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Abstract
Space-time fractional differential equation with integral term (S-TFDE) has been considered.

The finite difference method (implicit and explicit) combined with the trapezoidal integration formula has been
used to

find special formula to solve this equation. The stability and convergence have been discussed. The effect of
adding an

integral term to the common classical equation has been considered. Graphical representation of the calculate
solutions

(obtained by the explicit and the implicit methods) for three numerical examples with their exact solution, are
considered. All the calculations and graphs are designed with the help of MATLAB.
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1 — Introduction

Fractional order differential equations have excited,
in recent years, a considerable interest both in
mathematics and in applications. They were used in
modeling of many physical, chemical processes and
engineering. A physical mathematical approach to
anomalous partial differential equations (PDE), may
be based on generalized (PDE) containing
derivatives of fractional order in one only (space or
time), or in together space and time. It is well known
that the differential equations represent local
interactions in the mathematical models, while the
representation of integral equation represent the
global interactions of the phenomenon, see for
examples [1, 2,3, 4and 5]. Many researchers used
different methods to solve different models of the
fractional order equations. Meerschaert and Tadiran
[6] used the finite difference method to solve the
space-fractional advection dispersion. R. Gorenflo,
F. Mainardi [7] used Laplace transform to solve
Fractional Order linear Integral and Differential
Equations. J.P. Roop, [8], considered boundary
value problems in R2 with the finite element
method. Our main objective is studying the

following fractional order equation:
a*u(xt) _ 8’ u(xt)

+ [u(x,s)ds +q(x,t) 1

P 7 J (M)

where: 0 < a < 1; 1<B§2,0§x§1,0§t§T

with initial and boundary conditions given
respectively:
u(x,0) = f(x) 0<x<l

u(0,t)=u(l,t)=0
Corresponding to the classical integro-differential
parabolic form:

ouxt) o U(x t)
ot ox?
Considered by [9]. The effect of the integral term
will be studied in both, implicit and explicit

methods, when solving the class of initial boundary
value space-time fractional equation (1).

+[u(x s)ds +q(x,t)

2-material and method

The numerical treatment of fractional order partial
differential equations has its importance because the
limited use of the analytical methods In many cases
there is no analytical treatment for different reasons
concerning the domain under consideration or the
regularity of the boundary or even the equation
itself. Many authors have considered the numerical
treatment of space or time fractional partial
differential equations. Zhuang and Liu [10], implicit
difference approximation for the time fractional
diffusion equation has been considered.
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Also they analyzed the stability and convergence. S.
Shen and F. Liu [11] proposed an explicit difference
approximation for the space fractional diffusion
equation and gave an error analysis. M. Meerschaert
and C. Tadjeran [12] proposed finite difference
approximation for fractional advection dispersion
flow equations. Mainardi [13] the fundamental
solution of the space-time fractional diffusion
equation was discussed, he deals with the Cauchy
problem for the space-time fractional diffusion
equation. Gorenflo [14], a discrete random walk
model for space-time fractional diffusion was
proposed .Diego A. Murio[15],developed an implicit
unconditionally stable finite difference scheme to
solve the linear one-dimensional diffusion equation
with fractional time derivatives. F. Liu, S. Shen, V.
Anh and I. Turner[18], an explicit finite difference
scheme for time fractional differential equation is
presented. Discrete models of a non-Markovian
random walk are generated for simulating random
processes whose spatial probability density evolves
in time according to this fractional diffusion
equation. In this work proposed fractional order
implicit and explicit finite difference approximation
for space-time fractional heat equation with integral
term (1), (S-T FDE). Riemann-Liouvill fractional
derivative of order 1< S <, Caputo fractional
derivative of order 0< ¢ <I, are using, trapezoidal
method has been used to approximate the integral
term, studying of stability and convergence of both
methods, that will be given through studying of
different examples.

3-Theory and basic definitions

Riemann, Caputo and Grunewald, fractional
integral and fractional derivatives that be used for
approximating derivatives, will be given. Also,
trapezoidal rule will be used to approximate integral
term, For more detail, see [15,16,17].

