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Abstract:

Deriving land cover information from earth observation satellite data is one of the most
common environmental monitoring, evaluation, and management applications. Land
cover mapping with remotely sensed data is more efficient when employing a robust
classification approach. This study uses the Spectral Vector Machine Classification
(SVM) technique to analyze remote sensing information from the 2015-launched
Sentinel-2 satellite program run by the European Space Agency. SVM method and
Sentinel 2 data for the date March 2023, with a spatial resolution of 10 m were used
to in capturing land cover. Four land cover classes were recognized in Al-Kut:
vegetation, water, barren soil, and urban area. Then, the area of each class was

computed as follows 1136.7,159.2,3349.7, and 174.3 Km? Respectively. The
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classification accuracy was computed based on 160 ground truth points; the overall

accuracy was 75%.

Keywords: LULC; classification; SVM; Remote sensing.
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1. Introduction

Many environmental and management operations, particularly those in the sectors
of environmental management, natural resources, and water resources, heavily depend
on the geographical distribution of land cover (Thanh and Kappas, 2018). Researchers
from several fields are now using the comprehensive and quickly developing technique
of mapping land use/cover, which uses data from multiple satellite sensors (Yousefi et
al., 2017). The analysis of satellite imagery reveals human interactions with natural
resources. In particular, using multispectral imaging can be an effective tool for
determining the kind of land cover (Yousefi et al., 2015). Traditionally, supervised and
unsupervised classification have been used to categorize images. Using training sets
for each defined class, satellite images are categorized using the supervised
technique. In the unsupervised approach, the classification of the satellite photos is
done using a statistical indicator created from the targets' spectral reflectance (Tigges

et al., 2013).

Overall, a variety of categorization techniques, such as neural network (NN),
maximum likelihood (ML), random forest (RF), and SVM, can be used to build land
cover maps from satellite images (Srivastava et al., 2012). SVM is a well-liked and
reliable method for supervised image classification (Mohammadi et al., 2019). SVM is
a recently developed, statistical learning theory—based supervised classification
approach (Lindquist et al., 2012). Compared to the most prominent supervised
classification techniques, SVM frequently yields better accurate classification outcomes
from spectral data that is extremely variable. The majority of image classification
techniques require optimizing many variables and parameters. One of the most
important features of the SVM classification approach for land use mapping is the
ability to export classified images with high accuracy from small training sets. (Huang
et al., 2002).
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This study aims to map the land cover in Al-Kut/ Iraq using the Spectral Vector
Machine Classification (SVM) method based on Sentinel-2 data for the date March

2023, with a spatial resolution of 10 m.

2. Materials and Methods
2.1 Study Area
Figure 1 depicts Al-Kut City in Wasit Province, which is about 170 kilometers
southeast of Baghdad, as the research area. The Al-Gharraf and Dujaili
Rivers, two branches of the Tigris River, meet in Al-Kut City, the province's
administrative hub (Mohammad, 2014; Jasim et al., 2021). It is situated on
the highway system that connects Baghdad with the southern governorates.
The city of Al-Kut is located between the two banks of the Tigris River and
has a total area of about 55 km2. Its land uses include commercial,
educational, industrial, and other activities. However, the northern part is
distinguished by being more successful than the southern part in terms of

administration, services, and commerce (AL—Mamoori and ALMaliki, 2016).
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Figure 1: The study area's location.
2.2 Sentinel-2

Several satellites are currently employed to create an image of the land
cover. Sentinel-2 satellites are the most popular satellites for study. A
European optical imaging satellite named Sentinel-2 was launched on June
23, 2015. It is a satellite that was launched as part of the Copernicus
program of the European Space Agency (Mandanici and Bitelli, 2016). 13
bands were collected for Sentinel-2 by the Multispectral Imager sensor.
Sentinel-2 has a temporal resolution of 10 days, with one satellite performing
it for 10 days, followed by two spacecraft performing it for 5 days.

