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ABSTRACT 

 
In this paper, we deal with a time scale that its delta derivative of graininess 
function is a nonzero positive constant. Based on the Taylor formula for this 
time scale, we investigate the difference transform method (DTM). This 
method has been applied successfully to solve Riccati type 𝑞 −difference 
equations in quantum calculus. To demonstrate the ability and efficacy of 
this method, some examples have been provided. 

 

1. Introduction 

One of the simplest and more important type of nonlinear differential equations are Riccati differential 
equations [32]. Due to their close connection to the Bessel function, these equations have often appeared 
in many physical problems, likes; static Schrödinger equation [12], Newton’s laws of motion [29], 3D- 
Gross-Pitaevskii equation [26], cosmology problem [33]. Also, it relates to many mathematical subjects, 
including; projective differential geometry [2], calculus of variations [41], optimal control [30], and 
dynamic programming [6]. Several techniques have been used to solve constant coefficients Riccati 
differential equations, such as; operation matrix method [31], variational iteration method [17], 
polynomial least squares method [9], homotopy perturbation method [1], Legendre wavelet method [3], 
and Adomian’s decomposition method[15]. 

Riccati difference equations are not different from Riccati differential equations, as they have many 
applications in various fields. Where it arises in the filtering problem [27], the optimal control problem [5] 
and it has been studied by numerous scholars [4, 42, 38, 28]. In fact, the first study appeared on the 
difference Riccati equations was in 1905 by H. Tietze [39]. 
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𝑗𝑗=0 

 
 

The q-difference equation (q-DEs)is a type of difference equation that is based on q-calculus. Indeed, the 
old references refer to the beginning of q-calculus was in the late 20th century to make links between 
mathematics and physics [16]. It has a variety of uses in mathematics, engineering and science, including 
basic hypergeometric functions [10, 11, 36, 35, 34], orthogonal polynomials [25], combinatorics [19], and 
quantum theory [21]. In recent years, several scholars have attempted to solve many types of q-DEs by 
using semi-analytic methods, including; the q-differential transformation method (q-DTM)[13, 14], 
variational iteration method [40], succes- sive approximation method, and homotopy analysis method 
[37]. 

In this paper, we deal on time scale 𝕋𝕋 that its delta derivative of graininess function is a nonzero positive 

constant, that is 𝜇Δ = 𝜁𝜁 > 0. Based on Taylor formula for this time scale, we introduce some fundamental 
theorems related to DTM in order to solve the following Riccati type 𝑞 −difference equations on the time 

scale 𝕋𝕋 = 𝑞ℕ = {0} ⋃ {𝑞𝑡|𝑡 ∈ ℕ, 0 < 𝑞 < 1}: 

ΨΔ(𝑡) = 𝑔1(𝑡)Ψ(𝑡) + 𝑔2(𝑡)Ψ(𝑡)2 + 𝑔3(𝑡),    Ψ(𝑡) = 𝐴. (1) 

where 𝑔𝑐(𝑡), 𝑟 = 1,2,3 are analytic function on 𝕋𝕋. 

2. Preliminaries 

This section has provided a brief overview of time scale preliminary information and their relationship 
to q-calculus 

Definition 2.1 [18] A time scale is a non-empty arbitrary closed subset of real numbers denoted by 𝕋𝕋. Time 
scale examples, [0,1], the natural numbers set ℕ, the real numbers set ℝ, [0,1] ⋃ [2,3] and the cantor set 

whereas the set of rational numbers ℚ, complex numbers ℂ, and [0,1), (0,1], (0,1), (0,1] 𝖴 {2 𝑏 − 𝑎} are 
not time scales. 

Definition 2.2 [8] Let 𝕋𝕋 be any time scale and 𝑟 ∈ 𝕋𝕋. Operator of a forward jump 𝜎: 𝕋𝕋 → 𝕋𝕋 is given as: 

𝜎(𝑟) = inf{𝑠 ∈ 𝕋𝕋: 𝑠 > 𝑟} (2) 

while, the Operator of a backward jump 𝜌: 𝕋𝕋 → 𝕋𝕋 at all 𝑟 ∈ 𝕋𝕋 is given as: 

𝜌(𝑟) = sup{𝑠 ∈ 𝕋𝕋: 𝑠 < 𝑟} (3) 
 

Definition 2.3 [7] 

For 𝑠 ∈ 𝕋𝕋, the function 𝜇: 𝕋𝕋 → [0, ∞) defined by 

𝜇(𝑠) = 𝜎(𝑠) − 𝑠 (4) 
 

is called graininess function. 