3-1 Riemann-Liouville

fractional Integral of order B > 0 given by the form
[1-18],

B-1
W)= F(ﬂ)j(t s)” ~f(s)ds
R=1

)38 3¢=3¢ 1f=3¢"PWherea>0B>0 (3)
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3-2 Riemann-Liouville fractional derivative of
order

let m denotes a positive integer such that m-1<B<m,
then fractional order derivative Riemann-Liouville
of order 3 will be given by the form:

R B
D =DM JM™Pf(t) This mean
t
R B
D f(t)=
t
d" 1t mp
—| ———](t-s f(s)ds|m-1<f<m (4)
a| Ty /
4"t fm
dt™
DM Jf=1, B>0 wherepf=1 ®)

3-3 Caputo fractional derivate

Let m denotes a positive integerm-1< o <m, then the
Caputo’s fractional derivative of order a given by:

C

a m
= _a 1 .
D t J{n Dt f(t) This mean:
C a
D f(t)=
t
t
L J(t=s)™ ™ (5)ds|m-1<a<m (6)

F(m—a) 0

10
—f(t
dt™
Some properties of fractional derivatives:
r'k+1) th-a

DEt =1T(k—a +1)
0 k<a

a=m

k>a

o k
Since et = Y (at)
Eo T(k+1)

with the linearity of operator Df , then
Dtaeat —a¥ OZO: (at)k_a
k=0 I'(k—a+1)

these infinite series equal zero if (k < a ), let s= k- a
then:

and using first property,

, and since all terms of

Dtae—t —a“% E: (at)S

:aae—t — aaEgt — el/zu Egt
s=0 F(S+l)

>

where a= -1; for a=1then DZe' = €' by the same way

D¢ sin(bt) = (b)* sin(bt + aTH) .where b is constant.
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3-4 Griinwald formula

The fractional derivative can be written with the
help of Griinwald formula as:

dﬂ F( . 1 m
——f(x)= lim—= X9, f(x—kh) 7
dx? m-s h” k:ogk @
Where the normalized Griinwald’s weights
function will be defined as:

Note: that these normalized weights depend only on
the order f and the index k.

M.M. Meerschaert, J. Mortensen and H.P, Scheffler,
[18] developed an extension of the Griinwald
formula for vector fractional derivatives. And use
this result for numerical solution of fractional partial

90=1,0,=-8:9y=

differential equations where the space variable is a
vector.

3-5 The trapezoidal rule

To approximate the integral term appear in equation
(1), trapezoidal rule will be used as.

?f(x)dx;T(f,a,b)JrET(f,a,b),

Where, T(f,a,b) =@(f(a)+ f (b))

3£ (2
£ (f.ab)=00TPE) o)

12
To preserve the accuracy of the overall
approximation of the finite difference representation
of equations (1) we use the composite form of the
trapezoidal rule, suppose that the interval [a,b] is
subdivided into m subintervals

[%_4, %1, 1=12,---,mof widthh:b_Ta; so that

X; =a+ih, the composite rule takes the form

b
JEFx)dx=T(f,h)+E;(f,h)
a
Where:

h m-1
T =2 @+ T0)+h X F(x),

i=1

E; (f,h)=0(h?) :_%hz' Now

for u(x, t); t e [0,T], divide [0,T],

subintervals [ty_;, t ] of width z = T—EO ,lett=k 1

into m
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then
}u(x ,8)ds = %[u(x,O) +u(x,T)]+ rnilu(x,tk) +0(79)

0 k=1

©)

where (k=0,1,2,...,n), neN",

4- Numerical Solution:

Consider equation (1) with the initial and boundary
conditions, where the time fractional derivative is
understood in the sense of Caputo and the space
derivative appearing in the right hand side is
understood in the sense of Riemann-Liouville.

Let yk=u(x ,ty) forall i, k, let X; =ih, h :land
m

ty =kT;r:Tthere i=012,---,m
k=012--,n

Replace  the terms in equation (1) by its
approximation to obtain an algebraic relations which
are satisfied some accuracy at each point. in these
algebraic equations, The approximation will classify
as explicit or implicit according to the appearance of
the unknowns in each equation. The algebraic
system or the approximation is termed explicit, if
the system can be arranged , where that every
equation contains only one unknown otherwise it is
implicit.

Let u*=u(x,t); (i=0,1,....,m; k=0,1,...,n) be the
exact solution of equation (1) at the mesh points
(Xitw)-

Let U be the numerical approximation to exact
solution at the same mesh points (x;,ty) .

