Al-Qadisiyah Journal of Pure Science

Volume 25 | Number 4

Article 6

10-7-2020

Some Results in a Class of Telescopic Numerical Semigroups

Sedat iLHAN

Dicle University, Faculty of Science, Department of Mathematics, Diyarbakır, 21280, TURKEY, sedati@dicle.edu.tr

Follow this and additional works at: https://qjps.researchcommons.org/home

Part of the Mathematics Commons

Recommended Citation

iLHAN, Sedat (2020) "Some Results in a Class of Telescopic Numerical Semigroups," Al-Qadisiyah Journal of Pure Science: Vol. 25: No. 4, Article 6.

DOI: 10.29350/qjps.2020.25.4.1197

Available at: https://qjps.researchcommons.org/home/vol25/iss4/6

This Article is brought to you for free and open access by Al-Qadisiyah Journal of Pure Science. It has been accepted for inclusion in Al-Qadisiyah Journal of Pure Science by an authorized editor of Al-Qadisiyah Journal of Pure Science. For more information, please contact bassam.alfarhani@qu.edu.iq.

Al-Qadisiyah Journal of Pure Science

DOI: /10.29350/jops.

http://qu.edu.iq/journalsc/index.php/JOPS

Some Results in a Class of Telescopic Numerical Semigroups

Authors Name Sedat İLHAN	ABSTRACT
Article History Received on: 5/9 /2020 Revised on: 30/ 9/2020 Accepted on: 2/10 / 2020 Keywords: Frobenius number, Telescopic numerical semigroups, Arf closure.	In this paper, we will give some results about Frobenius number, gaps, and determine number of arf closure of telescopic numerical semigroup S_k such that $S_k = \left<8,8k+2,x\right>$ where $k \ge 1, \ k \in \mathbb{Z}$, $j \ne 0,2,4,,2(k-1)$ and $x=8k+2+(2j+1)$ is odd integer number.
DOI: https://doi.org/10.29350/jops.2020.25.4.1197	

1. Introduction

Let $\mathbb N$ and $\mathbb Z$ be the sets of nonnegative integers and integers, respectively. The subset s of $\mathbb N$ is a numerical semigroup if $0 \in S$, $x + y \in S$, for all $x, y \in S$, and $Card(\mathbb N \setminus S) < \infty$ (this condition is equivalent to $\gcd(S) = 1$, $\gcd(S) = \gcd(S) = \gcd(S)$ and $\gcd(S) = \gcd(S) = \gcd(S)$. Let S be a numerical semigroup, then $F(S) = \max(\mathbb Z \setminus S)$ and $m(S) = \min\{s \in S : s > 0\}$ are called Frobenius number and multiplicity of S, respectively. Also, $n(S) = Card(\{0,1,2,...,F(S)\} \cap S)$ is called the number determine of S. If $F(S) - x \in S$ then is called symmetric numerical semigroup, for all $x \in \mathbb Z \setminus S$. It is known that $S = \langle a,b \rangle$ is symmetric numerical semigroup, and if S is a symmetric numerical semigroup then $n(S) = G(S) = \frac{F(S) + 1}{2}$ (for details see [1], [6]).

If S is a numerical semigroup such that $S = \langle a_1, a_2, ..., a_n \rangle$, then we observe that

$$S = < a_1, a_2, ..., a_n > = \{s_0 = 0, s_1, s_2, ..., s_{n-1}, s_n = F(S) + 1, \rightarrow ...\}$$

where $s_i < s_{i+1}$, n = n(S), and the arrow means that every integer greater than F(S) + 1 belongs to S, for i = 1, 2, ..., n = n(S).

If $x \in \mathbb{N}$ and $x \notin S$, then x is called gap of S. We denote the set of gaps of S, by H(S), i.e, $H(S) = \mathbb{N} \setminus S$ and, the G(S) = Card(H(S)) is called the genus of S. Also, It is know that G(S) = F(S) + 1 - n(S). Let $S = < s_1, s_2, s_3 >$ is a triply-generated telescopic numerical semigroup if $s_3 \in < \frac{s_1}{d}, \frac{s_2}{d} >$ where $d = \gcd(s_1 s_2)$ (see [3],[5],[7]). If S is a numerical semigroup such that $S = < a_1, a_2, ..., a_n >$, then $L(S) = \left< a_1, a_2 - a_1, a_3 - a_1, ..., a_n - a_1 \right>$ is called Lipman numerical semigroup of S, and it is known that

$$L_{0}(S) = S \subseteq L_{1}(S) = L(L_{0}(S)) \subseteq L_{2} = L(L_{1}(S)) \subseteq ... \subseteq L_{m} = L(L_{m-1}(S)) \subseteq ... \subseteq \mathbb{N}$$
.

