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Abstract:
Let R be a ring. In this paper, a right R-module M is defined to be AS-injective if

Ext!(R/K ,M) = 0, for any annihilator-small right ideal K of R. We characterize rings over
which every right module is AS-injective. Conditions under which the class of
AS-injective right R-modules (ASIR) is closed under quotient (resp. pure submodules, direct

sums) are given. Finally, we study the definability of the class ASI.
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1. Introduction
Throughout R is an associative ring with

identity and all modules are unitary R-
modules. If not otherwise specified, by a module
(resp. homomorphism) we will mean a right R-
module (resp. right R-homomorphism). We use R-
Mod (resp. Mod-R) to denote to the class of left
(resp. right) R-modules. If Y € R, then r(Y) = {r €
RIYr =0} (resp. I(Y) = {r € R|7Y = 0} )stands
for the right (resp. left) annihilator of Y in R. We
will use M*
Homy (M, Q/Z) of a module M. Let G (resp. F) be a

class of right (resp. left) R-modules. A pair (F,G)

to denote the character module

is called almost dual pair if the class G is closed
under direct products and summands, and for any
left R-module M, M € F if and only if M* € G [11,

p. 66]. An exact sequence 0 - A 5 B ﬂ C - 0 of
right R-modules is said to be pure if the sequence
0 - Homy(N,A) » Homg(N,B) —

Homy(N,C) - 0 is
presented right R-module N and we called that
a(A)is a pure submodule of B [18]. A right R-

exact, for every finitely

module M is called FP-injective if every
monomorphism a:M — N is pure. A right R-
module M is called pure injective if M is injective
with respect to all pure short exact sequences [18].
Recall that a subclass G of Mod-R is called
definable if it is closed under pure submodules,
direct limits and direct products [14]. A right ideal X
of aring R is called small in Rif X +Y # R, for
any proper right ideal Y of R [8]. A right R-module
M is called small injective if Ext'(R/K ,M) = 0,
for any small right ideal K of R. A right ideal I of R
is called annihilator-small (a-small) and denoted by
I € Ry if for any right ideal K of R with I + K =

R, then I(K) = 0]13].
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The sum of all the annihilator-small right ideals
of a ring R is called the right AS-ideal of a ring R
and denoted by A, [13].

We refer the reader to [1, 7, 8, 14, 18], for general
background materials.

In section 2 of this paper, we introduce the class
of AS-injective modules. This class of modules lies
between injective modules and small injective
modules. We first characterize rings over which
every module is AS-injective. Over a commutative
ring R, we prove the equivalence of the following
statements: (1) A, = 0. (2) Every module is AS-
injective. (3) Every principal a-small right ideal of R
is AS-injective. (4) Every simple module is AS-
injective and A, €% Rg. Conditions under which the
class of AS-injective right R-modules (ASIg) is
closed under quotient are given. For instance, we
prove that the following statements are equivalent:
(1) The class ASIy is closed under quotient. (2) If
K <% R, then K is projective. (3) ASI; contains all
sums of any two AS-injective submodules of any
module. Also, we show that the class ASIy is closed
under pure submodules if and only if all a-small
right ideals in R are finitely generated if and only if
all FP-injective modules are AS-injective. Finally,
we give conditions such that any direct sum of
modules in the class ASI; is also belong to ASIg.
For instance, we prove that if A, €% Ry, then the
following are equivalent. (1) A, is a noetherian
module. (2) The class ASI is closed under direct
sums.

Section 3 studies the definability of the class
ASIg. It is shown that the following assertions are
equivalent: (1) ASIy is definable. (2) The class ASIy
is closed under pure submodules and pure

homomorphic images.
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(3) Every a-small right ideal in R is finitely
presented. (4) A module M € ASI; if and only if
M™* € ASIy. Finally, we prove that if the class ASIy
is a definable, then the following are equivalent. (1)
The class of flat left R-modules and the class
{M € R-Mod | M* = Homy(M, Q/Z) € ASI;}

coincide. (2) Each module in ASIy is FP-injective.

are

(3) Each pure-injective module in ASIy is injective.

