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Abstract. Our aim in this paper is to give some properties for random fixed points for random
dynamical systems where we give the characteristic of random fixed points in terms of the
random trajectory emanating from random variable and give. Also, the concept of random
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1-Introduction. In common one can not

anticipate that one point x € X is fixed by (almost)
all mappings ¢(t, w). Though, there is a suitable
generalization of the idea of a fixed point. In this
paper some new properties of random fixed point
and random periodic point for RDS's are
considered.

L. Arold and I.D. Chueshov [1] (1998)
presented the general notion of an order-preserving
random dynamical system, gave several examples
and studied the properties of their random
equilibria and attractor.

Gunter Ochs and Valery. Oseledets [2] (1999)
establish that topological fixed point theorems
have no canonical generalization to the case of
random dynamical systems. This is prepared by
exhausting implements from algebraic ergodic
theory. They provide a condition for the existence
of invariant probability measures for group valued
With that,

random dynamical systems on a compact interval

cocycles. examples of continuous
without random invariant points, which are an
suitable generalization of fixed points, are created.
HE. Kunze D. La E.R.
Vrscay[3](2007) they absorbed in the direct and

inverse problems for certain class of random fixed

Torreb  and

point equations.

Chuanxi Zhu and Chunfang Chen[4](2008),they
prove an essential inequality and inspect some new
computing problems of random fixed point index.
"Ismat Beg and Mujahid Abbas[5](2008) they
prove the existence of random fixed points of a
non-expansive random operator defined on an

unbounded subset of a Banach space".
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In this paper some new properties of random fixed
points and periodic random points for random
dynamical system are introduced and proved. Here
the time space considered any locally compact
space and the phase space is any metric space.
Also some new concepts are introduced here such
as Topological metric dynamical system, P —
uniform converge and P —closed set.

Through this paper the following notation are

used.

Notations 1.1

(i) G =locally compact group.

(ii) X=metric space.

(iii) (Q, F, IP) is a probability space.

(iv) X% = the set of all measurable functions

from Q to X.
1.2[6,7]:The
system (MDS) is the 5-tuple (G, Q, F, P, 8) where
(Q, F, P) is a probability space and 6: G X Q - Q
is (B(G) ® F, F) —measurable, with
Q) 6(e,w) = Idg , (the identity function
onQ)
(i) 0(g * h,w) = 0(g,0(h, w)) and
(i)  P(B,F)=P(F),VFEFVgEG.
Definition 1.3 The MDS (G, Q, F, P, 8) is said to
be topological metric dynamical system (TMDS)

Definition metric  dynamical

if Q is topological space and 6:G X Q - Q is

continuous.

Definition 1.4[6,7,8] The mapping ¢: G X Q X
X-X

is said to be measurable random
dynamical
(X, B(X)) over an MDS (G, Q, F, P, 9) with if it
has the following properties:

(i) ¢ is B(G)QFRL(X), B(X) — measurable.

(if) The mappings ¢(t,w) = (g, 0, ): X - X

system on the measurable space

form a cocycle over 6(-), thatis,V g,h € G,w €
Q they satisfy
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ple,w) =idy Vo € Q, (1.1)
@(g * h,w) = ¢(g,0,w) e p(h, w) (1.2)
The RDS (G, Q, X, 8, ) shall denote by (8, ¢).
If the function ¢(,w,):TXxX->X, (t,x)+
o(t, w,x), is continuous for every w € Q then
the measurable dynamical system is called
continuous or topological RDS.

Definition 1.5 [6,7,8]: A measurable function

v € X5 is said to be a random fixed point
(R.F.P) for the RDS (6, ¢) if Vg € G,

]P’{a): p(g, w)v(w) = v(Bga))} =1.