A numerical semigroup S is Arf if $a+b-c\in S$, for all $a,b,c\in S$ such that $a\geq b\geq c$. The intersection of any family of Arf numerical semigroups is again an Arf numerical semigroup. Thus, since $\mathbb N$ is an Arf numerical semigroup, one can consider the smallest Arf numerical semigroup containing a given numerical semigroup. The smallest Arf numerical semigroup containing a numerical semigroup S is called the Arf closure of S, and it is denoted by Arf(S) (see [4],[6]).

In this paper, we will give some results about Frobenius number, gaps, and determine number of Arf closure of telescopic numerical semigroup S_k such that $S_k = \left\langle 8, 8k+2, x \right\rangle$ where $k \geq 1, k \in \mathbb{Z}$, $j \neq 0, 2, 4, ..., 2(k-1)$ and x = 8k+2+(2j+1) is odd integer number. We note that any telescopic numerical semigroup is not symmetric. For example, $S = \left\langle 6, 9, 23 \right\rangle$ is telescopic numerical semigroup but it is not symmetric since F(S) = 40 and for x = 3 $F(S) - x = 37 \not\in S$. But, here $S_k = \left\langle 8, 8k+2, x \right\rangle$ is symmetric numerical semigroup where $k \geq 1, k \in \mathbb{Z}$.

2. Main Results

Proposition 1. ([8]) $S_k = \langle 8, 8k+2, x \rangle$ is a telescopic numerical semigroups where $k \geq 1, k \in \mathbb{Z}, j \neq 0, 2, 4, ..., 2(k-1)$ and x = 8k + 2 + (2j+1) is odd integer number.

In this study, we will take j=1 in $S_k = \langle 8, 8k+2, x \rangle$, i.e., $S_k = \langle 8, 8k+2, 8k+5 \rangle$.

Proposition 2. ([2]) Let $S = \langle u_1, u_2, ..., u_n \rangle$ be a numerical semigroup and $d = \gcd\{u_1, u_2, ..., u_{n-1}\}$. If $T = \langle \frac{u_1}{d}, \frac{u_2}{d}, ..., \frac{u_{n-1}}{d} \rangle$ numerical semigroup then

(a)
$$F(S) = d.F(T) + (d-1).u_n$$

(b)
$$G(S) = d.G(T) + \frac{(d-1)(u_n-1)}{2}$$
.

Proposition 3. Let $S_k = \langle 8, 8k+2, 8k+5 \rangle$ be a telescopic numerical semigroup, where $k \ge 1$, $k \in \mathbb{Z}$. Then, we have

(a)
$$F(S_k) = 32k + 3$$

(b)
$$n(S_k) = 16k + 2$$

(c)
$$G(S_{\nu}) = 16k + 2$$
.

Proof. (a) We find that F(T) = 16k + 4 - 4k - 4 - 1 = 12k - 1 since $d = \gcd\{8, 8k + 2\} = 2$ and $T = \langle \frac{8}{2}, \frac{8k + 2}{2} \rangle = \langle 4, 4k + 1 \rangle$, where $k \ge 1$, $k \in \mathbb{Z}$. In this case, we obtain that F(S) = 2(12k - 1) + (2 - 1).(8k + 5) = 32k + 3 from Proposition 2/(1).

(b)-(c) It is trivial $n(S) = G(S) = \frac{F(S)+1}{2} = \frac{32k+4}{2} = 16k+2$ from S_k is symmetric numerical semigroup.

Theorem 1. Let $S_k = \langle 8, 8k+2, x \rangle$ be a telescopic numerical semigroup, where $k \ge 1$, $k \in \mathbb{Z}$. Then, $Arf(S) = \{0, 8, 16, 24, ..., 8k, 8k+2, x-1, \rightarrow ...\}$.