4-1 Explicit Method

Explicit finite difference method will be used in this
section, to find approximation-solution of equation

(D).
Using the following approximations:
The approximation of Caputo’s fractional derivative
of order a given as:
“Ulxirtksd) _ 1
ot I'd-a)
K U(xiotje) —U(xi, t) U7 gz
z a
(tk +1 7 Z)

+0(7)

j=0 T jr
(10)

Let s=(tx.1—Z) then equation (10) becomes:

O%U(Xistksd) o 7
ot T(l-a)
(j+)r

Z[U(Xlitk j+l) u(xi,tk— j)] I
(11)

)
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“Ulxitks) o

Lo - I(2-a)
_zo[u(xi,tk,jﬂ)—u(xi,tk,,-)][(j+1>“—(j)l‘“]+o(r)
f

(12)

Lethj =[(j+D)%~(j)"1:j=0, 1,2,... (13)
"Ulxistksd) o 7

) ot I'(2-a) 0<a<l
_Zobj[u(xiatk—j+1)_u(xivtk—j)]+o(7)

f

(14)

Now. Griinwald formula used to approximate
Riemann-Liouville fractional derivative of order 1<
p=2:

_a L%t b u(x 1)

ax

i+1

Zg u(xj— (@ -Dh,t,) +O(z +h)
(15)

Where fori=0, 1,2, ...; 0<B<2;

iPB-NB-2)..B-j+1)

9=L:g,=-4:9;=(-1) i

(16)

LetX; =ih, h——andtk_kz- T_I
m n

Wherei=012,---,m;k=012,---,n.

wzr“F(Z—a);r_hﬂ,c Tzw

Now putting equations (9, 14 and 15) in equation
(1), with some simple algebraic operations, the
general system of equations has been written as:

k k

k-j+1 k-j k+1
_Zobj(Ui I —Uj J):r_zog U|+J+1+
j= j=

k _ _
+ Y c(ul -yl + q:( +o(z+h)

j=0
a7
This system of equations (17) has the forms at (k=0
and k >1) respectively:

i+1
=(1-pr) U?"’ rjgoglu?,jﬂ

j#1

For k=0

(18)
k+1 (1+C ﬂr b1)u|+|’zg Ur+11+1+

J¢1 k=>1

0, & k-1
(L-b)u; + _21(20+bj—bj+1)uf
J:
(19)

+aq’
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By using matrix formula this system will be written
as:  U'=AU" where

UlZAUO
Ut = AUX+ (c+b U+ wGK +

k-1 -
+2(2c+bj—bj.)ui
=

ul=f theiniti alvalue

(20)

Where A =[A;j] is the matrix of coefficient, has
form:

r j=i+1
1-pr j=i=1
_Jl+c—pr—p j=i=23,..m

Aij = ra, j=i-1

r9iju j<i-2

0 otherwise
(21)

Uk=[Uf U5, st

Where f =[f (%), f (%), f(Xg),-o, f (Xpnt)]T

Q=[af.af,...ak 41"

4-2 Implicit Method:

By using the same approximation in section 4-1 to
approximate the fractional derivatives in implicit
formula one will get:

0% U(xi tys) _ 1

at” rl-a)
i U(Xiatj+1)T_U(Xivtj)(J}l)T dz 4 o(r)
=0 1z (tk_l_z)
(22)
Let s= (ty41— 2) we have:
0“UlXistkst) . T

a* T(l-a)

(j+)z dz

Z [u(xi, ti- j+l) U(Xi s tk— j)] I 7 +0(T)
(23)
O“Ulxistkst) o 77
oo I(2-a)
2 [UCi-tie ) ~Ulxi i I D = (5T +0(7)
j=
(24)
Lethj =[(j+D)“~(j) “1;j=0, 1,2,...
(25)

45

o"Ulxitkst) o 7
ot T T(2-a)

J-%)bj [u(xi»tk-js0) —U(xi te- )] +0(2)

(26)
Define this operator'

0<a<l

Z [u(xi, ti—js) —U(xi te- )1 (27)

a
u(xi,
Lh,r (XI tk+1) F(Z— )J—

Let ¢ and ¢, are two constants, then:

“ t
utxi, k1
w_l—ﬁ,ru(xi’tkﬂ) Nl _[ L@[SCr
a 0 (tk+1-5)
(28)

Now, shifted Griinwald formula used to
approximate Riemann-Liouville of order 1< < 2:
o* u(x t)

Dﬁu(xl i)
ax

Zg u(x;j = (i =Dh,ty,0) + Oz + h)

(29)
Where for i=0,1,2,...; 0<p<2
- -0(B-2)...(6-j+1

to=Lty=—p 0= (W=Dl i)
(30)
Put equations (9, 26 and 29) in equation (1), yield

T k—j+1_  k—j __ k+1 +
T(2- a) E: bj (ui Ul ) Z OjUicju
k .

