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1. Introduction

Zadeh [35] introduced the concepts of fuzzy sets and fuzzy set operations. Maltoka [20] discussed
bounded and convergent sequences of fuzzy numbers and studied their some properties. After on it,
sequences of fuzzy numbers have been discussed by Dutta [7,8,9], Diamond and Kloeden [15], Nanda
[21], Esi [13] and many others.

A fuzzy real number X on R is a function X : R - I = [0,1] associating each t € R, with its grade
of membership X(t).The class of all fuzzy real numbers is denoted by R(I). For 0 < a < 1, the
a — level set X = {t € R : X(t) = a}, and the O-level set X° = {t €R: X(t) > 0}, is the clouser of
strong O-cut then it is compact.

Let D denote to the set of all closed bounded intervals B = [by, b,].Define the relation d on D
by d(B,W) =max{|b; —w,l| |b, —w,|}. Clearly (D,d) is a complete metric space. ( look
Diamond and Kloeden [14], Nanda[21]).
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The studying of Orlicz sequence spaces have been put newly by various authors ( [10], [11],
[12], [25], [33], [34]).

Battor and Neamah [24] introduced a double sequence as follows: a double sequence (X,Y) =
(X,.c,Y,s) is a double infinite matrix of elements (X,., Y,.<), where X = X, is a double infinite matrix
of elements X, and Y =Y, is infinite a double matrix of elements Y,,, which means ( X,,Y,.) is
complex double sequences and they defined a double Orlicz function on double sequence space in the
following:

M : [0,00) x [0,00) — [0,0) x [0,0) such that M(X,Y)=(M,(X),M,(Y)) and (X,Y) = (X,,Yys)
where M; : [0,0) - [0,), M,:[0,0) - 0,»), and M;, M, are two Orlicz functions which be
continuous, non-decreasing, even, convex and satisfy the next conditions:

(i)M(0)=0,M,(0)=0 = M(0,0)=(M,(0),M,(0)) = (0,0)
(i) My(X) >0, M,(Y) >0 = M (X,Y) = (M (X), M(Y)) > (00), forall X,Y >0
(iii) M;(X) - o0, My(Y) > o, as X,Y » 00 = M (X,Y) > (c0,) ,as (X,Y) — (o0, 0).

Remark 1.1 [24] If M is a double Orlicz function, then M;(1X) < AM,;(X), M,(AY) < AM,(Y),
forall X >0,Y >0 with 0<1<1, therefore M(AX,AY) = ( M{(AX), M,(AY)) <
A (M (X), My(Y)) = AM(X,Y)for all (X,Y) > (0,0), thus M(AX,AY) < AM(X,Y), for all (X,Y) >
(0,0).

If replaced the convexity of M by M(X +Y) < M(X) + M(Y), then it is said a modulus function (
look [22] ). A double Orlicz function may be bounded or unbounded, e.g. M;(X) = X?, M,(Y) = Y?,
O<p<1 are unbounded, so consequently M(X,Y) = (X?,Y?) , (0,0)<(p,p) <(11) is

- X —_Y — (X Y )
unbounded and M, (X) = 71! M,(Y) = oo are bounded, so, M(X,Y) = (X+1 , y+1) is bounded.
A fuzzy double sequence (X,Y) = (X,s, Y,.) is a double infinite matrix of elements (X,., Y,.¢) for all
r,s € N, where X = X, is a double infinite matrix of elements X, and Y =Y, is infinite a double
matrix of elements Y, ,where X,., Y, € R(I), which means ( X, Y.;) is a double sequences of
fuzzy real numbers, where X, Y., € R(I), foreach r,s € N.

The earliest works on double sequences of real or complex terms is found in Bromwich [1]. Later on
it further studied by Basarir and Solancan [2], Moricz [23], Tripathy and Dutta [31], Tripathy and
Sarma [32] and many others. The notion of regular convergence for double sequences of real or
complex terms was introduced by Hardy [18]. Fast [16] was first introduced the concept of statistical
convergence and it also independently by Buck [3] and Schoenberg [28]. Further it was studied by
Salat [27], Fridy [17], Cannor [4,5] and many others.

The notion of A-statistically pre-Cauchy double sequence of fuzzy numbers was introduced by Dutta
and Reddy [29] and they established a standard for arbitrary double sequence of fuzzy numbers to
become A-statistically pre-Cauchy.

