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1-Abstract 

Human beings can form perceptions about their 3-D world through many years of their 
experience. Building perception for machines to recognize their 3-D world by visual information is 
difficult, as the images obtained by cameras can only represent 2-D information. This work demonstrates  
approach for understanding the 3-D world from 2-D images of a scene by Kalman filtering.  

The work ends with reconstructing the 3-D world from multiple 2-D images by using Kalman 
filtering. 

  الخلاصة
لبناء معرفة للماكنة كي تميز العالم ذو الثلاثة ابعـاد          . محاولة الانسان لبناء معرفة حول العالم ذو ثلاثة ابعاد كان منذ زمن طويل            

  .علومات المرئية يكون صعب لان الصور التي يتم الحصول عليها بواسطة الكامرات  تمثل معلومات ذات بعدين فقطباستخدام الم

  . يستعرض العمل طريقة لفهم العالم ذو ثلاثة ابعاد من الصور ذات البعدين باستخدام مرشح كالمان

2-Introduction 
  Visual perception’ generally refers to construction of knowledge to understand 
and interpret 3-dimensional objects from the scenes that humans and machines perceive 
through their visual sensors. The human eye can receive a wide spectrum of light waves, 
and discriminate various levels of 
intensity of light reflected from an object.  
In order to construct the models of visual perception, in this work, will presume the 
camera to be the sensor. Though there exists some similarity between the human eye and 
a camera with respect to image formation, the resolution of a camera cannot be compared 
with the human eye. In fact, the  resolution of the human eye is more than 100 times the 
resolution of a good camera. Another basic difference between the human eye and a 
camera lies in the 
dimensionality of the devices. While a human eye can feel the third dimension (the 
depth), a camera can extract only the 2-dimensional view of an object. 
Getting the third dimension requires integration of the multiple camera images taken 
from different directions. This is generally referred to as the 3-D reconstruction problem, 
which is a frontier area of research in imaging. There 
are many approaches to re-construct 3-D objects from their 2-D partial images. The 3-D 
reconstruction problem and its solution will be covered in this work by Kalman filtering. 
3- Minimal Representation of Geometric Primitives 

For estimation of parameters of 2-D lines, 3-D points, 3-D lines and 3-D planes, 
we first represent them with minimal parameters. Further the selected representation 
should be differentiable, so that we can employ the principles of Linear Kalman filtering. 
Representation of Affine lines in R2: A 2-D line can be represented by at least two 
independent parameters. The simplest form of representation of a 2-D line is given by the 
following expressions. 
Case 1: When the lines are not parallel to the Y-axis, they are represented by 
a x + y + p = 0       (1-a) 
Case 2: When the lines are not parallel to the X-axis, they are represented by: 
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x + a y + p = 0       (1-b) 
In brief, the representation of a 2-D line is given by a vector (a, p), where the line passing 
through (0, 0 ) and (a, 1) is normal to the line under consideration, which also passes 
through the point (0, -p). This is illustrated in figure(1). 
 

 
Figure(1): A 2-D line represented by (a, p). 

 
 
Representation of Affine lines in R3: The 3-D affine line can be 
represented minimally by four parameters given by (a, b, p, q). Other minimal 
representations are possible but there exists scope of ambiguity in other representations 
[1]. For example, when the line is parallel to the direction vector (a, b, 1)T and touches 
the x-y plane at (p, q, 0)T, it can be represented by the following two expressions (vide 
figure( 2)). 
x = a z + p 
y = b z + q 
 

 
 

Figure( 2): A 3-D representation of a line by (a, b, p, q). 
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This, however, is a special case. In general, we have the following three cases 
representing 3-D lines 
Case I: Line not orthogonal to the Z axis: 
x = a z + p        (2-a) 
y = b z + q 
Case II: Line not orthogonal to the X axis: 
y = a x + p        (2-b) 
z = b x + q 
Case III: Line not orthogonal to the Y axis: 
z = a y + p        (2-c) 
x = b y + q 
 
