger 

equation. 

𝐻̂𝜓𝑘 = 𝐸𝑘𝜓𝑘                                    (4) 

𝐻̂ = ∑ 𝐻̂𝑖 + ∑ ∑ 𝑉̂𝑖𝑗
𝑀
𝑗=𝑖+1

𝑀−1
𝑖=1

𝑀
𝑖=1                 (5) 

The Hamiltonian of the system with M 

independent chromophores, 𝐻̂, is constructed 

as the sum of the local Hamiltonian 𝐻̂𝑖 of the 

independent group i plus the interactions 

between these two separated groups, which is 

denoted as intergroup potential 𝑉̂𝑖𝑗, while 𝑉̂𝑖𝑖 

is the interaction between states on the same 

chromophore. The following matrix is a 

general construction of the Hamiltonian 

matrix for a dipeptide. 

 

The monopole-monopole approximation is 

used to assume that the interactions between 

chromophoric groups are approximated as 

being solely electrostatic in nature. Exchange 

is neglected, even though it might be 

important at short-range [26, 27]. These 

interactions are calculated as shown in 

(Equation 6). 

𝑉𝑖0𝑎;𝑗0𝑏 = ∫ ∫
𝜌𝑖0𝑎(𝑟𝑖)𝜌𝑗0𝑏(𝑟𝑗)

4𝜋𝜀0𝑟𝑖𝑗
𝑑𝜏𝑖 𝑑𝜏𝑗                  

(6) 

where 𝜌𝑖0𝑎(𝑟𝑖) and 𝜌𝑗0𝑏(𝑟𝑗) are the transition 

electron densities of chromophores i and j, 𝜀0 

is the vacuum permittivity and 𝑟𝑖𝑗 is the 

distance between independent 

chromophores. The Coulomb interactions 

between monopoles account for the 

interaction between groups. 

𝑉𝑖0𝑎;𝑗0𝑏 = ∑ ∑
𝑞𝑠𝑞𝑡

𝑟𝑠𝑡

𝑁𝑡
𝑡=1

𝑁𝑠
𝑠=1                                 

(7) 

where 𝑞𝑠 and 𝑞𝑡 are the charges on two 

chromophores i and j, the monopoles, 𝑁𝑠 and 
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𝑁𝑡 are the number of charges on the 

chromophores.  This method involves the 

diagonalization of the Hamiltonian matrix, 

solving the eigenvalue problem. 

Diagonalization of the Hamiltonian matrix 

yields the energy of each transition 

(eigenvalues) and the expansion coefficients 

(eigenvectors). The diagonalization process 

is affected by a unitary matrix U. 

𝑈−1 ∙ 𝐻̂ ∙ 𝑈 = 𝐻𝑑𝑖𝑎𝑔                                    

(8) 

The results of the diagonalization are used to 

calculate the electric and magnetic transition 

dipole moments of the interacting system 

from the initial dipole moments of the single 

groups [28]. 

𝜇𝑖⃗⃗⃗⃗ = ∑ 𝑈𝑎𝑖𝑎 𝜇⃗𝑎
0                                         (9) 

𝑚𝑖⃗⃗ ⃗⃗ ⃗ = ∑ 𝑈𝑎𝑖𝑎 𝑚⃗⃗⃗𝑎
0                                       (10) 

In the matrix method, we must consider the 

electrostatic potential of each electronic 

transition. Monopoles are fitted to reproduce 

the electrostatic potential. For small 

chromophores, the relevant electrostatic 

potentials can be calculated ab initio using, 

for example, the Complete Active Space 

Self-Consistent Field (CASSCF) method 

[29]. In the present work, the ab initio 

computed energies are used to explore 

whether we can improve the construction of 

the exciton Hamiltonian matrix for a 

dipeptide. Oakley et al. (2006) used CASPT2 

to compute ab initio energies for various 

important dipeptide geometries. For 

dipeptides, CASPT2 – a second order 

correction to the multi-configurational SCF, 

CASSCF energy – is the best compromise 

between accuracy and tractability [16]. 

Moreover, (table 1) presents the results of ab 

initio calculations, which were performed by 

Oakley et al. (2006) [16]. 
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Table 1: CASPT2 energies for various important dipeptide geometries. 