assume that 

𝕋𝕋 = 𝑞ℕ = {𝑞𝑡|𝑡 ∈ ℕ, 0 < 𝑞 < 1} ⋃ {0} 

Let the 𝑞 −shift factorial is given by 

(𝑡; 𝑞)0 = 1    𝑎𝑛𝑑 (𝑡; 𝑞)𝑚 = ∏𝑚−1 (1 − 𝑎𝑞𝑗𝑗),   𝑚 = 1, … , 𝑚 
 

such that 𝑡 is real number. 
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𝑏 

∑ 

 
  

Definition 2.4 [7] For 𝑡 ∈ 𝑞ℕ, the delta 𝑞 −derivative of a function 𝑔(𝑡) on 𝕋𝕋 = 𝑞ℕ is given by 

𝑔𝑔(𝑞𝑡)−𝑔𝑔(𝑡) 
, 𝑖𝑖𝑓𝑓 𝑡 ∈ 𝑞ℕ 

(𝑞−1)𝑡 

𝑔Δ(𝑡) = 
⎪ 

⎨ lim 
⎪𝑛→∞ 

𝗅 

𝑔𝑔(𝑞𝑛)−𝑔𝑔(0) 
, 𝑖𝑖𝑓𝑓 𝑡 = 0

 
𝑞𝑛 

(5) 

 
  

Definition 2.5 [22] Let 𝐺: 𝑞ℕ → ℝ a pre-antiderivative of the function 𝑔: 𝑞ℕ → ℝ.such that 𝐺 𝛥𝛥(𝑡) = 𝑔(𝑡). 
The indefinite integral of the function 𝑔 is define by 

∫ 𝑔(𝑡)Δ𝑡 = 𝐺(𝑡) + 𝑐, (6) 

where 𝑐 is a constant. Moreover, the definite integral is defined by 

∫
𝑑𝑑 

𝑔(𝑡)Δ𝑡 = 𝐺(𝑑) − 𝑔(𝑏), ∀𝑏, 𝑑 ∈ 𝑞ℕ (7) 

Definition 2.6 [8] The monomials 𝑕𝑛: 𝕋𝕋 × 𝕋𝕋 → ℝ, 𝑛 ∈ ℕ0 on a time scale 𝕋𝕋 are defined by 

𝑕0(𝑟, 𝑠) = 1 
 𝑕 (𝑟, 𝑠) = 𝑟 

𝑕
  (𝑟, 𝑠)𝑑𝑟, 𝑛 ∈ ℕ, 𝑟, 𝑠 ∈ 𝕋𝕋. (8) 

𝑛+1 ∫𝑠 𝑛 

Hence, the Δ −derivative of 𝑕𝑛(𝑟, 𝑠) with respect to 𝑟 given by 

𝑕Δ(𝑟, 𝑠) = 𝑕 (𝑟, 𝑠), 𝑛 ≥ 1 (9) 

 
Example 2.1 [8] 

𝑛 𝑛−1 

 
 

1. When 𝕋𝕋 = 𝑞ℕ, we get  

𝑕 (𝑡, 𝑠) = ∏𝑛−1 

 
𝑡−𝑠𝑞𝜔   

, ∀𝑛 ∈ ℕ (10) 
 

𝑛 
 

2. When 𝕋𝕋 = ℝ, we get 

𝜔=0     𝜔 
𝑛=0 𝑞

𝑛 

 

 

 
3. When 𝕋𝕋 = ℤ, we get 

𝑕𝑛 (𝑡, 𝑠) = 
(𝑡−𝑠)𝑛 

, ∀𝑛 ∈ ℕ (11) 
𝑛! 

 
 

 

𝑡 − 𝑠 
𝑕𝑛(𝑡, 𝑠) = �𝑛 �, ∀𝑛 ∈ ℕ (12) 

 
Theorem 2.1 [8] For all 𝑡, 𝑠 ∈ 𝕋𝕋 and 𝑗𝑗 ∈ ℕ0, we have 

0 ≤ 𝑕 (𝑡, 𝑠) ≤ 
(𝑡−𝑠)𝑗𝑗 

, ∀𝑟 ≥ 𝑠 (13) 
 

𝑗𝑗 𝑗𝑗! 
 

Let 𝑚 ∈ ℕ and 𝑔: 𝕋𝕋 → ℝ is 𝑚 − 𝑡𝑖𝑖𝑚𝑒𝑠 differentiable function on 𝕋𝕋𝑘
𝑚

, 𝑡 ∈ 𝕋𝕋. 