2. AS-Injective modules

Definition 2.1. A module M is said to be
annihilator-small injective (shortly, AS-
Ext'(R/K ,M) = 0,

annihilator-small right ideal K of R; equivalently, if

injective), if for any
K is any annihilator-small right ideal in R, then any
R-homomorphism f: K — M extends to Rg. A ring
R is said to be right AS-injective if
Ry is AS-injective.

We will use ASI; to denote to the class of AS-

injective right R-modules.

Examples 2.2.
(1) It is clear that AS-injectivity implies small

injectivity, but Z is a small injective Z-module
[17] and clearly, it is not AS-injective. Thus the
class of small injective modules contains
properly the class of AS-injective modules.
(2) All injective modules are AS-injective and
generally the converse is not true, for example,
let {F;};c; be a family of fields and let R =
[Liea F; be the ring product of F;, for all i € A,
where addition and multiplication are define
componentwise and let K =@;c, F;. If A is
infinite, then Kj is not itself injective by [8, p.
140], but Ky is AS-injective, since
A, = 0. Therefore, AS-injective module is a

proper generalization of injective modules.
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Hence Injp G ASI; & SIz, where Injg (resp.
SIg) is the class of injective (resp. small

injective) right R-modules.

Remarks 2.3.

(1) The two classes Inj, and ASI, are coinciding,
when R is an integral domain, since all proper
right ideals are a-small in any integral domain.

(2) All finitely generated Z-modules are not AS-

injective and this follows from (1) and the fact

that every non-trivial finitely generated Z-

module is not injective [7, p.31]. Also, we have

from [17, Theorem 2.8] that any Z-module is
small injective.

(3) From (1) and [9, p.410], we have that any ring

R is a field if and only if it is an AS-injective

integral domain.

Proposition 2.4. The class of AS-injective
modules (ASIg) is closed under direct summands,

direct products and isomorphic copies.

Proof. Clear. O

Theorem 2.5. Consider the following conditions
foraring R.

(1) 4, =0.

(2) All modules are AS-injective.

(3) All principal a-small right ideals of R are AS-
injective.

(4)

All principal a-small right ideals of R are direct
summand in Rg.
All simple modules are AS-injective and

Then (1) and (5) are equivalent and (1) = (2) =

®)

(3) = (4). Moreover, if R is commutative, then (4)

implies (1).
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Proof. (1) = (2) = (3) and 1=

(5) are obvious.

(3)=®.

hypothesis, aR is AS-injective and so there is a

Let aR €* R, where a€R. By

homomorphism a:R — aR such that ai = I,
where I,z:aR — aR is the identity homomorphism
and i: aR — R is the inclusion mapping. Thus aR is
a direct summand in Rp.

(4) = (1). Let R be a commutative ring. Assume
that A, #0, is (0#)a€A,. By

hypothesis, 4, €% R and hence Lemma 1 in [13]

thus there

implies aR €% R,. By hypothesis, aR is a direct
summand in R, and hence there exist a right ideal
K with aR@®K = Ry. Since aR S® Ry, r(K) = 0.
Since aR + K =R, we have r(aRNK) =r(aR) +
r(K) and hence r(aR) =R. Thus aR =0, a
contradiction. Therefore, A, = 0.

(5) = (1)Assume that A, # 0,
(0#)a€A,. If A, +7r(a) #R,then A, +r(a) S

thus there is

C, for some maximal right ideal C of R. Thus R/C is
a simple right R-module. By hypothesis, R/C

is an AS-injective module. Define
a:aR - R/C by a(ar) =r+C. Clearly, a is a
well-defined right R-homomorphism. By AS-
injectivity, there exist b € R with 1+ C =ba+C
and hence 1 — ba € C. Since a € A, and A, is a two
sided ideal (by [13, Theorem 9 (1)]), we have
ba € C. Thus C =R, a contradiction. Therefore,
A, +r(a) =R. Since A, €% Ry (by
hypothesis), I(r(a)) =0, so that r(I(r(a))) = R.
By [1, Proposition 2.15, p.37], r(a) = R and hence
a=0, a contradiction. Thus A,=0. 0O
Recall that a ring R is called regular if for any

X € R, there is an element y € R such that x = xyx

[8]
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Corollary 2.6. If R is a commutative regular
ring, then every module is
A, =0.