The representation is preferred by the following counts: 
i) It imposes no constraints on the parameters (a, b, p, q). 
ii) Parametric representations of the lines remain linear, which are advantageous to 
Kalman filtering optimization. 
Representation of Affine planes in R3: One way of representing 3-D planes is by a 3-D 
vector (a, b, p) such that points (x, y, z) of the plane are defined by the following 
equation. 
a x + b y + z + p = 0 
Here the vector (a, b, 1)T is the normal to the plane and the point (0, 0, -p)T is the point of 
intersection of the plane with the Z-axis. 
 

 
 

Figure( 3): A 3-D plane representation by (a, b, p). 
 
The limitation of this notation is that planes parallel to the Z axis can not be represented. 
More formally, we have three cases: 
Case I: Planes not parallel to the Z axis 
a x + b y + z + p=0       ( 3-a) 
Case II: Planes not parallel to the X axis 
x + a y + bz + p = 0       (3-b) 
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case III: Planes not parallel to the Y axis 
b x + y + a z + p =0       (3-c) 
 
 
4-Kalman Filtering 

A Kalman filter is a digital filter that attempts to minimize the measurement noise 
from estimating the unknown parameters, linearly related with a set of measurement 
variables. The most important significance of this filter is that it allows recursive 
formulation and thus improves accuracy of estimation up to 
users’ desired level at the cost of new measurement inputs. 
Let fi (xi, a) = 0 be a set of equations describing relationships among a parameter vector a 
and measurement variable vector xi , 
XI

* = xi + li, such that E [li] =0, E [li li T] = positive symmetric matrix A1 and E [li ljT ] 
=0, 
ai – 1

* = a + si – 1, such that E[si–1] = 0, 
 E [Si–1Sj-1

T] = positive symmetric matrix Si-1, E [Si-1 Sj-1 ] =0. 
Expanding fi (xi, a) by Taylor’s series around (xi*, ai-1), we find 
fi (xi, a) 
= fi (xi * , a*) + (σ fi / σ x) (xi – xi *) + (σ fi / σ a) (a – ai-1*)=0. 
After some elementary algebra, we find 
Yi = Mi a + wi 

where yi = - fi (xi* , ai-1) + (σ fi / σ a) (a – ai-1*) 
is a new measurement vector of dimension (pi x 1). 
Mi = (σ fi / σ a) and 
Wi = (σ fi / σ x ) (xi – xi *) is a measurement noise vector of 
dimension (pi x 1). 
We also want that E [wi ] =0 and define 
Wi = E [wi wi T ] = (σ fi / σ x) A1 (σ fi / σ x)T. 
Let Si = E [( ai – ai*) (ai – ai*)T ] 
An attempt to minimize Si yields the filter equations, given by: 
ai* = ai – 1* + Ki ( yi – Mi ai –1*) 
Ki = Si – 1 Mi T (Wi + Mi Si – 1MiT) - 1      (4) 
Si = (I – Ki Mi ) Si – 1. 
Given S0 and a0, the Kalman filter recursively updates ai, Ki, Si until the error 
covariance matrix Si becomes insignificantly small, or all the number of data points have 
been submitted. The ai obtained after termination of the algorithm is the estimated value 
of the parameters. 
The Kalman filter has been successfully used for determining 
i) affine 2-D lines from a set of noisy 2-D points, 
ii) 3-D points from a set of noisy 2-D points, 
iii) affine 3-D lines from noisy 2-D points and 
iv) 3-D planes from 3-D lines. 
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5- Construction of 3-D Points Using 2-D Image Points 

