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ABSTRACT 

This paper presents a nonlinear PID neural controller for the 2-DOF vehicle 

model in order to improve stability and performances of vehicle lateral dynamics by 

achieving required yaw rate and reducing lateral velocity in a short period of time to 

prevent vehicle from sliding out the curvature. The scheme of the discrete-time PID 

control structure is based on neural network and tuned the parameters of the nonlinear 

PID neural controller by using a particle swarm optimization PSO technique as a 

simple and fast training algorithm. The differential braking system and front wheel 

steering angle are the outputs of the nonlinear PID neural controller that has 

automatically controlled the vehicle lateral motion when the vehicle rotates the 

curvatures. Simulation results show the effectiveness of the proposed control 

algorithm in terms of the best transient state outputs of the system and minimum 

tracking errors as well as smoothness control signals obtained with bounded external 

disturbances. 
 

Keywords: Particle Swarm Optimization, Neural Network, PID Controller,      

                 Vehicle Lateral Dynamics. 
 

 

 

 نظام الكبح ألفرقي لمركبة أساسهلأخطي ل (PID)تصميم مسيطر عصبي 

 أمثلية حشد الجسيمات
 

 الخلاصة
لأخ ذذً حوعذذم ك ع ثثذذي  ولأبٌذذي الأثيذذلأط حثذذً ٌ صذذن  (PID) أن هذذ ا احث ذذد ٌمذذطر عصذذٌ     ذذثً 

احذذطم ان احع بذذمت م رمبٌذذد احصذذ  ي اصذذرم ا ٌي م أطاا احذذطٌولأعٌثً حبع ثثذذي عذذن خذذعد ر مٌذذ  عيذذطد 
 احجلأوثٌي فً اقد مقت ععثن حعوع احع ثثي عن الاوزلاق خلأ ك احعوي ف.

 عثوً  بى أصلأس احشثثي احي ثٌي م روغٌر  ولأ   احعصذٌ    (PID) أن هٌثبٌي احعصٌ   احي ثً 
(PID)  ٌيي احريبر.ررر عن خعد رموٌي خما زعٌي أع بٌي  شط احجصٌعلأت لأوهلأ خما زعٌي صهبه م ص 

 (PID) أن وظذذلأر احثذذثف أح  قذذً مزامٌذذي رمجٌذذه احيجذذعت الأعلأعٌذذي هذذً أخذذ اك احعصذذٌ   احي ذذثً

 احلأخ ً اح ي ٌصٌ   ث م ة ربملأبٌي  بى اح  ثي احجلأوثٌي حبع ثثي  وطعلأ رطم   مد احعوي ف.
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 ذلأث ة عن خعد ورلأبج احع لأثلأت وع ظ فيلأحٌي خما زعٌي احعصٌ   احعمر ح عن  ٌد أفضد  لأحذي 
حلإخ اك احوظلأر ماقد ررلأثع خ أ م أٌضلأ اح  مد  بى ويمعي فً أشلأ ات احصٌ  ة ثذلأح مر عذن مجذمط 

 الاض  اثلأت احخلأ جٌي احع ططة.
 

 
INTRODUCTION 

ecently, the automotive electronic technology has led to the rapid 

development of modem automotive system technology such as Vehicle 

Dynamics Control (VDC), Anti-lock Brake System (ABS), Acceleration Slip 

Regulation (ASR) System, Electronic Stabilization Program (ESP) and Automatic 

Guidance Control (AGC) [1 and 2] where they are played an important role on 

improving the vehicle active safety and stability in order to prevent the wheel from 

slipping on the braking or accelerating  as well as to avoid vehicle from sliding out 

the curvature. 

The purpose of these systems is to actively control the vehicle under emergency 

situations where the vehicle is at the physical limit of adhesion between the tires and 

the road. These emergency situations are those that the normal driver usually cannot 

handle, and often loses control of the vehicle [3].  

A system, which automatically intervenes in such situations, allows the driver to 

keep control of the vehicle and enhances the chance of avoiding an accident. In fact, 

there are three points that an active safety system must be addressed [4]. 