Let 𝑠 ∈ 𝕋𝕋𝑘
𝑚−1 

, then 

⎧ 
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𝑗𝑗=0 

𝑠 

∑ 𝑙=1 

𝑗𝑗 =0 
∑ 

𝑢=0 

Δ𝑢 

𝜅𝜅=0 

𝜅𝜅=0 𝜅𝜅=0 

𝑗𝑗=0 

 
 

 

𝑔(𝑡) = ∑𝑚−1 𝑕𝑗𝑗(𝑡, 𝑠)𝑔 Δ𝑗𝑗 
(𝑠) + 𝑅𝑚(𝑡) (14) 

 

is called Taylors formula and the remainder term 𝑅𝑚(𝑡) is defined by 

 

 
and it tends to zero as 𝑚 → ∞. 

 

𝑅𝑚 (𝑡) = ∫
𝑡 

𝑔Δ
𝑚

(𝑟)𝑕 

 
 

𝑚−1 

 

(𝑡, 𝜎(𝑟))Δ𝑟 

 

Proposition 2.1 [8] Let 𝑔: 𝕋𝕋 → ℝ is an analytic function at 𝑠 and at all 𝑡 ∈ (𝑠 − 𝜀𝜀, +∞) ⋂ 𝕋𝕋 holds that 

𝑔(𝑡) = ∑∞ 𝑎𝑗𝑗𝑕𝑗𝑗(𝑡, 𝑠). Then 𝑔(𝑡) is infinitely 𝑗𝑗 −times differentiable at 𝑠 and 𝑔𝛥𝛥
𝑗𝑗 

(𝑠) = 𝑎 
 

Theorem 2.2 [24] For any 𝑡, 𝑠 ∈ 𝕋𝕋 with 𝜇𝛥𝛥 = 𝜁𝜁 > 0 a constant. Then the product of monomials 𝑕𝑐 and 𝑕𝜅𝜅 

as follows 
 

𝑕 (𝑡, 𝑠)𝑕 (𝑡, 𝑠) = ∑𝑐+𝜅𝜅  𝐹(𝑢, 𝜅, 𝑟)𝑕𝜎𝜎
𝜅𝜅 

(𝑠, 𝑠)𝑕 (𝑡, 𝑠), (15) 

 
such that 

𝑐 𝜅𝜅 𝑢=𝜅𝜅 𝑐+𝜅𝜅−𝑢 𝑢 

 

𝑟(𝑟+1) 
𝜅𝜅 

𝐹(𝑢, 𝜅, 𝑟) = �  𝜔=1 ∑𝑢−𝜅𝜅 (−1)𝑐−1𝜑𝑙(𝑢)𝑢𝑙(𝜔+1)−     2      , 𝑓𝑓𝑜𝑟 𝑢 > 𝑟 (16) 
1, 𝑓𝑓𝑜𝑟 𝑢 = 𝜅 

 

𝜑𝑙(𝑢, 𝑟) = ∏ 
 
𝑠≠𝑙 

1≤𝑠≤𝑟 

1 
 

 

(𝑢−𝜄𝜄−𝑢−𝑠) 
, 𝜑1(𝑢) = 1    𝑎𝑛𝑑 𝑢 = 1 + 𝜁𝜁 (17) 

Remark 2.1 𝐹(𝑢, 𝜅, 𝑟) in theorem(2.2) can be computed in another way according to the following 
formula [24] 

𝐹(𝑢, 𝜅, 𝑟) = ∑𝑢−𝜅𝜅 
1 

 
𝑢−𝜅𝜅 
𝑗𝑗2=𝑗𝑗1 

 
𝑢−𝜅𝜅 
𝑗𝑗3=𝑗𝑗2 

 
𝑢−𝜅𝜅 
𝑗𝑗𝜅𝜅−1=𝑗𝑗𝜅𝜅−2 

 
𝑢−𝜅𝜅 
𝑗𝑗𝜅𝜅=𝑗𝑗𝜅𝜅−1 

 
𝜅𝜅 

𝑢 𝜄𝜄=1 
𝑗𝑗𝜄𝜄 (18) 

3. The 𝐪𝐪 −differential transform method 

In 1986, Zhou proposed the DTM and applied it to analyze the electric circuit problems [43]. Inspired 
Zhou’s idea and based on q-Taylor’s formula, the q-DTM has been introduced [20]. In 2011, ElShahed has 
been extended the q-DTM to two dimensional for solving partial q-DEs [13]. In the same year, the damped 
q-DEs with strongly nonlinear has been used successfully by using the q-DTM [23]. This section devoted to 

derive some important formula related to DTM. Now, let 𝜓𝜓(𝑡) be is 𝑁 − 𝑡𝑖𝑖𝑚𝑒𝑠 q-differentiable on 𝑞ℕ, then 
by using theorem (2.1) with 𝑡0 one can approximate the function 𝜓𝜓(𝑡) as follows: 

 

 
where 

Ψ(𝑡) = ∑∞ Ψ𝑞[𝑢]𝑕𝑢(𝑡, 0) (19) 

 

Ψ𝑞[𝑢] = Ψ (0), ∀𝑢 = 0,1,2, … (20) 

The Eq.((20)) is called the DTM, while Eq. ((19)) is called inverse of DTM. 
 