We concept this work to introduced the following notions:
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A double sequences of fuzzy numbers (X,;), (,Y,,;) are said to be A-statistically convergent to X,, Y,
respectively if lim,s o0 i H,@): d(AXpg.X) = e, p<r.q<s}|=0 , and
lim, ¢ e i {, @): d(AY,q, Y) = & p <7,q <s}| =0, respectively,

therefore, (X, ,Y,) is called A -statistically ~ convergent to (X, Y,) if
{(p.0): (d(a%,q.%).d(aY,q,V)) = &, p<Tq<s) =0,

. 1
lim —
rs -0 s

such that the vertical bars indicate to the number of elements in the set.

Definition 1.2 A double sequence of fuzzy number ( X,;, Yy;) is called A-statistically pre-Cauchy if
for all € > 0 there exist v(e) and w(e) where,

lim

r,s >0 TZSZ

{(p.9): (d(8Xpq.0%,,). d(AYpq, AY,,)) 2 & p<T.q < sj|=o.

In actually, the first order difference operator A may be represented as an infinite triangular matrix as
following,

[1 -1 0 0 O 1

|O 1 -1 0 O o
A=10 1 -10 .|
The fuzzy double sequence ( X,.,Y,..) may be expressed as an infinite matrix of fuzzy numbers as
following,

[ X1 Y11 X2, Vi Xi3. Vi o0 Xin Yig
Xo1. Y21 KXo,V X33, Y3 0 Xon, Yop

(XT51YTS) = X31,Y31 X32,Y32 X33,Y33 X3TL’Y3TL

e

[1 -1 0 0 O ][ Xi1. Y11 X2V X3 Vi3 o0 X Vi

B |O 1 -1 0 O || Xo1. Y21 Xo2 Yap Xpz Yoz o XonYono I

MXsYd = J0 0 1 -1 0 i Xar¥a XV Xaz¥sz oo XonYan .o |
[X11 — X210, Y11 —Ya1  Xip —Xo2, Y12 — Vi v Xin = Xon Yin=Yon .
_ |X21 —X31. Y21 = Y31 Xpp — X3, ¥ — V3 o Xon = Xapn Yon — Y3y I
- |X31 —X41. Y31 —Ya1 Xz =Xy V3 — Vi o Xan = Xan Yan—VYan .. |
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This way about construction on difference double sequences is useful according to discuss some
properties on the spaces of such sequences.

Lindenstrauss and Tzafriri [19] took the idea of Orlicz function and defined the sequence space
Ly of single sequences, later on Battor and Neamah [24] used that idea to construct a double
sequence space:

2Ly = {(er Yrs) € 200 X7 XL, [<M1 (IX%I)) v (Mz (l%l)ﬂ < oo, for some p > 0},
which is a Banach space under the norm:

108 ol = it fp > 0 22,52 (o0, (221) ) (o, (220) ) <2,

which is said a double Orlicz of a double sequence space such that 2w is a family of all R? or C2
double sequence, that is, (X,s) and (Y,) are complex or real double sequence and conclusion that
the double Orlicz of a double sequence space 2L, be closely related to the space 2L,, which is, a
double Orlicz double sequence space with M (X,Y) = (M;(X),M,(Y)) = (X?,YP), for (1,1) <
(p,p) < (o0,) suchthat M;(X) =XP?,forl <p < oo,and M,(Y) =Y?, for1<p < oo,

Connor, Fridy and Kline in [6] and Dutta and Reddy in [37] showed the condition of bounded
sequence to becomes statistically pre-Cauchy, so we can establish the follows criterion for arbitrary
double sequence of fuzzy terms to be statistically pre-Cauchy for a double Orlicz M = (M, M,).

2. Main results

Theorem 2.1 Let (X,Y) = (X,,Y,,) be a double sequence of fuzzy number and M = (M;, M,) be a

bounded double Orlicz function, then (X,Y) is A- statistically pre-Cauchy if and only if

liMy s o #Zwsr Y wss KMl (W)) , (Mz (W))l =0,

for some p > 0.

Proof : Suppose

M, s oo =5 Tpvr Squwss [(Ml (W)) , <M2 (w))] =0,

p

for some p > 0. Foreache >0, p >0 and m,n € N, we get

By Ly (2222520, (22 )

and d(AYpq AYyy)<€

+$ Zp,vsr,d(Aqu,AXvw)ze Zq,st l(Ml (W)) ' (MZ (W))l

and d(AYpq AYyy )2€
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= rz_lszzpvvsrvd(AquvAXvw)ze Zq,wss [<M1 (W)) , (Mz (—d(AYPtzAYvw))>l

and d(AYpq AYyw)ze

1

r2s2

> M(e)[ {(p.@): (d(8XpqAX,,). d(AY,q,AY,,)) 2 & p<T.q < s}”

> 0,where M = (M, M,)

Next, suppose that (X,Y) is A- statistically pre-Cauchy and that ¢ has been given.
Let e > 0 such that M,(8) < % and M,(8) < % and consequently, M(8) < % .