Here some examples on R.F.P are stated (see[9]).
Example 1.6[9] Consider the probability space
(Q,F,P) , where Q:=1[0,1], F be the o -
algebra of Lebesgue measurable sets and P be
the Lebesgue measurer on Q. Define 0:7Z, X
[0,1] = [0,1] by 6(0,w) =w and 6(1,w) =
1 —w. Also define ¢:Z, x [0,1]] xR - R by
00, w)x=x and ¢, w)x =1 —-2w) + x.
Then (8,9) is RDS. Define (:[0,1]—-R
defined by(w) = w? , then ¢ e R Itis
easy to see that ¢ is a fixed point of (6, ¢).m

Examplel.7[9]:
non-trivial MDS and let n: Q- R

Let :Rx Q- Q be any
be any
injective random variable. Define a cocycle
¢:RXQXR - Rover 6 by

o(t, w)x = xe M@en@®®)  Then (0,¢) is
RDS. This RDS has no random fixed point.m
Definition 1.8[7] Let v € X2 and  y,, ¥, and

Y, be the mappings form X in to 2% defined as
follows

(1) v(w) ={pt 0_w)v(6_ w):t € R}

) v (@) = {o(t, 6_w)v(f_ w):t € R*}

) ¥y (@) = {o(t,0_w)v(0_ w):t € R™}

For every v € X3, the sets y,, y,5, and y, are
respectively called the trajectory, the forward

semi-trajectory and backward semi-trajectory.
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2.Main Results

In this section the concept of random fixed point is
stated and some new properties of such concept are
studied. Also the concept of random periodic point
for random dynamical systems is introduced and
some new properties are given.
Lemma 2.1 If v € X¥ and

P{w: ¢(t, w)v(w) = v(0;w)} =1
t € R, then P{w: p(nt,w)v(w) =v(O,w)} =1
for all integer n.

Proof. If P{w: ¢(t, w)v(w) = v(8,w)} =1, for

some t € R, then

for some

Plw:p(t,w)™" ° ot w)v(w) =
ot w) w6,w)} =1.
Hence
P{w: v(w) = ¢(—t, 0,w)v(6,w)} = 1. Therefore
we shall prove by induction the result for positive
integers lone. Ifn =1, then
P{w: p(t, 0)v(w) = v(6;w)} =1
for some t € R.
Now, suppose that the statement is true for n. i.e.,
P{w: p(nt, w)v(w) = v(Opw)} = 1,
for some t € R.
To show that this statement true for n + 1. Set
Q= {w: p(nt, w)v(w) = v(6,,0)}.
For w € Q,
o((n+ Dt, w)v(w) = p(nt + t, w)v(w)
= @(nt, 6;w) o p(t, w)v(w)
= pnt, 6,w)v(6,w)
= p(nt,0)v(w"), o' =0,w €l
= v(0p0") = v(0,.0,w)
= v(Ons1yew)
Thus
P{w: p((n + 1)t, w)v(w) = v(G(nH)tw)} =1

This prove the lemma. m
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Theorem 2.2 Let v € X&. Then the following are
equivalent;
1. v is random fixed point,
2. 7y(w) = {v(w)},
3.1 (@) = {v(w)},
4.y, (w) = {v(w)},
Proof.(1) & (2): Suppose(1) holds, then
Yo(w) = {o(t,0_w)v(6_w): t € R}
={p(t, w)v(w'):t € R},
where 0’ = 0_,w
= {v(6,w):t € R}
={v(0,0_;w):t € R} = {v(w)}.
Conversely, suppose (2) holds, then
¥o(w) = {v(w)}. But
Yy(w) = {p(t, 0_w)v(0_.w):t € R}, then
{pt, 0_w)v(0_w):t € R} ={v(w)} That is
vt € Rand Vw € 02,
o(t,0_w)v(6_,0w) = v(w). Thus vVt € R
P{w: (t,0_w)v(f_,w) = v(w)} = 1.

w' ==6_,w . Then forevery € R,

Set

o, w)v(w") =v6,w") and

P{w": o(t, w)v(w") = v(6,0")} = 1.
Consequently v isan R.F.P.