1) A vehicle must provide good controllability by responding quickly and 

accurately (i.e. with the right amount of change) to the driver’s operational inputs.     

2) A vehicle must provide good stability, with little change in behavior in relation 

to changes in driving conditions.  

3) There must be an effective control loop between the driver and the vehicle for 

conveying operational inputs and the vehicle response in order to ensure that the 

driver can easily recognize present operating conditions and also predict vehicle 

behavior. 

There are various ways to address these control issues such as in [5] it is used 

independent front and rear wheel drive to control the vehicle to track a desired lateral 

velocity by using fuzzy logic controller with variable gain structures. In [6], it is an 

analysis of vehicle lateral dynamics and the basic look-ahead control law is suggested 

for controller design to investigate the characteristics of vehicle dynamics and the 

performance requirements of steering controllers in vehicle-following collisions. 

Also a robust PI controller is presented in [7] for the tracking of predefined 

vehicle lateral dynamics and using a full nonlinear vehicle simulator and four wheels 

steering control signal with the presence of a wide variety of disturbances. The model 

control is optimized based on the model predictive control theory as  

explained in [8] through adjusting the tire parameters on-line, the vehicle stability 

control performance is well, but the robustness was poor. In addition to that, the 

vehicle stability controller is designed based on the Linear Quadratic Regulator 

(LQR) and fuzzy control theory as proposed in [1] where the yaw moment is 

produced by differential braking and the target of control vehicle stability is achieved. 

And in [9] it is used neural controller based genetic algorithm to control the vehicle to 

track a desired lateral velocity from front and rear steering angles. 

R 



Eng. & Tech. Journal , Vol.32,Part (A), No.1, 2014        Designing a Nonlinear PID Neural Controller   

                                                                                              of Differential Braking System for Vehicle   

                                                                                          Model Based on Particle Swarm Optimization 

 
                                   

799 

 

      A genetic neural fuzzy antilock brake system ABS controller is applied that 

consists of a non-derivative neural optimizer and fuzzy-logic components (FLC) as 

presented by Y.Z. [10]. It is used (ABS) senses when the wheel lockup is to occur, 

releases the brakes momentarily, and then reapplies the brakes when the wheel spins 

up again. 

The remainder of this paper is organized as follows: Section two is a description of 

the 2DOF vehicle mathematical model. In section three, the proposed of nonlinear 

PID neural network controller approach and PSO tuning algorithm are derived. 

Simulation results of the proposed robust PID neural control algorithm are presented 

in section four and the conclusions are drawn in section five. 

 

Vehicle Dynamics Model 2-DOF 

     There are many variables that effects on the dynamics of vehicle lateral motion 

such as vehicle speed, vehicle mass and tires state on road. The independent control 

of lateral and yaw motion requires at least one additional control input, which is 

independent of the front steering angle. There are three possible solutions for these 

inputs as follows: four wheel steering system; braking forces; and torque driving 

wheel [5 and 9]. 

      In this paper, the focus is on the vehicle yaw rate and lateral velocity as the 

desired and the differential braking and front steering angle are the control action 

variables.  

      Figure (1) shows the two DOF vehicle model and it is widely used for lateral 

control design and has been shown to provide accurate response characteristics 

compared to more complex models for conditions up to 0.3g lateral acceleration [6, 7, 

11, 12 and 13].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure (1): Two DOF Vehicle Model. 
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The linear dynamics model of vehicle lateral motion [13 and 14] with interaction in 

multi-input multi-output system are expressed as the state space equations as follows:  
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where y1=V and y2= r 

Equation (1) represents linear mathematical model of vehicle lateral motion with 

interaction in multiple-input-multiple-output system (see appendix 1) where V is 

lateral velocity, r is yaw rate and both are system variable states. 
f is the front 

steering angle and 
BsF is brake steer force and they are inputs to the system.  

where the brake steering force can be described as in equation (1) from figure (1) as 

follows [13 and 14]: 

              )(
2

XLXRBS FF
T

M                                    …(3) 

             
XLXRBS FFF                                                                     … (4) 

where: 

           
BSM is brake steer moment. 