φ/º ψ/º 
n

1 
      π

1
* 

(cm
-1

) 

n
2   

      π
2
* 

(cm
-1

) 

π
nb1 

       π
1
* 

(cm
-1

) 

π
nb2  

      π
2
* 

(cm
-1

) 

-120 180 42587 43796 52830 53475 

-60 180 42909 44764 50894 54121 

-135 135 46539 45410 53959 53717 

-120 120 43796 41538 53879 51862 

-120 60 44200 43554 49765 52749 

-120 0 43796 43796 53459 52023 

-60 0 44200 43716 48717 52265 

-74 -4 44442 45248 51056 55411 

-48 -57 44684 44038 51701 51217 

-60 -60 42909 42506 50007 53233 

In addition, the ab initio study 

provides computed electric and magnetic 

transition dipole moments. Table 2 is an 

example of those transitions’ dipole moments 

for the geometry (Φ=-48º and Ψ=-57º). 
 

Table 2: An example of electric and magnetic 

transitions dipole moments given as the xyz 

components for the geometry (φ= -48º and 

ψ= -57º). Taken from the CASSCF 

calculations of Oakley et al. (2006) [16]. 
 

Magnetic transition dipole moment (Bohr 

Magneton) 

Electric transition dipole 

moment (Debye) 

Transition X Y Z X Y Z 

𝑛𝜋1
∗ -0.018 -0.152 -0.012 0.366 -0.182 -0.767 

𝜋𝜋1
∗ 0.145 0.423 -3.920 0.120 0.514 -0.754 

𝑛𝜋2
∗ 0.026 0.258 0.061 -0.378 -0.318 0.739 

𝜋𝜋2
∗ -0.009 2.932 0.025 0.415 -1.204 0.040 

 

We consider for a dipeptide a 4x4 symmetric 

matrix, corresponding to 10 unknown 

variables, comprising the lower triangle of 

the Hamiltonian matrix. This is too large for 

systematic search; therefore, we use an 

optimization approach. 

 

2.2. Monte Carlo optimization 

The Monte Carlo optimization seeks 

to reduce the difference between the ab initio 

energies and our computed energies. This 

difference is the cost function or error which 

is being minimized. At the starting point for 
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each specific geometry, an initial guess of the 

exciton Hamiltonian has been generated; then 

it has been diagonalized. We used a standard 

Monte Carlo algorithm with the Metropolis 

criterion, Boltzmann-weighted acceptance 

[30].  

𝑝 =  𝑒−∆𝐸/𝑘𝑇                            (11) 

where p is the probability of the acceptance, 

∆E is the energy difference between the 

energy from the ab initio calculations and the 

energy from exciton Hamiltonian. kT is an 

effective temperature, set in our code so we 

can know the rejection ratio, for example, for 

the geometry (φ= -48º and ψ= -57º) the 

acceptance ratio is about 8 % percentage. The 

algorithm is iterated, with better solutions 

always accepted and worse ones accepted if 

they meet the Metropolis criterion. This will 

push the possible solution towards lower 

errors. Here is an example Monte Carlo 

optimized Hamiltonian for the geometry (φ= 

-48º and ψ= -57º) for all matrix elements. 

 

44900 −410 −240 −590
−410 52000 500 −49
−240 500 45100 815
−590 −49 815 52400

 

 

2.3. Post-processing 

To reduce the number of the 

solutions, an additional post-processing 

criterion was computed which assesses the 

similarity between the ab initio transition 

dipole moments and those from the exciton 

method, by calculating the dot product 

between the ab initio electric transition 

dipole moments and the transformed electric 

transition dipole moments of the dimer. The 

transformed electric transition (𝜇′) for a 

dipeptide which is shown in Equation (12) is 

computed from multiplication of the 

eigenvector by the electric transition dipole 

moments for the monomer. 

μ' =U.μ                               (12) 

where U is the matrix of eigenvectors, µ is the 

monomer transition dipole moment for each 

monomer from the ab initio dimer 

calculations. An example of the eigenvector 

matrix is shown below for the geometry (φ= 

-48º and ψ= -57º). Only two decimal places 

are shown, although it is important in 

calculations to use more. 