Combining Short-Wave Infrared (B12, B8A, and B4) was employed in this

investigation. This composite depicts flora in a variety of green tones. Darker
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green hues typically denote thicker vegetation. Brown, meanwhile, is a sign of

bare ground and urban regions. The band arrangement in Figure 2.
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Figure 2: Band combination (Short-Wave Infrared (B12, BSA, B4).
2.3 Support Vector Machine (SVM)

The SVM is a non—parametric image classification algorithm that consists of a
collection of related regression and classification learning algorithms (Hayri
Kesikoglu et al., 2019). The SVM can discriminate between classes by
maximizing the spread between classes on the decision surface. The surface
is called the ideal hyperplane in most studies, whereas the support vectors
are the data closest to the hyperplane. In this case, the support vectors are

the most important aspects of the training set.
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3.

The SVM algorithm is increasingly used to map land use/land cover using
sentinel imagery, determining the optimal values of the penalty parameter in
the SVM method is thus essential, by notably taking into account the different
types of land cover and the corresponding surface land reflectance in arid
and humid regions. The Radial Basis Function (RBF) served as the study's
kernel function. In addition, the ENVI 5.3 image multiclass processing

environment employed a paired SVM classification algorithm.

2.3 Error Matrix

An error matrix is the most common way to describe the classification
accuracy of remotely sensed data. Many researchers have recommended
using an error matrix to define accuracy, and it should be accepted as the
standard reporting convention. An error matrix is a square array of numbers
laid out in rows and columns that expresses the number of sample units
assigned to a particular category in comparison to the actual category as
checked on the ground. The reference data (ground truth) is represented by
the columns, while the classification produced by remotely sensed data is
represented by the rows. The number of rows and columns in such matrices
is equal to the number of categories whose classification accuracy is being
measured (Lillesand et al., 2015).

A variety of descriptive and analytical statistical methods can be initiated
from the error matrix. Overall accuracy, for example, is calculated by dividing
the total correct (i.e., the sum of the major diagonal) by the total number of
pixels in the error matrix. This value was part of the older, site—specific
evaluation and is the most widely mentioned accuracy assessment statistic

(Congalton, 1991).

Results and Discussion
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In This study, the SVM method was used to create a land cover map for the
study area. Machine learning algorithms are widely employed in land use/cover
and mapping among other applications. However, the impact of parameter
selection on classification performance has received insufficient attention. Many
studies have demonstrated that when SVM is used for classification, the kernel
function, and parameter values have a significant impact on classification results.
The SVM classification was performed using ENVI software to extract four land
cover in Al-Kut, namely, vegetation, water, barren soil, and urban area as

shown in Figure 3.
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Figure 3: SVM classification result.
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Four land cover classes were recognized in Al-Kut: vegetation, water, barren
soil, and urban area. Then, the area of each class was computed as follows
1136.7,159.2,3349.7, and 174.3 Km? Respectively. The result was illustrated in
Table 1.

Table 1: Area for each land cover class

Class Area km?> percentage
vegetation 1136.7 23.6%
Water 159.2 3.3%
Barren soil 3349.7 69.5%
Built-up area 174.3 3.6%
Total area 4819.9 100%

Finally, the classification accuracy was computed based on ground truth data.
According to the Rule of thumb, the number of samples for each class is
computed by (No. of classes *10). The error matrix was illustrated in Table 2.
Then, the overall accuracy was computed which is equal to 75%.

In this study, there are four land cover classes, so it needed to 40
samples of each class. The total number of ground truth points is 160. The
ground truth sample distribution was shown in Figure 4.

The findings of this study demonstrate the importance of the SVM as a

technique for image classification in land cover mapping. This result
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demonstrated how the SVM settings have a significant impact on how accurate

the land use/cover maps are.

Table 2: Confusion matrix for SVM method.
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Figure 4: Ground Truth sample points.
4. Conclusion
Land cover mapping is necessary to manage many natural and human
resources. The SVM algorithm has been proposed in this field as an efficient
and accurate approach for classifying satellite imagery to produce land use
maps, although optimization of SVM parameters requires extensive knowledge
and frequent experimentation with different settings. Four land cover classes
were recognized in Al-Kut: vegetation, water, barren soil, and urban area. The
area of each class is 1136.7,159.2,3349.7, and 174.3 Km?* Respectively. The
classification accuracy was computed based on 160 ground truth points; the
overall accuracy was ().75. The results of this study show that the SVM is a
critical method in image classification for land use/cover mapping. This finding
illustrated that the accuracy of the land use/cover maps is highly dependent on

the SVM parameters.
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