
Al-Qadisiyah Journal of Pure Science Al-Qadisiyah Journal of Pure Science 

Volume 26 Number 4 Article 44 

8-15-2021 

A New Class of Harmonic Univalent Functions of the Salagean A New Class of Harmonic Univalent Functions of the Salagean 

Type Type 

Mustafa I. Hameed 
Department of Mathematics, University of Anbar, Ramadi, Iraq, mustafa8095@uoanbar.edu.iq 

Buthyna Najad Shihab 
Department of Mathematics, University of Anbar, Ramadi, Iraq, dr.buthyna@yahoo.com 

Follow this and additional works at: https://qjps.researchcommons.org/home 

Recommended Citation Recommended Citation 
Hameed, Mustafa I. and Shihab, Buthyna Najad (2021) "A New Class of Harmonic Univalent Functions of 
the Salagean Type," Al-Qadisiyah Journal of Pure Science: Vol. 26: No. 4, Article 44. 
DOI: 10.29350/qjps.2021.26.4.1387 
Available at: https://qjps.researchcommons.org/home/vol26/iss4/44 

This Article is brought to you for free and open access by Al-Qadisiyah Journal of Pure Science. It has been 
accepted for inclusion in Al-Qadisiyah Journal of Pure Science by an authorized editor of Al-Qadisiyah Journal of 
Pure Science. For more information, please contact bassam.alfarhani@qu.edu.iq. 

https://qjps.researchcommons.org/home
https://qjps.researchcommons.org/home/vol26
https://qjps.researchcommons.org/home/vol26/iss4
https://qjps.researchcommons.org/home/vol26/iss4/44
https://qjps.researchcommons.org/home?utm_source=qjps.researchcommons.org%2Fhome%2Fvol26%2Fiss4%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://qjps.researchcommons.org/home/vol26/iss4/44?utm_source=qjps.researchcommons.org%2Fhome%2Fvol26%2Fiss4%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bassam.alfarhani@qu.edu.iq


564–954(2021) pp.  Vol.(26) Issue (Special issue num.4)of Pure Science  Qadisiyah Journal-Al 
 

 

 

 
a Department of Mathematics, University of Anbar, Ramadi, Iraq. Email: mustafa8095@uoanbar.edu.iq  

 
b Department of Mathematics, University of Baghdad, Baghdad, Iraq. Email:  dr.buthyna@yahoo.com  

 

 

 

 

 

 

 

 

 

 

A New Class of Harmonic Univalent Functions of the Salagean Type 
 

Authors Names 

 

 a.Mustafa I. Hameed  

 b.Buthyna  Najad  Shihab 

 

Article History 

Received on: 18/6/2021 

Revised on:30/7/2021 

Accepted on:15/8/2021  

 

Keywords: 

Harmonic Univalent Functions, 

Salagean Derivative, Extreme 

Points, Distortion 

 

 DOI: 

https://doi.org/10.29350/ 

 jops.2021.26. 4.1387 

 

ABSTRACT 

A new family of Salagean type harmonic univalent functions is described and 

investigated. For the functions in this class, we derive coefficient inequalities, 

extreme points, and distortion limits. 
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1. INTRODUCTION  

    If both   and   are real harmonic in  , a continuous complex-valued function            defined in a simply 

connected complex domain   is said to be harmonic in  . We may write           ̅in any simply connected 

domain, where   and   are analytic in  .                       is an essential and sufficient condition for   to 

be locally univalent and sense preserving in  .     

   denotes the class of harmonic univalent and sense-preserving functions           ̅in the unit disk    
 {         } for which                  . Then, for         ̅    , the analytic functions   and   can 

be expressed as 

 

       ∑     
 

 

   

            ∑     
 

 

   

                                             

 

   Clunie and Sheil Small [8] studied the class    and its geometric subclasses in 1984 and came up with some 

coefficient bounds. Since then, several papers on    and its subclasses have been written.  

    Salagean [17] introduced the differential operator   . More details can be seen in [2], [4], [5], [6], [7] and [20]. 

Jahangiri et al. [13] defined the modified Salagean operator of   as for       ̅ given by (1). 

 

                         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                                                                       
where  

         ∑       
 

 

   

              ∑       
 

 

   

                                                   

    Let             denote the class of univalent harmonic functions of the form (1) that satisfy the condition for 

fixed positive integers    ,              

 

  {
      

      
}  | 

      

      
  |                                                                     

where        is defined by (2). 