 

0.70 0.00 −0.71 0.00
0.01 0.70 0.01 0.70
0.71 −0.01 0.70 0.01
0.00 −0.70 0.00 0.70

 

 

The mathematical formulation (or 

construction) of the exciton matrix method 

means that when the transition dipole 

moments are transformed (from the isolated) 

to the ‘mixed’ (or interacting) system that the 
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sum of dipole strengths is conserved. 

Possible cases are: (i) there is no interaction, 

and each dipeptide transition dipole is the 

same as in the monomer; (ii) there is an 

interaction such that all the intensity appears 

in one transition and no intensity in the other 

transition; (iii) intermediate cases, where 

both transitions have non-zero transition 

dipole, but one is stronger than the other. 

Thus, if we aim to ‘reproduce’ the ab 

initio transition dipole moments, we need to 

ensure that the problem is well-formulated, in 

that it recognises the implicit conservation of 

the overall dipole strength. It is impossible, 

for example, to generate through mixing (as 

embodied in the exciton method) two 

dipeptide transitions whose summed dipole 

strength is greater than twice the dipole 

strength of the monomer. To ensure that this 

is the case, we use the ab initio transition 

dipole moments to compute a monomer 

transition dipole moment, following 

Equations 13 to 15. 

𝜇° 
2 =  𝐷°                                         (13) 

𝜇1
2 +  𝜇2 

2 = 2𝐷°                                 (14)        

𝜇°
2 =  

𝜇1
2 +𝜇2

2

2
                                 (15)  

𝐷° represents the dipole strength and it 

reflects the intensity of a band in the 

absorption spectrum. μ° is an electric 

transition dipole moment for a monomer. 

Similarly, we generated magnetic transition 

dipole moments for a monomer.  

 

Table 3: An example of generated electric μ 

and magnetic m transition dipole moments 

for the geometry (φ= -48º and ψ= -57º). 

 

Magnetic transition dipole moment 

(Bohr Magneton) 

Electric transition 

dipole moment 

(Debye) 
Transition X Y Z X Y Z 

𝑛𝜋1
∗ -0.031 -0.301 -0.052 0.524 0.103 -1.065 

𝜋𝜋1
∗ 0.096 2.368 -2.759 0.379 -0.491 -0.509 

𝑛𝜋2
∗ 0.003 0.032 0.102 -0.012 -0.348 -0.013 

𝜋𝜋2
∗ -0.108 1.778 2.782 0.211 -1.214 0.557 

 

We used these generated electric and 

magnetic transitions dipoles moments to 

calculate cos θ for each geometry. θ is the 

angle between the two electric transition 

dipole moments vectors. The first is the ab 

initio dipoles and the second is the 

transformed dipoles. There is a particular 

focus on the two transitions 𝜋𝜋1
∗  and 𝜋𝜋2

∗. 

We calculated the total cos from the sum of 

cos θ for each transition; we are considering 

two pairs of vectors. Therefore, if both pairs 

of vectors are similar then both cosines will 

be 1.0 and the sum of them will be close to 

2.0. This is considered as the quality index. 

We used Equation (16) to calculate the angle 

(θ): 

cos 𝜃 =  
a⃗⃗ ∙ b⃗⃗

|a|. |b|
                                     (16) 
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2.4. DichroCalc 

The matrix method is implemented in 

our in-house software DichroCalc [31]. The 

first step is to convert a PDB (protein data 

bank) file to a DichroCalc input file, which 

contains all the parameters for the calculation 

as well as the structural information of the 

protein, which atoms make up the 

chromophores, including all atom xyz 

coordinates in Ångstrom. 

DichroCalc constructs the exciton 

Hamiltonian matrix based on the 

chromophores and their location. 

Diagonalization of the matrix is the next step. 

The parameters to construct the local 

Hamiltonian are from ab initio calculations of 

small molecules, which represent 

chromophores in protein. N-methyl 

acetamide (NMA) is used for studying  the 

peptide bond [32, 33]. We used the data in the 

parameter file of the DiChrocalc, which gives 

reference coordinates of the peptide 

chromophore, and the electric transition 

dipole moment (µ) related to that orientation.  

