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Abstract :

In the present paper, we obtain some subordination and superordination Results involving the integral operator T, for certain normalized

analytic functions in the open unit disk. These results are applied to obtain sandwich results.
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1. Introduction: Let f, g € H. The function f is said to be subordinate to g, or g is
' ] ) o said to be superordinate to f , if there exists a Schwarz function w
Let H = H (U) be the class of analytic functions in the open unit disk analytic in U with w(0) = 0 and |w(z) | <1 (z€ U), such that f (2)

U={z€eC:|zl< 1} For napositive integer and a € C, let H [a,n]
be the subclass of the function f € H consisting of functions of the
form :

= g (W(2)), in such a case, we write f < gor f(z)<g (z) (z€V).
If g isunivalentin U,then f < g ifandonlyif f(0)=g(0) and
f) < g).

f@=a+a,z"+ap, 2" +... (a € C,nEN).
Let pheHand y(r,§,t;z):C3 xU->C.If p and

Also, let A be the subclass of H consisting of functions of the form ¥ (p(2),2p'(2),22p" (2); 2) are univalent functions in U and if p

w n satisfies the second-order differential superordination
f(z) =z+yy,a,z" (1.
h(2) < ¥ (p(2), 2’ (2), %" (2); 2).(z € V), (12
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then p is called a solution of the differential superordination (1.2).

(If f is subordinate to gthen g is superordinate to f). An analytic
function q is called subordinant, of the differential superordination if
g < p for all the functions p satisfying (1.2).

An univalent subordinant g that satisfies q<q for all the subordinants
g of (1.2) is called the best subordinant. Miller and Mocanu [9] have
obtained sufficient conditions on the functions h,q and  for which
the following implication holds :

h@ <y (P @ 2p'(2),2%p" (2);2) > q(2) < p () 3)
For f € A Al-Shagsi [2] defined the following integral operator

(a)n-1

T, f(2) defined by T, f(z) =z + Y., on=1 O z", (1.4)
Moreover, from (1.4), it follows that
2 (Tasr f)'=0a Ty f)—(ca-DT, f). (15

Alli et al.[1] obtained sufficient conditions for certain normalized

fl
q:(2) < Zf(g) <q(2),
where g, and q, are given univalent functions in U with q,(0) =

q,(0) = 1. Also, Tuneski [13] obtained sufficient conditions for

analytic functions to satisfy :

f''(z) f (z)
(f'(2))?
Shanmugam et al. [11,12], Goyal et al .[8] , Atshan and Abbas [3],
Atshan and Jawad [5] , Atshan and Kazim [6] , and Atshan and
Badawi [4] also obtained sandwich results for certain classes of

analytic functions, for different conditions.

starlikeness of f in terms of the quantity .Recently,

The main object here to find sufficient conditions for certain
normalized analytic functions f to satisfy:

ara f
4 (2) <(*=2 2y < g, (2)
and

PTa41 f(2)+(1-p) T« f(2) < q; (2)
q(2) <(Plenl@+0op :

)8 <q,(2),

where q; and q, are given univalent functions in U with q,(0) =
q,(0) =1.

2. Preliminaries: In order to prove our subordinations and
superordinations results, we need the following definitions and
lemmas.

Definition 2.1 [9] : Let Q the set of all functions f{z) that are analytic
and injective on U / E(f) , where

U:UU{ZEBU},andE(f)={£EBU:éi_r)rslf(z)= 0},

and are such that f(z) = 0 for & € U/E(f). Further, let the subclass
of Q for which f(0) = a be denoted by Q(a), and Q(0)= Qo, Q(1)
=Qq={f€eQ:f(0)=1}.

Lemma 2.1 [9] : Let g be univalent in the unit disk U and let 6 and
¢ be analytic inadomain D containing q(U) with ¢ (w) %0
when w € q(U). Set Q(z) =zq' (z) ¢ (q(z)) and h(z) = 6(q(2)) +
Q(2). suppose that,
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(i) Q (2) is starlike univalent in U ,
.. zh!(2)
(ii) Re {%}> 0forze U.
If p is analytic in U with p(0) = q(0) , p(U) € D and
6 (p(2) +2p'(2) @ (p(2) <6 (a(2) +zp' (z) 2(q(z), (2.1)

then p < g and q is the best dominant of (2.1).

Lemma 2.2 [10] : Let g be convex univalent function in U and let
a € C, B eC/{0}and suppose that

'@ . «
Re{1+ e } > max {0, Re(B)}.

If p isanalyticin U, and
ap (z) + Pzp'(z) < aq (z) + Bzq'(2), (2.2)
then p<q and q is the best dominant of (2.2) .

Lemma 2.3 [10] : Let g be convex univalentin U and q(0) =1.
Let B € C.Further assume that Re (B) >0.I1fpeH[q(0),1]NQ
and p(z) + Bzp'(z) is univalent in U, then

a(2) + Bz9'(2) < p(2) + Bzp'(2), 23)
which implies that q < p and g is the best subordinant of (2.3) .