          
XRF and XLF are front and rear longitudinal tire forces. 

 
Nonlinear PID Neural Controller 

The control of linear MIMO dynamics system is considered in this section. The 

approach used to control on the lateral velocity and yaw rate of the system that 

depends on the information available about the system model and the control 

objectives. The feedback nonlinear PID neural controller is necessary to stabilize the 

tracking error dynamics of the system when the output variable states of the system 

are drifted from the desired inputs by using two control signals front steering angle 

and brake steering force. 

The general structure of the nonlinear PID neural controller type can be given in the 

form of the block diagram shown in figure (2). 
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     The nonlinear PID neural controller for MIMO system can be shown in figure (3). 

It has the characteristics of control agility, strong adaptability, good dynamic 

characteristic and robustness because it is based on that of a conventional PID 

controller that consists of three terms: proportional, integral and derivative. The 

standard form of a PID controller is given in the s-domain as equation (5) [15]. 

sK
s

K
KDIPsGc d

i
p )(                                    …(5)   

                                                                

where Kp, Ki and Kd are called the proportional gain, the integral gain and the 

derivative gain respectively. 

The proposed nonlinear PID neural controller scheme is like neural network PID 

controller structure as the discrete-time equation (6) [16]. 

)()]1()([)1()( keKikekeKpkuku   )]2()1(2)([  kekekeKd 
 … (6) 

 

where .2,1  

Therefore, the tuning PID input vector consists of )(ke , )1( ke , )2( ke  and 

)1( ku
, where )(ke  and )1( ku

 denote the input error signals and the PID output 

respectively.  Particle swarm optimization algorithm technique is used to adjust the 

parameters of the nonlinear PID neural controller. 
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Figure (2): The general proposed structure of nonlinear PID Neural 

feedback controller for 2DOF vehicle model. 
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      The proposed control law of the feedback front steering angle and brake steer 

force ( 1u  and 2u ) respectively can be proposed as follows:  

22111 )1()( wookuku                      …(7) 

11222 )1()( wookuku                                                             …(8) 

Assume w1 and w2 are constant positive weights. 1o and 2o are the outputs of the 

neural networks that can be obtained from sigmoid function has nonlinear 

relationship as presented in the following function: 

 1
1

2
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1 
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e
o                                  …(9)         
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e
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1net and 
2net are calculated from these equations 

 

)]2()1(2)([)()]1()([)( 1111111111  kekekeKdkeKikekeKpknet           …(11) 

)]2()1(2)([)()]1()([)( 2222222222  kekekeKdkeKikekeKpknet        … (12) 

 

     The control parameters 
2,12,1 , KiKp and 

2,1Kd of the nonlinear PID neural controller 

are adjusted using the particle swarm optimization techniques. Scaling functions have 

to be added at the neural network terminals to convert the scaled values to actual 

values and vice versa; therefore, the final feedback control actions )(&)( kFk BSf for 

next sample can be calculated as the proposed law with scale factors 
S  for the front 

steering angle and 
FS for the brake steer force. 

 Skukf  )()( 1
                                      …(13) 

FBS SkukF  )()( 2
                                                  …(14)  

Particle Swarm optimization (PSO) is a kind of algorithm to search for the best 

solution by simulating the movement and flocking of birds. PSO algorithms use a 

population of individual (called particles) “flies” over the solution space in search for 

the optimal solution. 

Figure (3): The nonlinear PID neural feedback controller structure. 
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Each particle has its own position and velocity to move around the search space. The 

particles are evaluated using a fitness function to see how close they are to the 

optimal solution [17, 18 and 19]. 
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k

mrV ,
is the velocity of the r

th
 particle at k iteration. 

k

mry ,
is the position of the r

th
 particle at k iteration. 

The previous best value is called as pbest. Thus, pbest is related only to a particular 

particle. It also has another value called gbest, which is the best value of all the 

particles pbest in the swarm. 