Suppose that the functions Φ(𝑡), Ψ(𝑡), and Ξ(𝑡) are approximate as Φ(𝑡) = ∑∞ Φ𝑞[𝜅]𝑕𝜅𝜅(𝑡, 0), 

Ψ(𝑡) = ∑∞ Ψ𝑞[𝜅]𝑕𝜅𝜅(𝑡, 0) , and Ξ(𝑡) = ∑∞ Ξ𝑞[𝜅]𝑕𝜅𝜅(𝑡, 0) respectively, then the essential mathematical 

operations achieved by DTM are presented in the next theorems. 

∑ ∑ ⋯ ∑ ∑ 

𝑗𝑗 
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𝑐 

𝜅𝜅=1 

𝜅𝜅=0 𝜅𝜅=0 

𝜅𝜅=0 𝜅𝜅=1 

𝜅𝜅=0 𝜅𝜅=1 

𝜅𝜅=1 

 

Theorem 3.1  For any real constants 𝑎, and 𝑏 , if ➵(𝑡) = 𝑎 𝛷𝛷(𝑡) ∓ 𝑏 𝑇(𝑡), then ➵𝑞[𝜅] = 𝑎 𝛷𝛷𝑞[𝜅] ∓ 

𝑏 𝑇𝑞[𝜅], ∀𝜅 = 0,1,2, … 

Lemma 3.1 If 0 ∈ 𝕋𝕋 and 𝜇𝛥𝛥 = 𝜁𝜁 is nonzero constant, then multiplying any two monomials, 𝑕𝑐(𝑡, 0) and 

𝑕𝜅𝜅(𝑡, 0) , is given as follows: 

𝑕𝑐(𝑡, 0)𝑕𝜅𝜅(𝑡, 0) = 𝐹(𝑟 + 𝜅, 𝜅, 𝑟)𝑕𝑐+𝜅𝜅(𝑡, 0), 𝜅, 𝑟 ≠ 0,  ∀𝑡 ∈ 𝕋𝕋 (21) 

Proof. Since 𝜎𝑚(0) = 0 for all 𝑚 = 0,1,2, …, we have 
 

1, 𝑟 = 0 
𝑕𝜎

𝑚
(0,0) = �0, 𝑜. 𝑤., ∀𝑚 = 0,1,2, … (22) 

 

Using theorem(2.2), one can get 
 

𝑕 (𝑡, 0)𝑕 

 

(𝑡, 0) = ∑𝑐+𝑚  𝐹(𝑢, 𝜅, 𝑟)𝑕𝜎
𝜅𝜅 

(0,0)𝑕 

 
 
(𝑡, 0), (23) 

𝑐 𝜅𝜅 𝑢=𝜅𝜅 𝑐+𝜅𝜅−𝑢 𝑢 

The result can be get it by substitute Eq.((22)) in Eq.((23)). 

Theorem 3.2 If 𝑇(𝑡) = ➵𝛥𝛥(𝑡), then 𝑇𝑞[𝜅] = ➵𝑞[𝜅 + 1], ∀𝜅 = 0,1,2, … 

Theorem 3.3  If 𝑇(𝑡) = ➵(𝑡)𝛷𝛷(𝑡), then 

Ψ𝑞[0] = Ξ𝑞[0] Φ𝑞[0] 

Ψ𝑞[1] = Ξ𝑞[1] Φ𝑞[0] + Ξ𝑞[0] Φ𝑞[1] 
 

Ψ𝑞[𝑟] = Ξ𝑞[𝑟] Φ𝑞[0] + Ξ𝑞[0] Φ𝑞[𝑟] + ∑𝑐−1 Ξ𝑞[𝑟 − 𝜅] Φ𝑞[𝜅]𝐹(𝑟, 𝑟 − 𝜅, 𝜅),   𝑟 = 2,3,4, ⋯ 
 

Proof. Let Ψ(𝑡) = Ξ(𝑡)Φ(𝑡) so one can have 
 

∞ 
𝜅𝜅=0 Ψ𝑞[𝜅]𝑕𝜅𝜅(𝑡, 0) = �∑∞ Ξ𝑞[𝜅]𝑕𝜅𝜅(𝑡, 0)��∑∞ Φ𝑞[𝜅]𝑕𝜅𝜅(𝑡, 0)� 

 