  

3. Results and discussion 

3. 1. Convergence of Monte Carlo  

Monte Carlo optimization uses the 

Metropolis criterion Boltzmann-weighted 

acceptance [30]. The typical acceptance ratio 

is related to kT set in our code in order to be 

appropriate. If it is too low, then the algorithm 

will tend to stay stuck in local minima; if it is 

too high, then the algorithm will not converge 

effectively. 

 

Figure 7: Convergence of the Monte Carlo 

search. 

 

Figure 7 shows an effective 

optimization. At the earlier iterations of the 

algorithm the cost function was high, but by 

repeating the steps, (several hundred 

usually), it became lower and sufficient.  

 

3.2. Distribution of Hamiltonian 

matrix elements 

The following three figures 8, 9 and 

10, illustrate the distributions for specific 

elements in the matrix, corresponding to a 

particular geometry of a peptide. In this case 

the geometry is (φ = -135º, ψ = 135º).  All 

these distributions are computed from the 

final solutions of multiple independent 

Monte Carlo optimizations starting with 

different random numbers. 
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Figure 8: The distribution of the diagonal 

elements 𝐸𝑛𝜋∗
1  for the dipeptide geometry (φ 

= -135º, ψ = 135º). 

 

Figure 9: Bi-modal distribution of the off-

diagonal elements 𝑉𝑛𝜋∗𝜋𝜋∗
11  for the dipeptide 

geometry (φ = -135º, ψ = 135º). 

 

 

Figure 10: Mono-modal distribution of the 

off-diagonal elements 𝑉𝑛𝜋∗𝜋𝜋∗
22  for the 

dipeptide geometry (φ = -135º, ψ = 135º). 

In (figure 8) which represents one of the 

diagonal elements we found the distribution 

is well-defined. In general, this is the case for 

all other diagonal elements of different 

matrices for different dipeptide geometries. 

Figure 9 exhibits a more variable distribution 

for one of the off-diagonal elements of the 

exciton Hamiltonian matrix for a dipeptide. 

There are many other similar distributions 

which are bi-modal as shown in (figure 9) or 

have one broad peak. In such a case, we 

cannot predict a specific value for the matrix 

element. Therefore, these elements are still 

undefined, and they need more optimization 

or maybe a new criterion to help us narrow 

the number of solutions. 

On the other hand, in (figure 10) 

which shows the distribution of a different 

off-diagonal elements, we found a well-

defined distribution with one clear peak 

similar, to some extent, to the diagonal 

elements’ distributions. As a result, the 

generated off-diagonal elements divided into 

two different parts. One is consistent and 

similar solutions for multiple Monte Carlo 

runs, the other is more variable. After all, 

these figures show that we can find many 

different exciton matrices, using the Monte 

Carlo search, that diagonalise transition 

energies close to the ab initio energies. A 

summary of our matrix elements for all 

different peptides geometries is illustrated in 

(table 4). 
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Table 4: A summary of the mean (𝐸̅ ) of the matrix elements energies (cm-1) with the standard 

deviation (σ) for different dipeptides geometries. 

 

Matrix 

elements 

𝐸𝑛𝜋∗
1  

 

𝐸̅ (σ) 

cm-1 

𝑉𝑛𝜋∗𝜋𝜋∗
11  

 

𝐸̅ (σ) 

cm-1 

𝐸𝜋𝜋∗
1  

 

𝐸̅ (σ) 

cm-1 

𝑉𝑛𝜋∗𝑛𝜋∗
21  

 

𝐸̅ (σ) 

cm-1 

𝑉𝑛𝜋∗𝜋𝜋∗
21  

 

𝐸̅ (σ) 

cm-1 

𝐸𝑛𝜋∗
2  

 

𝐸̅ (σ) 

cm-1 

𝑉𝑛𝜋∗𝜋𝜋∗
21  

 

𝐸̅ (σ) 

cm-1 

𝑉𝜋𝜋∗𝜋𝜋∗
21  

 

𝐸̅ (σ) 

cm-1 

𝑉𝑛𝜋∗𝜋𝜋∗
22  

 

𝐸̅ (σ) 

cm-1 

𝐸𝜋𝜋∗
2  

 

𝐸̅ (σ) 

cm-1 (φ/ 0)    (ψ/ 0)         

-120      180             43700 

(370)  

-117 

(1500) 

52200 

(200) 

-5 (640) -200 

(1500) 