The nonlinear PID neural controller with six weights parameters and the matrix is 

rewritten as an array to form a particle. Particles are then initialized randomly and 

updated afterwards according to equations (17, 18, 19, 20, 21 and 22) in order to tune 

the PID parameters: 
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where  

pop is number of particles. 
k

mK , is the weight of particle m at k iteration. 

c1 and c2 are the acceleration constants with positive values equal to 2. 

r1 and r2 are random numbers between 0 and 1. 

mpbest ,
is best previous weight of m

th
 particle.   

gbest is best particle among all the particle in the population. 

The number of dimension in particle swarm optimization is equal to six because there 

are two nonlinear PID and each one has three parameters. 

The mean square error function is chosen as criterion for estimating the model 

performance as equation (23) [16]: 

22
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The steps of PSO for neural network like self-tuning PID controller can be described 

as follows:  

 Step1 Initial searching points 
0

Kp ,
0

Ki ,
0

Kd ,
0

Kp ,
0

Ki and
0

Kd of 

each particle are usually generated randomly within the allowable range. 

Note that the dimension of search space is consists of all the parameters used 

in the nonlinear PID neural controller as shown in figure (3). The current 
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searching point is set to pbest for each particle. The best-evaluated value of 

pbest is set to gbest and the particle number with the best value is stored.  

 Step2 The objective function value is calculated for each particle by using 

equation (23). If the value is better than the current pbest of the particle, the 

pbest value is replaced by the current value. If the best value of pbest is better 

than the current gbest, gbest is replaced by the best value and the particle 

number with the best value is stored. 

 Step3 The current searching point of each particle is update by using 

equations (17, 18, 19, 20, 21 and 22).   

 Step4 The current iteration number reaches the predetermined maximum 

iteration number, then exit. Otherwise, return to step 2. 
 

Simulation Results 

The proposed controller is verified by means of computer simulation using 

Matlab/Simulink. The dynamic model of the 2-DOF vehicle described in section two 

is used. The vehicle parameters as given in appendix (2) is taken to clarify the 

features of the nonlinear PID neural controller explained in section three. Scaling 

function has to be added at the neural network terminals to convert the scaled values 

to actual values “where the differential braking range is N7000 and front steering 

angle is 1.0 rad” and vice versa in order to overcome a numerical problem that is 

involved within real values. Therefore the signals entering to the network have been 

normalized to lie within (-1 and +1). 

The proposed control scheme is applied to the vehicle model and it is used the 

proposed learning algorithm steps of PSO for tuning nonlinear PID neural controller's 

parameters. The PSO algorithm is set to the following parameters: 

Population of particle is equal to 30. Number of weight in each particle is 6 because 

there are two nonlinear PID neural controllers. Scaling functions have to be added at 

the neural network terminals to convert the scaled values to actual values and vice 

versa. 

The performance of the proposed controller is evaluated using the closed-loop step 

lateral velocity and yaw rate responses for linear dynamic system. The desired lateral 

velocity must be zero to over come the vehicle may rotate around itself at high 

vehicle velocity. And desired yaw rate must be verified: 

R

U
rref                                                                                                                    (24) 

where R is curvature radius. 

After training with sampling time is equal to 0.1 sec, it can be observed that the actual 

yaw rate output of the system are following the desired trajectory and the yaw rate 

error can be shown as the figures (8-a and b) respectively. Figure (8-a) is the yaw rate 

response and its fast smoothness response without overshoot. Steady-state error is 

equal to zero while at the transient time, the error is approximately equal to 

0.075rad/sec when the vehicle velocity is change as (35, 25, 15, 20, 30 and 40) m/sec 

with fixed curvature radius equal to 100m as shown in figure (8-b). 
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Figure (8-a): The yaw rate response 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (9-a) is the actual lateral velocity response of the system and its fast response 

with very small overshoot and equal to 7101  m/sec. 