∞ 
𝜈𝜈=0 

∞ 
𝜅𝜅=0 Ξ𝑞[𝜈𝜈]Φ𝑞[𝜅]𝑕𝜅𝜅(𝑡, 0)𝑕𝜈𝜈(𝑡, 0) 

 

By using lemma(3.1), one can have 
 

∞ 
𝜅𝜅=0 Ψ𝑞[𝜅]𝑕𝜅𝜅(𝑡, 0) = ∑∞ Ξ𝑞[𝜅]Φ𝑞[0]𝑕𝜅𝜅(𝑡, 0) + ∑∞ Ξ𝑞[0]Φ𝑞[𝜅]𝑕𝜅𝜅(𝑡, 0) 

 

∞ 
𝑐=1 

∞ 
𝜅𝜅=1 Ξ𝑞[𝑟]Φ𝑞[𝜅]𝐹(𝜅 + 𝑟, 𝑟, 𝜅)𝑕𝜅𝜅+𝑐(𝑡, 0) (24) 

 

Now, change the index in the third sum of Eq.((24)), we have 
 

∞ 
𝜅𝜅=0 Ψ𝑞[𝜅]𝑕𝜅𝜅(𝑡, 0) = ∑∞ Ξ𝑞[𝜅]Φ𝑞[0]𝑕𝜅𝜅(𝑡, 0) + ∑∞ Ξ𝑞[0]Φ𝑞[𝜅]𝑕𝜅𝜅(𝑡, 0) 

 

∞ 
𝑐=2 ∑𝑐−1 Ξ𝑞[𝑟 − 𝜅]Φ𝑞[𝜅]𝐹(𝑟, 𝑟 − 𝜅, 𝜅)𝑕𝑐(𝑡, 0) (25) 

 

Finally, the coefficients of 𝑕𝑐(𝑡, 0) are compared, and the result is obtained directly. 
 

Theorem 3.4  If 𝑓𝑓(𝑡) is analytic function on time scale 𝕋𝕋 = 𝑞ℕ and 𝑇(𝑡) = 𝑓𝑓(𝑡)𝛷𝛷(𝑡), then 

Ψ𝑞[0] = 𝑓𝑓(0) Φ𝑞[0] 

∑ 

= ∑ ∑ 

∑ 

+ ∑ ∑ 

∑ 

+ ∑ 
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𝜅𝜅=0 

𝑞 

𝑐=0 

𝑞 

𝜅𝜅=1 

𝜅𝜅=0 

 
 

 

Ψ𝑞[1] = 𝑓𝑓Δ(0) Φ𝑞[0] + 𝑓𝑓(0) Φ𝑞[1] 

Δ𝑟 

 
 

∑𝑐−1 

 

 
Δ𝑟−𝜅𝜅 

Ψ𝑞[𝑟] = 𝑓𝑓 (0) Φ𝑞[0] + 𝑓𝑓(0) Φ𝑞[𝑟] + 𝜅𝜅=1 𝑓𝑓 (0) Φ𝑞[𝜅]𝐹(𝑟, 𝑟 − 𝜅, 𝜅),   𝑟 = 2,3,4, ⋯ 
 
 

 

Proof. Since 𝑓𝑓(𝑡) is analytic function on time scale 𝕋𝕋 = 𝑞ℕ, one can get 𝑓𝑓(𝑡) = ∑∞ 𝑓𝑓Δ
𝜅𝜅 

(0)𝑕 
 

𝜅𝜅 (𝑡, 0). 
Therefore, the result can be obtained directly using theorem(3.3). 

 

Theorem 3.5  If 𝑓𝑓(𝑡) is analytic function on time scale 𝕋𝕋 = 𝑞ℕ and 𝑇(𝑡) = 𝑓𝑓(𝑡)𝛷𝛷2(𝑡), then 

Ψ𝑞[0] = 𝑓𝑓(0) Φ2[0] 
 

Ψ𝑞[1] = 𝑓𝑓Δ(0) Φ2[0] + 2𝑓𝑓(0) Φ [1]Φ [0] 
𝑞 

Δ𝑟 2 

𝑞 𝑞 

∑𝑐−1 

Ψ𝑞[𝑟] = 
𝑓𝑓 

𝜅]Φ𝑞[𝜅]𝐹(𝑟, 𝑟 − 𝜅, 𝜅) 