AS-injective and

Proof. By [8, Theorem 10.4.9, p. 262] and
Theorem25. O

It is not true in general that if K % Ry, then K is
a projective right R-module, for example, if R = Z,
and K = 2R, then K €% Ry but it is not projective
right R-module.

Theorem 2.7. For a ring R, the following are

equivalent.

(1) If K S% Ry, then K is projective.

(2) The class ASIy is closed under guotient.

(3) ASI; contains all quotients of injective
modules.

(4) ASI; contains all sums of any two AS-

injective submodules of any module.
®)

ASI, contains all sums of any two injective

submodules of any module.

Proof. (2) = (3) and (4) = (5) are obvious.

(1) = (2) Let a:N — M be any epimorphism,
where N is an AS-injective module and M is any
module. Let A::K — M be any homomorphism,
where K €% Ry. By hypothesis, K is projective and
hence there is a homomorphism g: K — N such that
af = A

is a homomorphism y:R —» N with yi = 8, where

By AS-injectivity of N, there

i:K > R is the inclusion mapping. Put ¢ =
ay:R — M, so that @i = ayi = aff = A and hence

M is an AS-injective module.

(3)= (1) Let K<*Ry. Let a:E—> N be an
epimorphism (where E is an injective module) and
B:K - N a homomorphism. By hypothesis,
N € ASI, and hence there is a homomorphism
AR — N with i =, where i:K - R is the

inclusion mapping. By projectivity of Ry, there is a
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homomorphism y:R — E such that ay = A. Let
a@:K — E be the restriction of y over K. Clearly,
a@ = and hence from Proposition 5.2.10 in
[2, p.148] we get that K is projective.
(2) = (4) Let M; and M, be two
injective submodules of module M. By Proposition
24, M, @ M, € ASI.  Since M;+ M, is a
homomorphic image of M; @ M,,
M; + M, € ASIy, by hypothesis.

AS-

we have

(5) = (3). By similar argument as in the proof of
Theorem 2.14 ((6) = (3))in[12]. O
Proposition 2.8. For a ring R, consider the
following conditions.

)
)

Every module is AS-injective.

Ry is AS-injective and the class ASI, is closed
under quotient.

(3) Forany x € R, if xR S% Ry, then thereisy € R
such that x = xyx.

Then (1) = (2) = (3) and if R is commutative,

then (3) implies (1).

Proof. (1) = (2). Clear.
(2) = (3). Let x € R such that xR €% Ry. Since
ASIy is closed under quotient (by hypothesis), xR is
projective, by Theorem 2.7. Define a:R — xR by
a(r)=xr, for all reR. Clearly, a is an
epimorphism, so that there is a homomorphism
f:xR - R with af (a) = a, for all a € xR. Since Ry
(by

a homomorphism g: R — R such that gi = f, where

is AS-injective hypothesis), there s

i:xR - R is the inclusion mapping. Thus x =
a(f(x)) = a(g(x)) = xyx, where y = g(1) € R.

(3) = (1). Suppose that R is a commutative ring.
Let xR ©% Ry, where x € R. By hypothesis, there is
y € R with x = xyx. Let e = xy. Clearly, e is an
idempotent of R and xR = eR, so that xR is a direct
summand of Rg. Therefore, the result follows by

Theorem 2.5. O
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Proposition 2.9. For a ring R, the following are

equivalent.

(1) All a-small right ideals in R are finitely
generated.

(2) The class  ASI; is closed under pure
submodules.

(3) All FP-injective modules are AS-

injective.