(2) &(3). Suppose (2) holds. Since y,(w) >
v (w) = @, we conclude that v, (w) = {v(w)}.
Conversely, suppose (3) holds. Then y(w) =
{v(w)}. Thatis,

{p(t, 0_rw)v(0_ w):t € R*} = {v(w)}. Then
{0(s,0_s0)v(0_sw):s € R™} = {v(w)},
s = —t. Thus

{pt, 0_ w)v(0_w):t € R} = {v(w)}.
(2) & (4). Asin (2) < (3).

where

This end the proof. m

Theorem 2.3 Let (¢,6) be an RDS with 8
considered as a topological MDS. v EXD is
continuous, then the following are equivalent:

1. v israndom fixed point,
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2. There is a sequence {t,},t, > 0, t, — 0 with

[P’{w: @(t, w)v(w) = U(Qtnw)} =1.
Proof To prove (1) (2). Assume (1). Since v is
random fixed point, then forall e R,

P{w: o(t, w)v(w) = v(6,w)} = 1.

Thus we can say that there exists a real sequence
{t.}, tn >0, t, — 0 with
]P’{w: o(ty, w)v(w) = v(etnw)} =1.
Conversely, assume (2) holds, let teR. If
t = kt,, for some integers k and n, then by Lemma
2.1 we have
]P’{w: pkt,, w)v(w) = U(Bktnw)} =1.
If t # kt,, then for every n, there exists k,, such
that k,t, <t < (k, + 1)t,, and moreover for any
n there exist an integer m > n with

kpty, < kpty <t < (ky+ Dty < (ky +
Dt .
Thus clearly the so constructed sequence {k,t,}
has the property that k,t, —t . Now since
o(w,v(w)):R— X is continuous for every
w € Q, then
P kytn, @v(w) — @(t, w)v(w),
for every w € Q. Since
P{p(kpty, w)v(w) = v(antnw)} =1
for every n then for every w € Q,
v(@kntnw) — o(t, w)v(w).
Again, since k,t, —t and 6(,w):R— Q is
continuous for every w € Q, then

Hkntnw d

0w, and since v is continuous, then
v(Ok,t,w) — v(6,w) for every w € Q. Thus
o(t,w)v(w) = v(B,w) for every w € Q. This
means that

P{w: o(t, w)v(w) = v(B,w)} =1
forallte R. m
Note 2.4. The implication (1) =(2) is true when

6 is any MDS.
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Definition 2.5 The set X% is said to be
distinguishable if for every u,v € X2, there exist
two random open sets U and V in X with D :=
{w:u(w) # v(w)} € Q such that © = @, and for
every w € D we have u(w) € U(w) ,
V(w) and U(w) N V(w) = @.The set D is said to

be distinguish set.

v(w) €

Lemma 2.6 Let X% is distinguishable with
distinguish set © . If v € X¥ is not random fixed
point, then there exist two random open sets U
and V
U(w) and ¢(t, w)v(w) € V(w) we have V(w) =
o, w)U(w)and V(w) N U(w) = 0.

such that for every w € D with v(w) €

Proof. Note that if W is random open set in X,
then for every w € Q, ¢(t, )W (w) is random
open set in X, since ¢@(t,w):X—X is
homeomorphism. Since X% is distinguishable with
distinguish set ®, then there exist two random
open sets W; and W, in X such that for every
v(w) € W;(w)
o(t, w)v(w) € Wy(w) and Wi (w) NW,y(w) =0
for every w € © . Since v(w) € W;(w) for every

ED ,

w€ED we have and

then ¢ (t,w)v(w) € @(t, w)W;(w) for
every w € D. Set

V(w) =
{fp(t, )W (w) N Wy (w), €D
@, w € DY

Then ¢(t, w)v(w) € V(w), for every w € D. Set

o(t,w) V(w), w€eD
0, w € DY

Then v(w) € U(w), for every w € D. Clearly that
V(w) € Wy(w) and U(w) € W;(w) for every
But W;(w) N Wy(w) =@ for every
w € D, this implies that U(w) NV (w) = @, for

U(w) = {

w ED.

everyw € D. m
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Theorem 2.7 Let X2 is distinguishable with
distinguish set ©. Then v € X% is random fixed
point if and only if every random neighborhood of
v, contains semi-trajectory for all w € D.