(0)Φ𝑞[0] + 𝑓𝑓(0)Φ𝑞[𝑟]Φ𝑞[0] + 𝑓𝑓(0)Φ𝑞[0]Φ𝑞[𝑟] + 𝑓𝑓(0) 𝜅𝜅=1 Φ𝑞[𝑟 − 

+ ∑𝑐−1  𝑓𝑓Δ
𝑟−𝜅𝜅 

(0)Φ [𝜅]Φ [0]𝐹(𝑟, 𝑟 − 𝜅, 𝜅) + ∑𝑐−1  𝑓𝑓Δ
𝑟−𝜅𝜅 

(0)Φ [0]Φ [𝜅]𝐹(𝑟, 𝑟 − 𝜅, 𝜅) 
𝜅𝜅=1 𝑞 𝑞 𝜅𝜅=1 𝑞 𝑞 

+ ∑𝑐−1  ∑𝜅𝜅−1 𝑓𝑓Δ
𝑟−𝜅𝜅 

(0)Φ [𝜅 − 𝑢]Φ [𝑢]𝐹(𝜅, 𝜅 − 𝑢, 𝑢)𝐹(𝑟, 𝑟 − 𝜅, 𝜅) , 𝑟 = 2,3,4, ⋯ 
𝜅𝜅=1 𝑢=1 𝑞 𝑞 

Proof. According to theorem (3.3), we find Φ2(𝑡) = ∑∞ Υ𝑞[𝑟] 𝑕𝑐(𝑡, 0) 

Where Υ𝑞[𝑟] define as follows: 

Υ𝑞[0] = Φ2[0] 

Υ𝑞[1] = 2Φ𝑞[1]Φ𝑞[0] 

Υ𝑞[𝑟] = Φ𝑞[𝑟]Φ𝑞[0] + Φ𝑞[0]Φ𝑞[𝑟] + ∑𝑐−1 Φ𝑞[𝑟 − 𝜅]Φ𝑞[𝜅]𝐹(𝑟, 𝑟 − 𝜅, 𝜅), 𝑟 = 2,3,4, ⋯ 
 
 

 

However, since 𝑓𝑓(𝑡) is analytic function on time scale 𝕋𝕋 = 𝑞ℕ, we can get 𝑓𝑓(𝑡) = ∑∞ 𝑓𝑓Δ
𝜅𝜅 

(0)𝑕 
 

𝜅𝜅 (𝑡, 0). 

Using theorem(3.4), we have 

Ψ𝑞[0] = 𝑓𝑓(0) Υ𝑞[0] 

Ψ𝑞[1] = 𝑓𝑓Δ(0) Υ𝑞[0] + 𝑓𝑓(0) Υ𝑞[1] 

Δ𝑟 

 
 
 
 
 
 

∑𝑐−1 

 
 
 
 
 
 
 

Δ𝑟−𝜅𝜅 

Ψ𝑞[𝑟] = 𝑓𝑓 (0) Υ𝑞[0] + 𝑓𝑓(0) Υ𝑞[𝑟] + 𝜅𝜅=1 𝑓𝑓 (0) Υ𝑞[𝜅]𝐹(𝑟, 𝑟 − 𝜅, 𝜅),   𝑟 = 2,3,4, ⋯ 

Now, replace the values of Υ𝑞[𝑟] in the above equations by its equivalent values in terms Φ𝑞[𝑟], we get 

the result directly. 

4. Illustrated Examples 

Example 4.1 Consider the Riccati q-difference equation as follows: 

ΨΔ(𝑡) = 1 − Ψ(𝑡)2 (26) 

Ψ(0) = 0 (27) 

When 𝑞 tends to 1, the solution exactly has the form 
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𝜅𝜅=1 

 

 
 

Applying DTM to Eq.((26)) , we have 

Ψ𝑞[1] + Ψ2 𝑞[0] − 1 = 0 

Ψ𝑞[2] + 2Ψ𝑞[1] Ψ𝑞[0] = 0 

Ψ(𝑡) = 𝑡𝑎𝑛𝑕(𝑡) (28) 

 

Ψ𝑞[𝑟 + 1] = −Ψ𝑞[𝑟] Ψ𝑞[0] − Ψ𝑞[0] Ψ𝑞[𝑟] − ∑𝑐−1 Ψ𝑞[𝑟 − 𝜅] Ψ𝑞[𝜅]𝐹(𝑟, 𝑟 − 𝜅, 𝜅),   𝑟 = 

2,3,4, ⋯ (29) 

Again apply DTM to the initial conditions in Eq.((27)) , one can have 

Ψ𝑞[0] = 0. (30) 

Using the Maple software, one can solve the recurrence relation in Eq.((29)) with Eq.((30)) to have the 
value of the unknown coefficients as follows: 

Ψ𝑞[1] = 1 

Ψ𝑞[2] = 0 

Ψ𝑞[3] = −3 + 𝑞 

Ψ𝑞[4] = 0 

Ψ𝑞[5] = 2(𝑞2 − 4𝑞 + 5)(−3 + 𝑞)2 

Ψ𝑞[6] = 0 

Ψ𝑞[7] = (−3 + 𝑞)3(𝑞2 − 3𝑞 + 3)(𝑞4 − 9𝑞3 + 35𝑞2 − 69𝑞 + 59)(𝑞2 − 4𝑞 + 5) 