Proof. It is trivial $m_0 = 8$ since $L_0(S) = S$. Thus, we write $L_1(S) = \langle 8, 8k - 6, x - 8 \rangle$. In this case,

(1) If 8k-6 < 8 (if k=1) then we obtain $L_1(S) = <8, 8k-6, x-8> = <2, x-8>$, $m_1 = 2$ and we have $L_2(S) = <2, x-10>$.

In here, x-10 > 2 and $m_2 = 2$. So, we have $L_3(S) = <2, x-12 > .$

In here, if x-12<2 (if x=13) then $L_3(S)=<2,1>=<1>=\mathbb{N},\ m_3=1$.

If x-12>2 then we find that $m_3=2$ since $L_3(S)=<2, x-12>$.If we are continued, we have that $L_i(S)=<2, x-2(i+3)>$ and $m_i=2$ or $m_i=1$, for $i\ge 1$. Thus, we obtain

$$Arf(S) = \{0,8,16,24,...,8k,8k+2,x-1,\rightarrow...\}$$

(2) If 8k-6>8 then $m_1=8$, and we have $L_2(S)=<8,8k-14,x-16>$. In this case, if 8k-14<8 (if k=2) then $L_2(S)=<8,8k-14,x-16>=<8,2,x-16>=<2,x-16>$ and $m_2=2$ from x-16>2. Thus, we have $L_3(S)=<2,x-18>$. In here,

if x-18<2 (if x=13) then $L_3(S)=<2,1>=<1>, m_3=1$.

if x-18>2 then we write that $m_3=2$ since $L_3(S)=<2, x-18>$.

If we are continued , we have that $L_i(S) = <2, x-2(i+6)>$, and $m_i = 2$ or $m_i = 1$, for $i \ge 2$. So, we obtain $Arf(S) = \left\{0,8,16,24,...,8k,8k+2,x-1,\to...\right\}$.

Corollary 1. Let $S_k = \langle 8, 8k+2, 8k+5 \rangle$ be a telescopic numerical semigroup, where $k \geq 1$, $k \in \mathbb{Z}$. Then, we have

(a)
$$F(Arf(S_k)) = x - 2 = 8k + 3$$

(b)
$$n(Arf(S_k)) = k + 2$$

(c)
$$G(Arf(S_k)) = 7k + 2$$
.

Proof. (a) It is clear.

(b) Let A_1 and A_2 be the cardinalities of the subsets $\left\{8,16,24,...,8k\right\}$ and $\left\{4k+2,x-1\right\}$ of $Arf(S) = \left\{0,8,16,24,...,8k,8k+2,x-1,\rightarrow...\right\}$, respectively. In this case, we have $A_1 = \frac{8k-8}{8} + 1 = k$ and $A_2 = 2$. Thus, we obtain $n(Arf(S_k)) = A_1 + A_1 = k+2$.

(c)
$$G(Arf(S_k)) = F(Arf(S_k)) + 1 - n(Arf(S_k)) = 8k + 3 + 1 - (k + 2) = 7k + 2$$
.

Corollary 2. Let $S_k = \langle 8, 8k+2, 8k+5 \rangle$ be a telescopic numerical semigroup, where $k \ge 1$, $k \in \mathbb{Z}$. Then, we have

(a)
$$F(S_k) = F(Arf(S_k)) + 24k$$

(b)
$$n(S_k) = n(Arf(S_k)) + 15k$$

(c)
$$G(S_k) = G(Arf(S_k)) + 9k$$

Proof. It is trivial from Proposition 3 and Corollary 1.

The following corollaries are satisfied from Propositions 3 and Corollary 1:

Corollary 3. Let $S_k = \langle 8, 8k+2, 8k+5 \rangle$ be a telescopic numerical semigroup where $k \ge 1$, $k \in \mathbb{Z}$. Then, it satisfies following equalities:

(a)
$$F(S_{k+1}) = F(S_k) + 32$$

(b)
$$n(S_{k+1}) = n(S_k) + 16$$

(c)
$$G(S_{k+1}) = G(S_k) + 16$$
.