Proof Suppose that v € X$ is random fixed point,
then y,(w) = {v(w)} so that y,(w) contained in
every random neighborhood of v. Conversely,
suppose that every random neighborhood of v
contains semi-trajectory. Assume contrary that
v € X2 is not random fixed point, then there exists
t € R*, such that for every 0 < Q with P(Q) =
1, o(t,w)v(w) # v(6,w), for some w € Q. By
Lemma 2.6 there exist two random open sets U
and V  such that for every w € D with v(w) €
U(w) and ¢(t, w)v(w) € V(w) we have V(w) =
@(t, w)U(w) and V(w) NnU(w) = @. Since for
u(w) € U(w),
ot wu(w) € V(w),
o, w)u(w) ¢ U(w), w€D. But this is a

each w€ED we have

w €D, then
contradiction. m

Theorem 2.8 Let X% is distinguishable with
distinguish invariant set © .If w,v € Xg and
d(p(t,0_iw)v(0_iw),u(w)) — 0, for

wENa t— 4o (0Or t— —oo ). Then u is

every

random fixed point.

Proof. Let U be a random neighborhood of wu.
d(e(t,0_iw)v(0_ w),u(w)) — 0, for
every w € Q ast — +oo, there exists T > 0 such
that

Since

@, 0_tw)v(6_iw) € U(w),

for every w € Q, for all t >T. Hence for all
w € D we have
{o(s,w)e(t, 0_;w)v(f_w):s € R*} € U(w).
Then for all w € D,
{p(s+t,0_w)v(0_w):s € R*} € U(w). Or for
all w € D,

{ptr,w)v(w):r € Rt} € U(B,w"),
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where r=s+t and w' =6_.w. That is U

contains  semi-trajectory, by

Theorem 2.7 uisR.F.P. m

consequently,

Proposition 2.9 Let v € X% be a random fixed

point. If u € X§ with P{w:v(w) # u(w)} =1,
then
P{w: ¢(t, )u(w) = v(6,w)} # 1.
Proof. Suppose that v € X% is a random fixed
point. Let u € X% with
P{w: v(w) # u(w)} = 1.
Assume contrary that
P{w: ¢(t, w)u(w) = v(6,w)} = 1.

Then P{w: ¢(t, w)u(w) = ¢, w)v(w)} =1
Since ¢(t, w) is bijective, then

P{w: u(w) = v(w)} = 1.
So P{w:u(w) # v(w)} = 0.
Which is a contradiction. m
In [9] 1.J.Kadhim introduce the concept of random
periodic point for random dynamical system. Here
we define this concept in another manner which
more suitable with our work .
Definition 2.10 A random variable v € X% is
said to be random periodic point of a RDS (6, ¢)
if there exists T # 0 such that

P{w: ¢ (1, w)v(w) = v(6,w)} = 1. The number
T is called the period of v.
Remark 2.11 In any RDS every random fixed
point is random periodic point.

Proposition 2.12 A random variable v € X¥ is

random periodic point if and only if there exists
T# 0 such that for every te RP{w:@(t+
7,w)v(w) = @(t, 0, w)v(0,w)} =1

Proof. Suppose that v € X2 is random periodic
point. Then there exists T # 0 such that

P{w: ¢ (1, w)v(w) = v(6,w)} = 1.