Ψ𝑞[8] = 0 

Ψ𝑞[9] = 2(𝑞2 − 4𝑞 + 5)2(𝑞2 − 3𝑞 + 3)(−3 + 𝑞)4(2𝑞6 − 26𝑞5 + 143𝑞4 − 427𝑞3 

+737𝑞2 − 711𝑞 + 313)(𝑞4 − 8𝑞3 + 24𝑞2 − 32𝑞 + 17) 
 

⋮ 
 

So, Ψ(𝑡) ≃ ∑9 Ψ𝑞[𝑟]𝑕𝑐(𝑡, 0) is the first ten terms of the solution of this problem. Moreover, when 𝑞 → 1 
𝑐=0 

this solution is given by 
 

lim Ψ(𝑡) = 𝑡 − 
𝑞→1 

1 
𝑡3 

3 
+ 

2  
𝑡5 

15 
− 

17 

315 
𝑡7 +  

62 

2835 
𝑡9 + ⋯ (31) 

 

When 𝑞 → 1, the solution in Eq.((31)) agrees exactly with the Taylor series of the given solution. Also, 
Eq.((31)) is agreement with the result in, Example(1) [37]. 

Example 4.2 Consider the Riccati q-difference equation as follows: 

ΨΔ(𝑡) = 1 + 2Ψ(𝑡) − Ψ2(𝑡) (32) 

Ψ(0) = 0 (33) 
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𝑞 

𝜅𝜅=1 

 
 

When 𝑞 tends to 1, the solution exactly has the form 
 

 

 
  

Ψ(𝑡) = √2tanh(√2𝑡 + 
 

Applying DTM to Eq.((32)) , we have 

Ψ𝑞[1] = 2Ψ𝑞 [0] − Ψ2 [0] + 1 

Ψ𝑞[2] = 2Ψ𝑞 [1] − 2Ψ𝑞 [1] Ψ𝑞[0] 

1 
𝑙𝑙𝑜𝑔(

√2−1 

2 √2+1 
)) + 1 (34) 

 

Ψ𝑞 [𝑟 + 1] = 2Ψ𝑞 [𝑟] − 2Ψ𝑞[𝑟] Ψ𝑞[0] − ∑𝑐−1 Ψ𝑞[𝑟 − 𝜅] Ψ𝑞[𝜅]𝐹(𝑟, 𝑟 − 𝜅, 𝜅), ∀𝑟 = 2,3,4, ⋯ 

(35) 

Again apply DTM to the initial conditions in Eq.((33)) , one can have 

Ψ𝑞[0] = 0. (36) 

Using the Maple software, one can solve the recurrence relation in Eq.((35)) with Eq.((36)) to have the 
value of the unknown coefficients as follows: 

Ψ𝑞[1] = 1 

Ψ𝑞[2] = 2 

Ψ𝑞[3] = 1 + 𝑞 

Ψ𝑞[4] = −4𝑞2 + 22𝑞 − 26 

Ψ𝑞[5] = −2(𝑞 − 3)(𝑞3 − 9𝑞2 + 31𝑞 − 37) 

Ψ𝑞[6] = −4𝑞7 + 56𝑞6 − 352𝑞5 + 1276𝑞4 − 2832𝑞3 + 3732𝑞2 − 2536𝑞 + 548 

Ψ𝑞[7] = 𝑞11 − 𝑞10 − 239𝑞9 + 3230𝑞8 − 21721𝑞7 + 91686𝑞6 − 262608𝑞5 + 524197𝑞4 

−725540𝑞3 + 669551𝑞2 − 373085𝑞 + 95377 

Ψ𝑞[8] = 8𝑞15 − 228𝑞14 + 2956𝑞13 − 22836𝑞12 + 114738𝑞11 − 375506𝑞10 + 685838𝑞9 

+144320𝑞8 − 5305474𝑞7 + 18573384𝑞6 − 38811708𝑞5 + 55564898𝑞4 − 55575960𝑞3 

+37593290𝑞2 − 15612662𝑞 + 3034030 

Ψ𝑞[9] = −20𝑞20 + 888𝑞19 − 18662𝑞18 + 247048𝑞17 − 2312130𝑞16 + 16272346𝑞15 − 

89406344𝑞14 

+392904980𝑞13 − 1403278564𝑞12 + 4115164306𝑞11 − 9966897976𝑞10 + 

19979418384𝑞9 

−33100759636𝑞8 + 45089744554𝑞7 − 50018425772𝑞6 + 44494246668𝑞5 − 
30993249576𝑞4 

+16286776898𝑞3 − 6068996878𝑞2 + 1427426744𝑞 − 158832042 
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𝑐=0 