Lemma 2.4 [7] : Let g be convex univalent in the unit disk U and
let © and ¢ be analytic in a domain D containing g(U). Suppose that

; 6'(a(2)
(i) Re {—¢(q(z))} >0forzeU,

(i) Q(2) = zg'(2) ¢ (q(2)) is starlike univalentin z € U.
If p€H[q(0), 1] N Qwith p(U) €D, 6(p(2)) +2p'(2) ¢ (p(2)),
is univalent in U and

6(a(2) +24'(2) ¢ (4(2)) < 8(p(2)) +2p'(2) $ (p(2)), (2.4)
then g < p and q is the best subordinant of (2.4) .
3. Subordination Results
Theorem3.1 : Let q be convex univalent function in U with g(0) =1,

0+#n€C, >0 and suppose that q satisfies :

Re {1+M}>max{o,-Re(§)}.

q1(2) (31)

If f € Asatisfies the subordination

L (ca-1) (R ) (o 1) (R 2 i) <

Ta+1 f(2)
4@ +329' @), (3:2)

then (Tes1l)5 < () (3.3)

and q is the best dominant of (3.2).



Proof : Consider a function p(z) by

p(@) = (Tezf@)ys. (34)
Differentiating (3.4) with respect to z logarithmically , we get

2@ _ g anf@
p(z) Ta+1 f(2)

(3.5)

Now , in view of (1.5) , we obtain

zp'(2) _ Tas1f(@) Tosa f(2)
v o (0 (G T DA (5 e )
Therefore

zp’(2) - Tos1 f(2) \6 Tat1 f(Z) a1 f(2)
8 ( z ) (Ca(T +1 f(2) ) (T+1f(z) 1)

The subordination (3.2) from the hypothesis becomes

P@2) +32P(@) <d@) +524@).

An application of Lemma (2.2) with 8 = g and a = 1,we obtain(3.3).

Putting q(z) = (ﬂ) in Theorem (3.1) ,we obtain the following

corollary .

Corollary 3.1, Let0#n e C, 8 >0and
Re{1+£}>max{o,-Re(§)}.

If f € A satisfies the subordination

_ _ Tot1 f(2) \g 4 _ Tat1 f(2) \5  Taf(2)
L (o= 1) (P2l yon (ca— 1) (Tee@ s Ll <
1—z2+2§z th
( (1-z)? ), then
Tat1£(2) \§ 1+z
(Teesf@ o o (112,
1+z

and q(z) = (—) is the best dominant.

Theorem 3.2 : Let g be convex univalentin U with q(0) =1,
g(z) #0(z € U) and assume that q satisfies :

zq' (z)}>0

o (3.6)

6
Re{l-;

where n € C/{0},A >0 and z€ U. Suppose that -nzq"' (2)
is starlike univalentin U.If f € Asatisfies :

d (A8,cm;z) <8 q(z) -nzq' (2), (3.7
where ¢ (}\,S,C,T‘];Z) =8 ( PTa+1 f(Z)"'(Zl_p )Tq f(2) )6 _
PTat1 f(2)+(1-p) T f(@) \§ , PTo f(2)+(1-p)Tg4q f(2)
né( z )’ ( PTars f(2)+(1=P)Tars f(2) ) (38)
then (w ¥ < q(2), (3.9)

zZ

and q(z) is the best dominant of (3.7).
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Proof': Consider a function p(z) by

p(Z) — ( PTo+1 f(2)+(1-p)T, f(2) )5

Z

(3.10)
by setting,

6 (w) =éwandd (w) = -n,w#0

we see that 6(w) is analytic in C, ¢(w) is analyticin C / {0} and
that ¢p(w) #0 ,weC /{0}.Also, we get

Q@) =1zq"(2) ¢ (q(@) = —n zq'(2),

and
h(z) =6 (q(2)) +Q(2) =8 q(2) -nzq' (2).
Itis clear that Q(z) is starlike univalentin U.

zh'(z)

L@
o) }>o

R =Re 1
e (52} =Re{1-2 + 1L

By a straightforward computation,we obtain

8p(2) - nzp' (z) = ¢ (Ad,c¥;2), (3.11)

where ¢ (A,8,c,¥;z) is given by (3.8) from (3.7) and (3.11),
we have 6p(z) -nzp' (z) < 6q(z) -1 2zq'(2). (3.12)

Therefore. By Lemma (2.1) , we get p(z) < q(z). By using (3.10),

we obtain the result.

1+Az

Putting q(z) = ( -1<B<A <1)inTheorem (3.2), we

obtain The followmg Corollary.

Corollary 3.2 :Let-1<B<A<1 and

Z2B
1+Bz

Re{1-§]+ }> 0,

where 1 € C/{0} and z € U, if f € Asatisfies

1+Az)
14+Bz 1+B )2

& (ASenz) < (8 (
by (3.8).