If and only if
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P{w: p(t, 0, w)e(t,w)v(w) =
o, 0,w)v(0,w)}=1,VteR

If and only if

P{w: p(t + 7, 0)v(w) = @(t, 0, 0)v(6w)} =1
vt ER
This complete the proof. m
Theorem 2.13 Let (8, ¢) be an RDS with 6 be a
stable TMDS and let v € X¢ be a random periodic
point and continuous but not R.F.P. Then there
exists T > 0 such that T is the smallest positive
period of v.Further, if 7 is any other positive period
of v, then T = nT for some integer n.
Proof. Consider the set

S == {t > 0:t the period of v}.

If T + 0 period of v, then

P{w: o(T,w)v(w) = v(rw)} =1

Let ' = 67w ,then w = 6_;w'. Since

P{w: (T, w)v(w) = v(f;w)} =

P{w": (T, 0_r0" )v(0_r0") = v(w")},
then

P{w": o(T,0_r0")v(0_rw") = v(w')} = 1.
Now, set

Q={w:o(,0_r0)v0O_r0") =v(w)}
show that

To

(=T, w)v(w") = v(6_r0"), Vo' € Q:
o(=T,0")v(w")
= o(=T,w)(T,0_r0)v(6_rw")
=@p(-T+T,0")v(O_;0") =v0_rw").
Hence
P{w": o(-T,w")v(w') = v(0_rw')} = 1.

either T or —T is positive, then the set S is

Since

nonempty. Now, set infS = T. We calem that T >
0. Indeed T = 0, and if T = 0, then there exists a

sequence {t, } in S with t,, — 0. Since

P{w: ¢ (t,, w)v(w) = U(thw)} =1
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for each n, then by Theorem 2.3 v is random fixed
point which contradicts our hypothesis. Thus T > 0.
Since infS =T, then there is a sequence {t,} in S
with t, — T. Since ¢(-,w): R — X is continuous
for every we, then for every we€Q,
o(t,, w) — ¢(T,w).So for every w € Q,
¢ (tn, w)v(w) = @(T, w)v(w).
Since 6(-, w): R — Q is continous for every w € Q,

then 6, w — Orw for every w € Q. Again, since
v € X3 is continuous, then v(6,, w) — v(6rw) for
But

every w € (.

v(0,,w)} =1,

i.e., there exists a full measure subset { of Q such

]P’{cu: o(ty, w)v(w) =

that @ (ty, w)v(w) = v(6,,w) for every w € Q.
Hence Vo € Q,

U(Btnw) — (T, 0)v(w),.

On the other hand, v(6;,w) — v(6rw), for every
w € 0. Since X is metric space, then from the
unigenss of the limit we have (T, w)v(w) =
v(0rw) VYo € QL.

That P{w: (T, w)v(w) = v(Orw)} =1. It
follows that T € S. By definition of T itis also the

is,

smallest positive period of v . Finally, let t € Rbea
positive periodic. If t # nT, for any integer, then
there is an integer n with nT <t < (n+ 1)T. Then
by Lemma 2.1, we have
P{w: o(nT,w)v(w) = v(O,rw)} = 1.
Since the TMDS 8 is satble, then

P{w: 0,w = O ;w} = 1.
Therefore by Lemma 2.1 we have
P{w: o(nT,w)v(w) = ¢(t,w)v(w)} =1.So
P{w:v(w) = ¢(—nT, Oprw) o o(t, w)v(w)} =1
Thus
(T, W) (0;—prw) = @(t, w)v(w)
V(0r—nrw) = (=0T, 0;_nrw)p(t, w)v(w)

¢ (1, w)v(w) = v(6,w)
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where t:=t—nT. Then t satisfy (2.1). Since
0 <7 < T, we geta contradiction to the fact that T
was the smallest positive period of period of wv.
This complete the prove. m

In the following we need to show that the set of
random periodic point for random dynamical system
(under certain conditions) is P —closed. To this end
the following notations are introduced.