The 3-D object points are mapped onto an image plane by using the principle of 
perspective projection. Let the 3-D object point be P having co-ordinates (x,y,z)T, which 
is mapped onto the image plane at point (U, V, S )T.. Let T be the perspective projection 
matrix. Then   

 
where tij is the (i, j) th element of the perspective projection matrix. Le t u= U/S and 
v=V/S. Now, after elementary simplification, let us assume for brevity that ti = (ti1 ti2 ti3 
ti4) T
and P is (x, y, z)T,Also assume that 
a=(t1t14t2t24t3 )T. For a match of an image point I with an associated scene point P, we now 
have the following relationships between P, u and v. 
PTt1 +t14 +  -u (PT t3 + 1) =0 and 
PT t2 + t 24 -v (PT t3 +1) =0. 
Now suppose we have xi = (ui , vi )T and we have to evaluate a =(x, y, z)T. 
The measurement equation is given by 
fi(xi , a) =0 yields 

 
where tj

i comes from perspective matrix Ti from camera i. 
Further, yi = Mi a + wi
where 
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The following algorithm may be used for the construction of 3-D points from noisy 2-D 
points. 
Procedure 3-D-Point-Construction (2-D image points: u,v; camera parameters: xo, yo, 
zo,, A,B,C) 
Input: coordinates of the image points along with the six camera parameters determined 
by its position (xo, yo, zo )and orientation (A,B,C) w.r.t global coordinate system. 
Output: the state estimate a (3´1), along with the covariance error S (3´3), 
associated with the estimate. 
Begin 
For (no. of points: = 1 to n) do 
      Initialize the Initial Covariance matrix S and the state estimate 
         S0←Very large initial value; 
         a0←Arbitrary Value preferably [0 0 0]T ; 
     For ( j: =1 to no. of iterations) do 
             Compute the perspective matrix from the input camera 
             Parameters; 
             Compute the measurement vector y (2×1), the linear 
             transformation M (2×3) and W (2×2) the weight matrix 
 
obtained after linearizing measurement equation from the input 
parameters at each iteration ; 
Initialize all the matrices involved in matrix multiplication; 
Compute gain K using previous S and M values ; 
Compute covariance matrix S recursively using its value at 
previous iteration; 
Compute the state estimate 'a' recursively using its value at 
previous iteration; j:= j + 1; 
End For ; 
End For ; 
End. 
Traces of Procedure 3-D-Point-Construction 
Input file for the above program: In this input file first two columns contains the (u, v) 
co-ordinates of the image points. Next three columns correspond to the (x0 , y0, z0) co-
ordinates of the camera position and last three columns represent orientation of the 
camera co-ordinate system (A, B, C) w.r.t. some user selected reference co-ordinate 
systems. Here, A represents the pan angle of the camera, B represents the tilt angle and C 
represents the 
skew angle of the camera w.r.t. the global co-ordinate system. The whole data set 
comprises of 6 blocks, each of 6 rows. The first row corresponds to the point1 from 

 492



)…RKR)’u†KX)’„X†)8‡„u„J)’RrT„J)’|cn„J))8)aau„J22)1)8)a„X†„J2171)C)2009) )
 

image 1, the second row for point1 from image 2 and so on for six different images. 
Similarly the second block is for point 2 and so on. The output datafile, on the other hand 
(row-wise), presents the estimated (x, y, z) points. All the input and output data files are 
given below. 
 
 
 
Input file: Set1.dat 
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6-Conclusions 

vision mainly deals with recognition and interpretation of 3-D objects from their 2-D 
images. There exist many approaches to interpret a scene from more than one image. 
Kalman filtering is one of such techniques. 

Its main advantage is that it employs a recursive algorithm and thus can update an 
estimator from input data in an incremental fashion. The vertices of points in a 2-D image 
can be first mapped to their 3-D locations by supplying the same 2-D points from 
multiple images. Now, we can construct the equation of 3-D lines from 3-D points by a 
second stage of Kalman filtering. Lastly, we can determine the equation of the planes 
containing more than one line. The spatial relationships among the planes are then 
analyzed to determine the 3-D planer object. 
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