Proof. (1) = (2). Let M € ASI; and K a pure
submodule of M. Let I €% Ry, thus
the hypothesis implies that I is finitely generated
and so R/I is a finitely presented. Hence
the sequence Homg(R/I, M) -

Homg(R/1,M/K) — 0 is exact. By [6, Theorem

XI.4.4 (4), p. 491], the exact sequence
Homg(R/I ,M) — Homgz(R/I,M/K) —
Ext'(R/I,K) — Ext'(R/I, M) and <)

Ext!(R/I ,K) = 0. Thus, K € ASI and hence the
class ASIy is closed under pure submodules.

(2) = (3). If M is any FP-injective module, then

M is a pure submodule of an AS-injective
module. By hypothesis, M € ASI.

B)=(1). Let IcC*R, and a:I>M a
homomorphism, where M is an FP-

injective module. By hypothesis, M is AS-injective
and hence a extends to Rg. By [4], I is finitely
generated. 0

Corollary 2.10. If each a-small right ideal in a
ring R is finitely generated, then the class ASIj is
closed under direct sums.

Proof. Let {M,|i € I} be a subclass of ASI,. By
Proposition 2.4, [1;e;M; € ASI,. By [14, Proposition
2.1.10, p. 57], @ M; is a pure submodule in
[T:e:M; and hence @, M; € ASI,, by Proposition
2.9. 0
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Theorem 2.11. For a ring R, consider the
following conditions.
(1) A, is anoetherian module.

(2) The class ASIy is closed under direct sums.
(3) MY is AS-injective, for any

injective module M.

MN is AS-injective, for any injective module
Mg.

Then (1) = (2)= 3) = (4) and if A, €% Ry,
then (4) = (1).

Proof. (2) = (3) and (3) = (4) are clear.

AS-

(4)

(1) = (2). By [13, Theorem 9(1)] and Corollary

2.10.

(4) = (1).Let A, S*RpandletK; € K, < --- be

a chain of right ideals of R with K; € A,. Let

E =@, E;, where E; = E(R/K;). Forevery i > 1,

put M; =[I2,.E; =E @ (H?;lEj), thus M; is
ji

injective. By hypothesis, 2. M; =

(BR, E) @( ) ]'[j";lE]-> is AS-injective. By

ji
Proposition 2.4, E is AS-injective. Define
a:UR,K; — E by a(x) = (x + K;);. Clearly, a is
a well-defined homomorphism. By hypothesis,
A, €% Ry and hence Lemma 1 in [13] implies that
2, K; €% Ry. Thus a extends to a homomorphism
B:R — E and hence B(R) €@, E(R/K;) for
some n €N, since R is finitely generated. Then
a(UE, K) <@}, E(R/K).
So, if a € UR, K;, then a € K,,, for all m > n, and
hence U2, K; = K,,,. Therefore, the chain K; <
K, < -+ terminates at K,,, and hence A, is a

noetherian module. 0

Corollary 2.12. If A, S Ry, then the following
are equivalent.

(1) A, is anoetherian module.

(2) Direct sum of injective modules is AS-

injective.
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Lemma 2.13. If R satisfies ACC (ascending
chain condition) on a-small right ideals of R, then
A, €% Ry

Proof. Let # = {K|K < Ry}. Thus # has a
maximal element, say N (by Zorn’s lemma). Since
A, =Ygex K, it follows that A, =N
A, C%Ry. 0

and so

Proposition 2.14. For aring R, the following are

equivalent.

(1) R satisfies ACC on a-small right ideals.

(2) A, isanoetherian R-module.

(3) MN is AS-injective, for any injective module
My and A, €% Ry.

Proof. (1) = (2). Let N, € N, < - be a chain
of right ideals of R in A, By Lemma 2.13,
A, €% Rp. By [13, Lemma 1], N; are a-small right
ideals. By hypothesis, the chain N; €N, € -
terminates and hence A, is a noetherian R-module.
(2) = (1). By [13, Theorem 9(1)].
(2) = (3). By Theorem 2.11 and
2.13.

(3) = (2). By Theorem 2.11. O

Lemma

3. Definability of the class ASIg

For any class G of right R-modules, we will set
Gt={ME€e Mod-R|M is a pure submodule of a
module in G} and G© ={M € R-Mod|M* =
Hom,(M, Q/Z) € G}.