(I -yl ) gl +0(T+h)
_12
(1)

_ «a oy @ _TO .
Letwo=7*T(2—a);r hﬂ,c > then:

i+1 )
(uk+l )_rz_:lg U:HJlH. zc(uk j+l_ k—j)_
Zb kI —uk ) + g+ o(z + h)
(32)

L+ pr-c)ui* ng ufthy = @+ boui + (c+bul

j¢l

kil k+1
+ X (2 +bj-bp)ul + g

=

(33)
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Where i1=1,2,...,m-1; k=1,2,....n-1 further, the
system of equations(33) written at k=0, k=1and k >1
respectively:

(1+,b’r—c)ul—ri§g.u-l =0+’ +oq
i sy jYi—j+1 Ui ql
]:
j#1
(34)
1 —-2—”1_.2.:12_ 1
(+ﬂr C)U| rZOgJu|—J+1 ( +cC b1)U|+
J=
j#1

(c+byul+od
(35)

i+1

L+ pr—c)uft=r ¥ gjuff =@+ 2c-byuf +
j=0
j#1

k-1
Y (2c+bj—bj)ult
i=1

(C"‘bk)UiO"'wqi

(36)

System of equations (34, 35 and 36) will be written
by matrix formula as: AU = U*
Aul=(1+c)U’+ G k=0
AU?=(1+2c—b)Ut+(C+b)U°+ G2 k=1
AU = (L+20~p)U*+(C+b) U+ 0GFH+

ko

ZI(20+b,-—bj+1)Uk+1 k>2
j=1

(37

Where A= [Aj] is the matrix of coefficient, it has the
form:

—r j=i+1

l-c+pr j=i
Aij =410, j=i-1

“rdi_jn j<i-1

0 otherwise
(38)

Uk=[Us U5, . Us 1

Where f =[f (%), f (%), f (Xa)seens F X"
Qu=[ar.a5,... a5 41"

(39)

5-Stability and Convergence:

There are three fundamental properties (consistency,
convergence and stability), that every approximation
of partial differential equations by finite differences,
should possess it. The (Peter Lax theory), below,
Will be shown the relation between these three
properties.

consistency

implies that the finite difference equation is a good
approximation of the partial differential equation,

46

convergence
implies that the solution of the difference equation
approaches the solution of the partial differential
equation as the computational mesh is refined.
Stability

implies that the solution of the difference equation
is not too sensitive to small perturbations ( say,
initial data), These properties are often difficult to
verify for realistic problems, but they can be
explained and illustrated quite easily using
difference schemes for some simple model
problems. Peter Lax, has made major contributions
in areas including mathematical physics, in areas of
numerical analysis. He gaves important theory, in
this theory, to prove convergence one can work with
the discrete scheme alone, providing it is consistent.

5-1 Stability and Convergence of explicit finite
differe-nce method, equation (19).

Theorem! (Lax Equivalence Theorem)

If the finite difference method U™ = BU" + kf" is
stable, then”Un —un||§ CTm ?axn 1"Tm” for all n

such that

nk=T. Where:

1- U, ,u, denotes the vector of approximate and
exact solutions(xj, t,) at mesh points(xj, t,)
respectively, T,, dented a vector of local truncation
errors T(Xj, ty).

2- So provided the method is consistent, the
convergence rate is determined by how quickly the
maximum over all local truncation errors (up to t =
T) approaches 0 as

k—0. So “consistency + stability==
convergence”’. For more detail of proof, see
[20,12].

Theorem2 (Gerschgorin’s Theorem):

Let A be a coefficients matrix A=(a;j), and let x =(x;,
X,...,Xp), be an eigenvector of A corresponding to
the Eigen value A. Then for some i we have | x; | > |
xj| for all j#i, and since x is an eigen-value, then

| X = 0 and Ax = Ax or (Al — A) x=0, Which
represents n simultaneous equations for the i"
equation as:

(Z-aj)xi— Xaijxj=0 Then 2 =g; - Zaijﬁ=0
j#i i Xi

These eigenvalue lies in one circles |4 —ail < Taj

j=i
This means there are n circles corresponding to
i=1,2,...n.
Suppose that B(r), 0 <r < I is the (n by n) matrix
given by b = a;; then byj =ra;; ;i# j then eigenvalues
of b(r) lie in the circles |'[ - aii| <t Z|aij| )

j=i
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Since in this method a Grunewald formula is using
to approximate Riemann fractional derivative and
approximate Caputo fractional derivative, then the
consistency proof for this case are facilitated by
assuming zero Dirichlet boundary conditions, So
that the solution may be zero-extended beyond the
interval 0 < x < L. thus the Riemann,Griinwald and
Caputo definitions for the discratization have been
shown to be O (Ax) for 1< <2 and O (At) for 0< a
<1. See[14-15-16].