The steady-state error is equal to zero while at the transient time, the error is 

approximately equal to 7101  m/sec when the vehicle velocity is change as (35, 25, 
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Figure (8-b): The yaw rate error response. 
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15, 20, 30 and 40)m/sec with fixed curvature radius equal to 100m as shown in 

figure( 9-b). 

The robustness of nonlinear PID neural feedback control action will be kept the 

maximum amplitude of the lateral velocity in the transient response is equal to 
7101  m/sec when the velocity of the vehicle is changed and achievement the 

desired lateral velocity and yaw rate.  
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Figure (9-a): The lateral velocity response. 
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Figure (9-b): The lateral velocity error response. 
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The yaw rate control and the lateral velocity can be achieved by two feedback control 

actions brake steer force “differential braking” and front steering angle as shown in 

figures (10-a and b) respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The gains of the nonlinear PID neural controller as scale function are shown in 

figures (11-a and b). 
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Figure (10-a): The differential brake response. 
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  Figure (10-b): The front steer angle response. 
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Figure (11-a): The PID control gain parameters kp1, ki1, kd1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to prove the adaptation and robustness ability of the proposed controller, a 

disturbance term )100sin(102 3 tdis

  is added to the vehicle model as unmodelled 

and dynamics disturbances then the response of the yaw rate of the vehicle is not 
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Figure (11-b): The PID control gain parameters kp2, ki2, kd2 
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drifted from the desired and it has very small overshoot as shown in figure (12-a) and 

also the lateral velocity of the vehicle is very small oscillation magnitude 3101  as 

shown in figure (12-b).  
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Figure (12-a): The yaw rate response. 
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Figure (12-b): The lateral velocity response. 
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The differential braking and the front steering angle can be shown in figures (13-a 

and b) while the error between the desired yaw rate and actual output for disturbance 

case can be shown in figure (14-a and b). 
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Figure (13-a): The differential brake response. 
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Figure (13-b): The front steer angle response. 
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The gains of the nonlinear PID neural controller as scale function are shown in 

figures (15-a and b). 
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  Figure (14-a): The yaw rate error response. 
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  Figure (14-b): The lateral velocity error response. 
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Figure (15-a): The PID control gain parameters kp1, ki1, kd1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONCLUSIONS 

The nonlinear PID neural network controller with particle swarm optimization 

algorithm technique for MIMO linear dynamic vehicle motion model has been 

presented in this paper. The state outputs of the 2DOF vehicle model are yaw rate and 

lateral velocity and they are followed the desired inputs because there are two control 

actions front steer angle and differential brake that are generated from the proposed 

controller with PSO algorithm that is used to tune the nonlinear PID neural controller 

with minimum time and more stability of the controller and no oscillation with best 
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  Figure (15-b): The PID control gain parameters kp2, ki2, kd2. 
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parameters of the controller have been found. Simulation results of lateral motion 

show that the effectiveness of proposed nonlinear PID neural controller; this is 

demonstrated by the minimized tracking error of the lateral velocity and the yaw rate 

as well the smoothness control signal obtained at different velocities of the vehicle 

model, especially with regards to the external front steering angle disturbances 

attenuation problem.  
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Appendix (1) 

Nomenclature 
a= distance from the center of mass to front axle 

b= distance from the center of mass to rear axle 

T=vehicle track 

iC = tire cornering stiffness 

g= acceleration of gravity 

I= vehicle moment of inertia 

M= vehicle mass 

r= yaw rate 

dr = desired yaw rate 

R= curvature radius 

U= vehicle velocity 

V= lateral velocity 

f = front steering angle 

BSF =brake steer force 

dis = front steering angle disturbance 

BSM = brake steer moment. 

XRF and 
XLF are front and rear longitudinal 

tire forces respectively. 

 

 

 

 

 

Appendix (2) 

Vehicle nominal parameters 

M=1000Kg 

a=1m 

b=1.5m 

T=1.5m 

I=1500Kg m
2

 

fC =55000 N/rad 

rC = 45000 N/rad 

U= 35, 25, 15, 20, 30 and 40 

m/sec 

R=100m 

 

 

 