Since M is bounded, there exist an integer A such that M, (X) <§ and M,(Y) <§ for all X,Y >

0 and consequently, M(X,Y) < % for all X,Y > 0. Note that, for alln € N.

By Ly M (222252, (22 )

# ZP,UST,d(Aqu,AXvW)<5 2qwss [<M1 (W)) , (Mz (W))l

and d(AYpq AYyy ) <8

+$ Zp,vsr,d(Aqu,Ax,,w)za Lqwss [(Ml (W)) , (Mz (W))l

and d(AYpq AYyy )28

=< M((S) + ﬁzp,vsr,d(AquvAXvw)ES Zq,wss [(Ml (W)) ) (Mz (d(Aqu'AYv_W))>l

p
and d(AYpq AYyy )28

= %4—%[1”2152 |{(p,q): (d(AXPq’AXvW)’d(Aqu’AYvw)) =26, psSr,q< S}”
<e+4[5|{(p.@): (d(8Xyq.0%,0), d(8Yng, AY,)) 2 8, p<r.q <5s|] (D)

Since,(X,Y) is A- statistically pre-Cauchy, there is, N such that the right hand side of equation (1) is

less than ¢ for eachn € N. Hence,

liMy s o #Zwsr Y wss [<M1 (W)) , (Mz (W))l =0.m

Theorem 2.2 Let (X,Y) = (X,, Yp,) be a double sequence of fuzzy number and let M be a bounded

q1
double Orlicz function, then (X,Y) is A- statistically convergent to (X,, Y,) if and only if

lim,s 255,55, (M (%)) , (Mz (%)) -0

Proof : consider that

lime g %o Zes (M (%)) , (Mz (%)) =0,
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with a double Orlicz function M = (M;, M,), then (X,Y) is A- statistically convergent to (X,,Y,)
see[22].
Conversely, suppose that (X,Y) is A- statistically convergent to (X,,Y,). In the same manner to

theorem (2.1) and using that M be a double Orlicz function we can prove that

TS 0 3 [(M (%)) , (Mz (%))] -0,

Corollary 2.3 Let (X,Y) = (X,,,Y,,) be a double sequence of fuzzy number, then (X,Y) is A-
statistically pre-Cauchy, if and only if

lim, — %5, Zgzl[(d(Aqu,AX,,W),d(Aqu,AYUW))]=o.

Proof: Let B, = sup,, d(AX,q 0), B, = sup,, d(AY,, 0) and define

M) = (CH2EX o2 pye,
[(Ml (W)) , (Mz (W)) < (L +2B)d(8X,q,0%,,), (1 +2B;)d(AY,q,AY,,,))
and

[(Ml (W)) | (MZ (W))] _ ((1 28 AWpat) 232)M>

p p 1+d(AXpg AXpw) ' 1+d(AYpq.AYpy)

- ((1 +2B,)d(AXpq, AXyy) (1 + 2B,)d(AY,,, AY,,W)>

1+d(AX,q AXyy) ' 1+d(AYy,, AY,,)

- (1 +2B))d(AX,q, AXy) (1 +2B,)d(AY,q, AY,,)
= 1+ (1+ 2B,) ’ 1+ (1+2B,) '

= (d(8Xpq, AX,). d(8Y,q,Y,,,) )

Thus, lim,.s == 37 %51 |(d(Xpq, Xow). d(Yyq. Yow) )| = 0.if and only if

lim, # p=12g=1 [(Ml (W)) : (Mz (W))l = 0, and direct application of

theorem (2.1) the proof completes. m
Corollary 2.4 Let (X,Y) = (X,4,Y,,) be a double sequence of fuzzy number, then (X,Y) is A-

statistically convergent to (X,, Y,), if and only if

lim,.s =351 %32 [ (d(8X,0.Xo), d(AY,q, Yo))] = O

r
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Proof: Let By = sup,, d(8X,,,0) , B, = sup,, d(AY,,, 0) and

(1+B1+X0)X (1+By+Yy)Y
1+X ! 1+Y

define M(X,Y) = ( ).Then in the same manner of the proof of corollary (2.3) we

can get the prove. m
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