In view of Lax’s equivalence theorem these
methods converge if and only if these are stable.
Since the system ofequation of explicit written by

the matrix form as: U k+l— AU Kiw = K Where

SPE [THNTATIAY LI A AL A S L
and

f=f (X,t,u,g) at k time step this mean the term of
function add to the stander heatequation, A is the
matrix of coefficients, and is the sum of a lower
triangular matrix and super-diagonal matrix. The
matrix entries A;; for i=1,2,...,m-1 ; and j=1,2,...,m-
1,defined by :

0 if j2i+2
A=<1+0, if j=i
r9i_jn otherwise

While Ago=1, Ag;=0 for j=1,2,....m A, =1 and
Ani=0 for j=0,1,2,...,m-1 with notes(a,b,c and d)
at(2-1) ,and by the Greschgorin theorem the
eigenvalue of matrix A lie in the union of the circles
centered at A; with radius R; > Ajj we have A;

J=i
=+ r g =1 -1 B and for R; we have:
m i+1 m
Ri=2Z Aj=2 Aj=r2 g;<rg=1-A;
i=0 i=0 =0
J=i j=i

Therefore A;+ R; < 1. We have Aii-R;=1—r1  — R;
> 1- 2rB. So that we have for spectral radius of the
matrix A to be at most one, it suffices to have (1-
2r) > -1.which yields the following condition of T,

N
h? g
Under this condition on r the spectral radius of
matrix A is bounded by one ,with spectral radius so
bounded, the numerical error do not grow , and the
explicit method defined above is conditionally
stable. Moreover the explicit method defined above
is consistent with order O(At") + O(Ah™)” where n,m
are integer numbers with (n-1<a<n)and (m-1<f
< m ).This mean explicit method consistent and
conditionally stable then it is converging, the one of
special case is;

if =1 and B=2 the condition become r < 1/2, this
condition of classical parabolic of PDE.

47
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5-2 Stability and Convergence of implicit finite
difference approximate equation (33):
5-2-1 Stability:
the following lemma will be proved for the
system of equations, which are using to
approximate solution of eq(1) by using implicit
way, the coefficients by and g; where (k=0,1,2,...);
(j=1,2,...) satisfy the following:
= b by, forall j=1,2,...
"  by=1;b>0forallj=0,1,2,...

"~ g=-Big>0forallj£ 1 ¥ g, =0
j=0

= for any positive integer n; Zn: g.<0
=’

Suppose that Jik ; 1=0, 1...
approximate solutions of equation (33). Define error

as: Ef = JF —uf for all i; k, the error satisfies system

m; k=0,1,...n is

equations then:

i+1
(l+ﬁr_c)€il_rzogj€%,j+1= (2+3C—b1)5?
};1
(40)
@+ pr—c)eft—r i_izgje%(fjlu: (L+2c—b) ek +
j=
J#1

k=1 . k-l
+(C+b)el +2¢ _lelj + _Zl(bj —bja) ek
i= i=

(41)
Equations (33 and 34) written by using matrix form
as:

AE'=(2+3c—h)E°
AE*! = (1+2c—b) EX+(c+b ) EO+
k=i . ke
2cYE+X(bj—bj.)E?
==
(42)
Where EX =[&f, &X,...eX 11";
Now we use mathematical induction to prove
HEkH SHEoH for all k=1, 2,...,s0 that the theorem
will be done then fractional implicit difference

method defined in equation (33) is unconditionally
stable.

Now when k=1 not that, and g 0, j# 1,then from
equation (40 and 41)

i+l
@+pr—c)et-r _Zogjé‘il—jﬂz (2+3c—bpe?
J:

J#1

i+1
Misi—M2 _Zogjé‘il—j+l: (2+3c—hy) &f
J:

J#1
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Where yp, - 4+ =¢) . = r ;
M= o o) M2 ™ 2r3c—1p

And since (2-3¢ - b;) > 0.