The subset   ̅           is made up of harmonic functions. In   ̅         ,        ̅   where   and    are of the 

form 

       ∑     
 

 

   

                    ∑     
 

 

   

                                                    

   A number of well-known    subclasses are included in the class   ̅         .   ̅                is a class of 

sense-preserving, harmonic univalent functions   that are starlike of order   in  ,   ̅          is a class of sense-

preserving, harmonic univalent functions   that are convex of order   in  , and   ̅             ̅      is a 

class of Salagean type harmonic univalent functions. Avcı and Zlotkiewicz [3] demonstrated that if the harmonic 

function   of the form (1) has     , 

 

∑                

 

   

 

 

 

 

then         and if 

∑                 

 

   

 

 

then          Silverman [18] demonstrated that if       ̅has negative coefficients, the above coefficient 

condition is also needed. Later, Silverman and Silvia [19] strengthened [1], [10], [14], [15] and [16] are results for 

the case    that isn't necessarily zero. 
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Jahangiri [9], [11] and [12] demonstrated that for harmonic functions   of the form (4) with            if and 

 

 only if 

                        ∑          ∑         

 

   

 

   

     

and     ̅          if and only if 

                            ∑            ∑           

 

   

 

   

      

The above results are applied in this note to the families             and   ̅         . For   ̅         , we also 

get extreme points, distortion bounds, convolution conditions, and convex combinations. 

 

2. MAIN RESULTS 

 

For harmonic functions in            , we introduce an adequate coefficient bound in our first theorem. 

 

Theorem 2.1. Let       ̅be so that   and   are given by (1). Furthermore, let 

 

∑ (
               

       
     

                      

       
    )

 

   

                       

 

where                   and            then   is sense-preserving, harmonic univalentin   and 

                 
 

Proof. According to (2) and (4) we only need to show that 
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Since (6) makes this last expression non-negative, the proof is complete. The harmonic univalent functions 
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 ̅̅ ̅̅ ̅̅ ̅̅   

 

   

                         

 

where              and ∑      
 
    ∑      

 
       demonstrate the sharpness of the coefficient bound 

given by (6).             contains functions of the form (8). 
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The condition (6) is also required for functions         ̅ where   and     are of the form (5) shown in the 

following theorem. 

 

Theorem 2.2. Let        ̅ be given by (5). Then       ̅          if and only if 

 

∑[                                        ]

 

   

                               

 

where                            .   

 

Proof. We just need to prove the only if part of the theorem since   ̅                     . In order to do this, 

for functions    of the form (5), we are mindful of the situation 
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  | or equivalent to 
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For all values of   in  , the necessary condition (10) must hold. We must have          when choosing the 

values of   on the positive real axis 
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If condition (9) is not satisfied, the numerator in (11) is negative for   near enough to 1. As a result, for       in 

       the quotient in (11) is negative. The proof is complete since this contradicts the necessary condition for 

     ̅             
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The extreme points of closed convex hulls of   ̅         denoted by clco   ̅          are then determined 

 

Theorem 2.3. Let        ̅ be given by (5). Then       ̅          if and only if 
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where  
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       In particular, the extreme points of    ̅           are {  } and 
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Proof. Suppose 
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and so          ̅              

Conversely, if          ̅         , then     
     

             and    
     

                  . Set 

    
           

     
                     

                  

     
               

 

Then note that by Theorem 2.2,                  and                   We define  
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and note that, by Theorem 2.2,       Consequently, we obtain  

       ∑(              
   )

 

   

  

The distortion limits for functions in   ̅          are given by the following theorem, which yields a covering 

result for this class. 

 

Theorem 2.4. Let      ̅         . Then for          we have 
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and 

                 
 

  (
   

               
 

                  

               
  )    

 

Proof. Only the right hand inequality is proven. The left-hand inequality's proof is identical and will be omitted. Let 

     ̅         .  be the function. Taking    is absolute meaning, we get 
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The left hand inequality in Theorem 2.4 leads to the following covering result. 

 

Corollary 2.5. Let      ̅         , then for          we have 

 

{      
                         

               

 
                                         

               }         

 

Remark 2.6. If we take            then the above covering result given in [3]. Furthermore, the results of 

this paper, for     coincide with the results in [4]. 
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