Proposition 3.1. The pair ((ASIz)®, ASIR) is an
almost dual pair over a ring R.

Proof. By proposition 2.4, the class ASI is closed
under direct summands and direct products. By [11,
Proposition 4.2.11, p.72], the pair ((ASIz)®, ASI)

is an almost dual pair over a ring R. 0
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Corollary 3.2. Consider the following conditions

for the class ASI, over aring R.

(1) The class ASIy is definable.

(2) (ASIg, (ASIz)®) is an almost dual pair over a
ring R.

(3) (A4SIx)* € (ASIR)C.

(4) (ASIx)™ € ASIy.

(5) The class ASI, is

homomorphic images.

closed under pure

Then (1) & (2), (1) = (3), (1) = (5) and
(3) & (4). Moreover, if all a-small right ideals in R
are finitely generated, then all five conditions are
equivalent.

Proof. (1) & (2). By Proposition 3.1 and [11,
Proposition 4.3.8, p. 89].

(1) = (3). Since ASI, is a definable class, it is
closed under pure submodules and hence (A4SIx)* =
ASIy. Since ((ASIz)®, ASIy) is an almost dual (by
Proposition 3.1), it follows from [11, Theorem 4.3.2,
p.85], that (ASI;)* S (ASI)C.

(1) = (5). By [14, 3.4.8, p. 109].

(3) & (4). By Proposition 3.1 and [11, Theorem
4.3.2,p.85].

(4) = (1) and (5) = (1). Suppose that all a-small
right ideals in R are finitely generated. By
Proposition 2.9, the class ASIy is closed under pure
submodules and hence (ASIg)* = ASIz. Thus the

results follow from [11, Theorem 4.3.2, p.85]. O

Corollary 3.3. If every AS-injective modules is
pure-injective, then the following statements are
equivalent for a class ASI; over aring R.

(1) ASIy is definable.

(2) ASlIy is closed under direct sums.

(3) (ASIx)* = ASl,.

(4) Each a-small right ideal in R is finitely

generated.

147

Akeel .R

Proof. The equivalence of (1), (2) and (3) follows
from Proposition 3.1 and [11, Theorem 4.5.1,
p.103].
(1) & (4). By Proposition 3.1, Proposition 2.9 and
[11, Theorem 4.5.1, p.103]. O
Lemma 3.4. A left R-module M € (ASI;)® if
and only if Tor;(R/I,M) = 0, for any a-small right
ideal I of aring R.
Proof. Let M be a left R-module and I €% Ry. By
[5, Theorem 3.2.1, p.75], Ext'(R/
I,M*) = (Tor,(R/I,M))", so that Tor,(R/I,M) =
0 if and only if M* € ASI,. Hence (rRASF,ASIy) is
an almost dual, where RASF ={M € R-Mod|
Tor, (R/I,M) = 0, for any a-small right ideal I of
R}. By [11, 4.2.11,
p.72],(ASI;)®© =gASF. O

A right R-module M is called n-presented if

Proposition

there is an exact sequence F, » F,_; = = = Fy; —

M — 0, with each F; is a finitely generated free right

R-modules [3].

Theorem 3.5. The following statements are

equivalent for a class ASI; over aring R.

(1) ASIy is definable.

(2) The class ASIp, is closed under pure submodules
and pure homomorphic images.

(3) Every a-small right ideal in R is finitely
presented.

(4) A module M € ASI, if and only if
(ASIR)®.

(5) A module M € ASI, ifand only if M™* € ASIj.