Corollary 4. Let $S_k = \langle 8, 8k+2, 8k+5 \rangle$ be a telescopic numerical semigroup, where $k \ge 1$, $k \in \mathbb{Z}$. Then, we have :

(a)
$$F(Arf(S_{k+1})) = F(Arf(S_k)) + 8$$

(b)
$$n(Arf(S_{k+1})) = n(Arf(S_k)) + 1$$

(c)
$$G(Arf(S_{k+1})) = G(Arf(S_k)) + 7$$
.

Example 7. We put k=1 in $S_k = \langle 8, 8k+2, 8k+5 \rangle$ triply-generated telescopic numerical semigroups. Then we have

$$S_1 = <8,10,13> = \{0,8,10,13,16,18,20,21,23,24,26,28,29,30,31,32,33,34,36,\rightarrow ...\}$$

In this case, we obtain

$$F(S_1) = 35, \ n(S_1) = 18, \ H(S_1) = \{1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 14, 15, 17, 19, 22, 25, 27, 35\},$$

$$G(S_1) = 18, \ Arf(S_1) = \{0, 8, 10, 12, \rightarrow ...\},$$

$$F(Arf(S_1)) = 11, \ H(Arf(S_1)) = \{1, 2, 3, 4, 5, 6, 7, 9, 11\}$$

$$G(Arf(S_1)) = 9 \text{ and } n(Arf(S_1)) = 3.$$

If k=2 then we write in $S_k=\left\langle 8,8k+2,8k+5\right\rangle$ triply-generated telescopic numerical semigroups. Then we write

$$S_2 = <8,18,21> = \left\{0,8,16,18,21,24,26,29,32,34,36,37,39,40,42,44,45,47,48,50,52,...,60,61,...,66,68 \rightarrow ...\right\}.$$

Thus, we have

$$F(S_2) = 67$$
, $n(S_2) = 34$, $G(S_2) = 34$, $Arf(S_2) = \{0, 8, 16, 18, 20, \rightarrow ...\}$, $F(Arf(S_2)) = 19$, $n(Arf(S_2)) = 4$ and $G(Arf(S_2)) = 16$.

So, we obtain

$$G(Arf(S_1)) + 9 = 9 + 9 = 18 = G(S_1)$$
,
 $F(Arf(S_1)) + 24 = 11 + 24 = 35 = F(S_1)$,
 $n(Arf(S_1)) + 15 = 3 + 15 = 18 = n(S_1)$,
 $F(S_1) + 32 = 35 + 32 = 67 = F(S_2)$,
 $n(S_1) + 16 = 18 + 16 = 34 = n(S_2)$,
 $G(S_1) + 16 = 18 + 16 = 34 = G(S_2)$ and
 $F(Arf(S_1)) + 8 = 11 + 8 = 19 = F(Arf(S_2))$,
 $n(Arf(S_1)) + 1 = 3 + 1 = 4 = n(Arf(S_2))$,
 $G(Arf(S_1)) + 7 = 9 + 7 = 16 = G(Arf(S_2))$.

References

- [1] R. Froberg, C. Gotlieb and R. Haggkvist, On numerical semigroups. Semigroup Forum, 35, (1987), pp.63-68.
- [2] S.M. Johnson, A Linear diophantine problem, Canad. J. Math., 12, (1960), pp.390-398.
- [3] İlhan S., On a class of telescopic numerical semigroups, Int. J. Contemporary Math. Sci., Vol 1, no 2, (2006), pp.81-83.
- [4] S. İlhan and H.İ. Karakaş, Arf numerical semigroups, Turkish Journal of Mathematics, 41, (2017), pp.1448-1457.
- [5] C. Kirfel and R. Pellikaan, The minimum distance of codes in an array coming telescopic semigroups, Special issue on algebraic geometry codes, IEEE Trans. Inform. Theory, 4, (1995), pp.1720-1732.
- [6] J.C. Rosales and P.A. Garcia-Sanchez, Numerical semigroups. New York: Springer 181, (2009).
- [7] M. Süer and S. İlhan, All Telescopic Numerical Semigroups With Multiplicity Four and Six Journal of Science and Technology, Erzincan Üniversitesi,12 (1), 457-462, (2019), pp.457-462.
- [8] M. Süer and S. İlhan, On triply generated telescopic semigroups with multiplicity 8 and 9, Comptes Rendus de l'Academie bulgare des Sciences, 72(3), (2020), pp.315-319.