𝑞 

𝜅𝜅=1 

 

⋮ 
 

Therefore Ψ(𝑡) ≃ ∑9 

 

Ψ𝑞[𝑟]𝑕𝑐(𝑡, 0) is the first ten terms of the solution of the given problem. When 

𝑞 → 1 this solution is given by 
 

lim Ψ(𝑡) = 𝑡 + 𝑡2 
𝑞→1 

+ 
1 

𝑡3 
3 

− 
1 

𝑡4 
3 

− 
7  

𝑡5 
15 

− 
7  

𝑡6 
45 

+ 
53 

315 
𝑡7 + 

71 

315 
𝑡8 + 

197 

2835 
𝑡9 + ⋯ (37) 

 

When 𝑞 → 1, the solution in Eq.((37)) agrees exactly with the Taylor series of the given solution. 

Example 4.3 Consider the Riccati q-difference equation as follows: 

ΨΔ(𝑡) = 2Ψ2(𝑡) − 𝑡Ψ(𝑡) + 1 (38) 

Ψ(0) = 0 (39) 

When 𝑞 tends to 1, the solution exactly has the form 
 

 

 
Applying DTM to Eq.((38)) , we have 

Ψ𝑞[1] = 2Ψ2[0] + 1 

 

Ψ(𝑡) =  
𝑡 

1−𝑡2 
(40) 

 

Ψ𝑞[2] = 4Ψ𝑞[1]Ψ𝑞[0] + Ψ𝑞[0] 

Ψ𝑞[𝑟 + 1] = 4Ψ𝑞[𝑟]Ψ𝑞[0] + Ψ𝑞[𝑟 − 1]𝐹(𝑟, 1, 𝑟 − 1) 

+2 ∑𝑐−1 Ψ𝑞[𝑟 − 𝜅]Ψ𝑞[𝜅]𝐹(𝑟, 𝑟 − 𝜅, 𝜅), ∀𝑟 = 2,3,4, ⋯ (41) 

Again apply DTM to the initial conditions in Eq.((39)) , one can have 

Ψ𝑞[0] = 0. (42) 

Using the Maple software, one can solve the recurrence relation in Eq.((41)) with Eq.((42)) to have the 
value of the unknown coefficients as follows: 

Ψ𝑞[1] = 1 

Ψ𝑞[2] = 0 

Ψ𝑞[3] = 9 − 3𝑞 

Ψ𝑞[4] = 0 

Ψ𝑞[5] = 15(𝑞2 − 4𝑞 + 5)(𝑞 − 3)2 

Ψ𝑞[6] = 0 

Ψ𝑞[7] = −3(𝑞2 − 3𝑞 + 3)(𝑞2 − 4𝑞 + 5)(6𝑞4 − 54𝑞3 + 211𝑞2 − 419𝑞 + 361)(𝑞 − 3)3 

−725540𝑞3 + 669551𝑞2 − 373085𝑞 + 95377 

Ψ𝑞[8] = 0 
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𝑐=0 

 
 

Ψ𝑞[9] = 15(12𝑞6 − 156𝑞5 + 858𝑞4 − 2562𝑞3 + 4423𝑞2 − 4271𝑞 + 1885)(𝑞2 − 3𝑞 + 3) 

× (𝑞4 − 8𝑞3 + 24𝑞2 − 32𝑞 + 17)(𝑞2 − 4𝑞 + 5)2(𝑞 − 3)4 
 

⋮ 
 

Therefore Ψ(𝑡) ≃ ∑9 

 

Ψ𝑞[𝑟]𝑕𝑐(𝑡, 0) is the first ten terms of the solution of the given problem. When 

𝑞 → 1 this solution is given by 

lim Ψ(𝑡) = 𝑡 + 𝑡3 + 𝑡5 + 𝑡7 + 𝑡9 + ⋯ (43) 
𝑞→1 

 

When 𝑞 → 1, the solution in Eq.((43)) agrees exactly with the Taylor series of the given solution. 

5. Conclusions 

In this study, we introduce the difference transform method (DTM) based on Taylor formula for any 
time scale with its delta derivative of graininess function is a nonzero positive constant. Riccati type 
𝑞 −difference equations on quantum calculus have been successfully solved and the results coincide 
exactly with the Taylor series of the exact solution when 𝑞 − tends to 1. In fact, this method is applicable 
to solving any nonlinear difference equations on any time scale with 𝜇Δ > 0. 
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