M* €

Proof. (1) = (2).By[14, 3.4.8, p. 109].
(2) = (3). Let M be any FP-injective module, thus
there is a pure exact sequence 0-> M SE

1E/M—>O, where E is an injective right R-
module. By hypothesis, E/M € ASIy.
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Let K €% Ry, thus Ext'(R/K,E/M) = 0. By [6,
Theorem 4.4 (4), p. 491], the sequence 0 =
Ext'(R/K,E/M) — Ext>(R/K,M) —
Ext2(R/K,E)=0 s
Ext?(R/K,M) = 0. By [13, Theorem 4.4 (3), p.
491],

0 = Ext*(R,M) — Ext(K,M) —
Ext?(R/K,M) =0 is exact,
Ext!(K,M) = 0. By hypothesis, ASIp is closed

exact and hence

the sequence
so that

under pure submodules, so that K is finitely
generated by Proposition 2.9 and hence [4,
Proposition, p. 361] implies that K is finitely
presented.

(3) = (1). Let M € ASI,. Let K €% Ry, thus K is
finitely presented (by hypothesis) and hence there is

az ay
an exact sequence F2 — F1 — K —0, where
R-

is the

F,, F, are finitely generated free right

modules. Let B =ia,,where i:K — R

a
inclusion mapping, thus the sequence F2—2>F1

LR i>R/K — 0 is exact, where m:R — R/K
is the natural epimorphism. Hence R/K is a
2-presented module, so that from [3, Lemma 2.7 (2)]
we have Tor;(R/K,M*) = (Ext'(R/K,M))* = 0.
34, M* € (4S1x)°
(ASIx)* € (ASIz)®. By hypothesis, every a-small

By Lemma and hence
right ideal in R is finitely generated, so that ASIy is
closed under pure submodules by Proposition 2.9.
By Theorem 3.2, ASIj is a definable class.

(1) = (4). By Corollary 3.2, (A4S, (ASIZ)®) is an
almost dual pair and hence a module M € ASIy if
and only if M* € (ASI)®.

(4) = (5). By hypothesis, (ASIz)* € (ASIz)®. By
Corollary 3.2, (ASI)** € ASIg. Hence for any right
R-module M, if M € ASI, then M™ € ASI.
Conversely, if M** € ASIg, then M* € (4SI;)©. By
hypothesis, M € ASI.
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(5) = (1). Let N be a FP-injective module, thus

there is a pure exact sequence 0—->N-E
—-E/N — 0, where E is an injective right R-
module. By [18, 34.5, p.286], the sequence 0 — N**
- E* > (E/N)*—>0 By hypothesis,
E** € ASI, and hence N** € ASI;. By hypothesis,

N € ASI; so that ASIy

is split.

is closed under pure
submodules by Proposition 2.9. Thus ASI; is
definable class by Corollary 3.2. O

Note that if the class ASI; is closed under pure
submodules, then (ASIz)* = ASI,. Thus we have
the following corollary.
Corollary 3.6. The class ASI, is a definable if
and only if it is closed under pure submodules and
the class (ASIz)?" is a definable.
Corollary 3.7. If the class ASI; is a definable,
then the following are equivalent.
(1) The class of flat left R-modules and the class
(ASI)® are coincide.
Every module in ASI is FP-injective.
in ASIp is

)
@)

Every pure-injective module

injective.

Proof. (1) = (2). Let M € ASI,, thus M* €
(ASIx)® by Corollary 3.2. By
M* is a flat left R-module and hence Proposition
3.54 in [15, p.136]
injective. Since M is a pure submodule in M™*, we
FP-injective by [18, 35.8,

hypothesis,

implies that M** is

have M is
p.301].

(2) = (3). Let M be any pure-injective module in
ASIp. LetE: 0> M — M' — M" — 0 be any exact
sequence. By hypothesis, M is FP-injective. By [16,
Proposition 2.6], the sequence €& is pure and hence
pure-injectivity of M implies that the sequence € is

split by [18, 33.7, p. 279] . Therefore, M is injective.
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(3) = (1). Let M be a flat left R-module, thus
Tor, (N, M) = 0, for any right R-
By Lemma 3.4, M € (ASI;)°.
Conversely, if M € (ASIz)®, then M* € ASI;. By
[14, Proposition 4.3.29, p. 149], M* is a pure
injective module. By hypothesis, M* is injective and
hence M is flat by [10, Theorem, p.239]. O

module N.
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