Definition 2.14 Let (Q,F,P) be a probability

space with Q considered as a topological space and
X be any metric space. A sequence {v,} in X% is
said to be P —uniform converge in X if there exist
vEXZ and Q<O such that v,(w) converge
uniformly (shortly u.c.) to v(w) for every w € Q.
That is for every ¢ > 0, there is a positive integer
n, such that

d(v,(w), v(w)) < &, for every w € {1 and for every
n>ng.

Definition 2.15 Let (Q,F,P) be a probability

space with Q considered as a topological space and
X be any topological space. A subset of X2 is said
to be P —closed if any sequence {v,} in X% is
PP —uniform converge in X%.

Lemma 2.16 Let (8, ) be an RDS with 8 is be a
TMDS. If {v,} be a sequence of continous random
periodic point in X$ with positive periodic T,, — 0,
and P —uniform converge in X2, then v is random
fixed point.

Proof. For a given t € R, there are integers k,, such
that

kT, <t < k,T, +T,.

Since T,, — 0, we have k,T, —t. Since v, is
then

P —uniform to

P{w: v,(w) u.c.tov(w) } = 1. Let

converge v,
Q = {w:vp(w) u.c.tov(w) },
then P(Q,) =1 But ¢, w,):RXX—X is

continuous for every w, then for every w € Q,
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@ (knTy, @)V (@) = @(t, )V ().
Since 6(,w):R — 2 is continuous for every w,
then 6, .  — 6, for every w. Therefore

for Since

vn(eknan) — v, (6;w) every w.

1, (0,w) — v(0,w), for every €Q,, then
Vp (O, 1,,w) — V(6. w) for every w € Q. Since v,
is random periodic point for every n, then

]P’{a): @k, Ty, 0)v,(0) = vn(Oknan)} =1

Set

Q, = {a):(p(knTn, w)v,(w) = vn(Oknan)}. Then
P(Q,) = 1.So

@ (kn Ty, w)vp(w) = 1711(6knTn(’J)a for

every
w € Q,.

@ (ky T, @)V (w) — @(t, w)v(w),

for every w € Q,. Then,

vn(HknTna)) — @(t,w)v(w), for every w € Q, N
%

Since vy, (6,1, w) — v(6,w) for every w € Q,

it follwos that

o(t, w)v(w) =v(6,w) , for every w € N, NQ,.
Since P(Q, N Q) = 1,then v is random fixed point.
Theorem 2.17 Let (6, ) be an RDS with 0 is be a
TMDS .Given any a > 0, the set of all v such that v
is (continuous) random periodic point with positive
period T < a is P —closed.

Proof. Let P be a set of all random periodic point
with positive period T < a. Suppose that {v,} be
P —uniform converge sequence in P. Then for every

n, v, is random periodic point with periods T,, < a

and v, then
P = {w:v,(w) — v(w)} = 1.
Set

Q= {w: v (w) — v(w)},

then P(Q,) = 1. Since

P{w: ¢(Tn, @)vy (@) = v, (6p,0)} = 1,
P(Q,) = 1, where

then
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Q, = {w: (T, 0V, (w) = vn(Gan)}. Also for
every € Q, ,

P{w: v, (61, w) — v(6r,w)} = 1.

Since 0 < T,, < a, either T,, — 0 in which case v is
random fixed point by Lemma 2.15 and hence

random periodic, or there is a subsequence T, — T,
0 < 7 < a, then by the continuity axiom for every
w € Qy
P (T @), (@) = 9 (7, 0)V(W).
and also for every w € Q,,

(T )0, (@) = v(0r, )
Since 6 is continuous, then BTnka) — 6,w for every

w. Also we have v is continuous for every w € Q,,

then v(GTnkw)—m(Gta)), for every we

Q,.Therefore

(p(Tnk' w)vnk(w)) — U(H‘L'w)'
for every w € Q, n Q. Consequently

o1, w)v(w) = v(0,w),
for every w € Q, N €. Since P(Q, N Q,) = 1.,then

v is random periodic point.
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