44100 

(320) 

-960 

(1400) 

-225 

(460) 

1200 

(1370) 

52700 

(230) 

-60        180         44200 

(370) 

450 (820) 51100 

(300)  

150 

(750) 

-650 

(840)  

44500 

(300) 

1100 

(900) 

-1000 

(370) 

-120 

(1300) 

53000 

(340) 

-120      120       43900 

(560)  

780 (490) 52900 

(490) 

19 (920) 2500 

(600)  

43500 

(630) 

1200 

(1000) 

-160 

(400) 

-850 

(840) 

51300 

(290) 

-120        60        44500 

(360) 

-36 (350) 50500 

(670) 

25 (200) 560 (480)  44300 

(430) 

-840 

(780) 

-390 

(520) 

970 (680) 51900 

(240) 

-120         0       44300 

(360) 

-32 

(1300)  

52800 

(260) 

-49 

(160) 

1270 

(560) 

44300 

(300) 

620 (960) -260 

(180)  

400 

(1100) 

51600 

(150) 

-60           0          44500 

(320) 

100 (400) 51000 

(420)  

80 (180) 580 (350) 44400 

(380) 

360 (960) -160 

(190) 

1000 

(330) 

51400 

(230) 

-60          -60       44500 
(730) 

210 (850) 50700 
(830) 

-105 
(290) 

-820 
(580) 

44500 
(820) 

-540 
(1090) 

-290 
(430)  

230 
(1100) 

52200 
(320) 

-74          -4        44900 

(200) 

-410 

(320) 

52000 

(360) 

-240 

(350) 

500 (266) 45100 

(100) 

-590 

(580) 

-49 (130) 810 (500) 52400 

(440) 

-48         -57        45000 
(190) 

-32 (380) 51600 
(290) 

-27 
(280) 

-280 
(440) 

45300 
(150) 

-167 
(590) 

-200 
(310) 

-39 (840) 52600 
(730) 

-135        135      46600 

(290) 

 67 

(1000) 

53200 

(370) 

180 

(480) 

1400 

(450) 

46100 

(220) 

-18 

(1300) 

-370 

(210) 

1000 

(740) 

53000 

(350) 

4. Conclusion 

Our work with the exciton 

Hamiltonian matrix for a dipeptide is far from 

over. There are still some off-diagonal 

elements which require more optimization or 

may be addition of new criterion to help us 

narrow the possible solutions to our matrices. 

However, it is possible to find many exciton 

matrices, using the Monte Carlo search, that 

diagonalise to give transition energies close 

to the ab initio energies. Evidently, the 

present work shows that we can achieve some 

solutions for the diagonal elements very close 

to what they should look like. In addition, 

other off-diagonal matrix elements are well-

defined. The transition moments provide 

some useful additional information. It is an 

additional post processing criterion to assess 

the similarity between the ab initio transition 

dipole moments and those from the exciton 

method, by calculating the dot product 

between the ab initio electric transition dipole 

moments and the transformed electric 

transition dipole moments of the dimer. More 

work will be needed to reduce the number of 

the solutions to construct our exciton 

Hamiltonian matrix for a dipeptide. 

 

5. Future work 

Final construction of the exciton 

Hamiltonian matrix for a dipeptide is not 

achieved in the present work. Perhaps, this 

could be achieved by some attempts to apply 
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or add some additional criterion in between 

or after the initial guess of our matrix, for 

example, the sign or magnitude of elements 

of Hamiltonian matrix. We suppose that will 

help us to identify physically meaningful 

solutions. When this planned work is 

finished, we plan to study the overlap-

dependent term, comprising exchange and 

penetration, is the prime candidate for 

improving the exciton calculations beyond 

current approximations. Whilst exchange and 

Coulomb interactions are usually opposite in 

sign, penetration effects can reinforce the 

coulombic interaction. Exchange and 

penetration can become significant at short 

separations. A simple exponential function, 

of the form Aexp (-2αR), where A and α are 

constant has been shown to model this 

interaction acceptably. We propose to fit the 

values of A and α based on the discrepancies 

between the exciton calculations and the fully 

ab initio CASSCF calculations. The off-

diagonal elements of the exciton Hamiltonian 

will be updated accordingly. 
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