)and ¢ (A,8,c,¥;z) is given

( PTas1 f(2)+(1-p) Ty f(2) ) < 1+Az
Z 1+Bz

1+Az
+Bz

is the best dominant.

and q(z) =

4. Superordination Results

Theorem 4.1: Let g be convex univalent in Uwith q(0) =1,6 >0
and Re {n} > 0. Let f€ A satisfies ("=2/® )5 € H [q(0), 1] n Q
and

(11 (ca)) (T2 )P 4 (ca- 1) ()0 (FetD

Ta+1 f(2)
A2) +329'(2) <

be univalentin U . If

To+1 f(z)

(1-n (c))—,—

To+1 f( ) Ta f(z)
- - ) (Tailfz(z))

)%+ m(earl) ( (4.1)

then q(z) < (let'® “+1“Z) )0 (4.2)



and q is the best subordinant of (4.1).
Proof : Consider a function p(z) by P(z) = (T"‘%f(z) )S. (4.3)

Differentiating (4.3) with respect to z logarithmically, we get

2p/(2) 2(Tass f@)'
=6 -1). 4.4
p(z) Tat1 f(2) ) ( )

After some computations and using (1.5), from (4.4), we
obtain

Te f(z)
Ta1 f(2)

(1-n (ca))( T“%f(z) )8+ 1 (ca- 1) ( T“+;f(z) Y8 (
P@) +320'(2)

):

and now, by using Lemma (2.3) , we get the desired result.

Putting q(z) = 2 in Theorem (4.1) ,we obtain the following

1-z
Corollary.

Corollary 4.1: Let §>0 and Re{n} >0.If f € A satisfies:
(T8 )8 e Hg(0), 11N Q

and

Ty f(2)
Tes £(2)

(11 (co)) (=)0 4y (car- 1) (TS ( ),

be univalent in U. If

— 72421
1 z+252
(1-z)?

Tasqf Taqr f Ty fi
(1-n (ca) (T2 30 4 (- 1) ( Tt yo TelO ),

then
1+z Tas1 F(2)\5
(32) < (Tent®)
1+z . .
and q(z) = s the best subordinant.

Theorem 4.2: Let g be convex univalent in U with g(0) =1 ,and
assume that q satisfies

Re {—‘51‘7”“)} >0, (4.5)
where 1 € C/{0} and z € U.

Suppose that—7 zq' (z) is starlike univalentin U, let fe A
satisfies :

( PTa+1 f(Z)“’il_p) Tq f(2) YeH [ q(O), 1] n Q

and ¢ (4,6,c,m; ) is univalentin U, where ¢ (4, 8, ¢,n; z) is given
by (3.8).1f89(2) - nz9'(2) < d(A, 8,¢,m; 2), (4.6)

then q(Z) < ( PTa+1 f(2)+(1-p) T f(2) )8 (47)

zZ

and q is the best subordinant of (4.6).

Proof : Consider a function p(z) by

) - ( PTa+1 f(2)+(1-p) Ty f(z) )8 ) (48)

Z

p(z

By setting
O(w)= 6w and ¢(w)= —1m ,w= 0,

we see that 8 (w) is analytic in C, ¢ (w) isanalytic in C\ {0} and
that ¢ (w) =0, w € C {0}. Also, we get
Q@) = z9'(2) pa(z) =-n zq' (2).

It isclearthat Q(z) is starlike univalent in U,

8'(a@) _ -8d'@
Re{¢(q(z))}—Re{ . }>0.

By a straightforward computation, we obtain

& A 6,cm;z) = 8p(z) — nzp'(2), (4.9

where &(A,8,c,n;z) is given by (3.8) From (4.6) and (4.9),we have
8q (z) — nzq'(z) < dp(z) — nzp'(2).

Therefore , by Lemma (2.4) , we get gq(z) < p(z). by using (4.8),
we obtain the result.

Concluding the results of differential subordination and
superordination we arrive at the following " sandwich results " .

5. Sandwich Results
Theorem 5.1 : Let q; be convex univalentin Uwith q; (0) =1,

Re{n }> 0 and let gz be univalent in U, g, (0)=1 and satisfies
(3.1), let f € Asatisfies :

(T € H[1,1] nQ
and

Ty f T f Taf
(- (ca)) (F272)3 4 (ca- 1) (P2 ()

be univalent U. If g, (z) + g 29, () <

(L0 (000 ) (722 )% 4 (- 1) ()0 (e ) <

Ta+1 f(2)
@) +3 29,
then 6 (@) < (7= fE) < q,(9),

and g, and q, are respectively, the best subordinant and the best
dominant .

Theorem 5.2: Let q; be convex univalent in U with q; (0)=1,
and satisfies (4.5). Let q, be univalent in U q,(0) =1, satisfies
(36), let f € A satisfies

(pT(x+1 f(z)+(1-p) Taf(z) )8 EHI[LI] NQ

z



and ¢ (4,8, ¢,m; z) isunivalent in U, where ¢ (4,8,¢,n;2) is
given by (3.8). If

891 (2) —mz0'1(2) < & (A, 8,¢,m;2) < 89, (2) —mzq'; (2),

then

Trx f( )+(1_ )Tocf
qy(27) < ( PreafEroD T 45 < g, ),
and g1 and Qg2 are respectively the best subordinant and the best

dominant .
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