Let [, =], -
i+1

[, =l = pslell w2 2 ot

Jj=1

MAX ]

O<i<m-1

1 i+1 1
< Mifell =Mz 2 gjfel 1
J=
Jj#1

<

=[ <[=91.

, (true at k=1).

i+1
1 1
Migi—M2 2 g &i-j+
=0

1#1

So that we have HEJH - HEO‘

assume that it is true for k= j, this mean:
||E J” < ||EO|| for j=1,2,...,k, now

Ek+]+ EI(+]+

e bl s m—oht Kol

1#1

for k+1 we have, <

o0

= MAX

oo 0<i<m-1

k+]*
&

<@+ pr —C)|8%<+J1 - r;i 9 j‘grjil”l

j#1

k+l_ ot K+
S(l—!—ﬁr—c)gi —rzogjgi
J:

Jj=1
k o k—1 .
A+2c—byeif(C+b)ef+2c> &
= j=1

k—1
+ El(bj —bjD) et
<@+2c—by) HEKHOO (c+bw HEOHOO N
] o -nolek
<@ 2e-b]e9] e boe?] +
e, Hoi-o10fe,
= “EOHQO so thatHE k+1”w = HEO”OO

5-2-2Convergence:

Let U* be the numerical solution of equation (33) at
mesh-points (x;, ty), where i=1,2,...,m; k=1,2,...,n,
now, define error as:

e=u(x;, t) -UYS foralliand k.

. k_,k k kAT
sincee” =(€°1,€ 2,-.-,€ m.1) »
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substitution ekj and ¢’ into equation (41) we have:

i+1
(1+ﬁr—C)eil—rZogjeilfj+1= (2+3c—byef
j=

j#1
i+1
1 1 _ 0_pl
Mlei_Mzzogjeifjﬂ_ei—Ri
J:
j#1l

i+1
L+ fr-c)ef™ -1 gjeifis=(1+2c-bel
J.:

JEN

0 K k-1, pk+l

(c+brei+2c el + Z(bj—bj.def "+Ri"
=L =

We have (i=1, 2, ..., m-1; k=1, 2,..., n) and

|RK| < C(e2+77h)

Then, using of the mathematical induction to give

the convergence analysis as follows:

for k=1, “91“00 :"e{'”w = MAX |e,1| Then

0<i<m-1
1 i+l
e <mifelf-m2 % g fef
0 j:O
]#1
i+1 1
< M1|eﬂ -M2 'ZO g j‘ei,jﬂl
j=
j#1

=<

i+1

1 1 — k

Miet=M2 2 g el jul =[e? +RI|

=
1#1

Since ¢’=0 and |Ri(| <C(£2**+7%h)
s <o

Suppose that He j“ <Cb7Ly (2% + 77 h)

For j=1,2,...,k, we prove that true for k+1
e i -

Not bj*<bg% j=01...k

MAX ek

0 <i<m-1

i+1
‘e}wlt <L+ pr—c)lely - fE? gjet]
J#
i+1
<@+ pr —C)‘erﬂ —-r 'zo 9 j‘erjilﬂl
i=
I

i+1
<|@+ pr—c)eft—r > jel
j=

j#1
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A+ 2c—bpef(c+by)el + 2ck_fe,i
= the boundary conditions u(0,t) =u(1,t)=0,t>0;

k—1
k—1 k o ey oy
+ jZ::]_(bj —bjDe T+ R and the initial condition (x,0)=(x*=x), x € [0,1],
where the exact solution is u(x, t)=(x-x")
(sin(t)+1)
<@+ 2¢c—by) HekH +(C+by) eOH + Table 1 shows different choice of n, m, a and B, for
- i} = two methods.
+ 2c ZJ“e J” +>X(Mmj—bj+) ||ek_1|| -+ |R%‘”‘| cha |« | B n m | 7l T2 errl | err2
j=1 © j=1 oo
! ! 1 8 13| 1004 | 10 | .0001 | .0007 | .018 | .013
Sj ) Candll. i 2 S| 15|50 50 | .2 .06 .01 .0038
noefed]| scpitireremmian He JH@ =0 3 [ 81350 (202 |05 |.01 |.0038
K—1 K—1 Table 1
<[@A+2c-b)biHy+2c bty + Z(bj—bjs)bil 4l
. ; = = Figurel illustrates the exact solution and the
C+ %)+ ‘Rl ﬂ numerical solutions obtained by using explicit
) A, method tablel shone the choice of n, m to achieve
Using bj~ S by for j=0,1,....k and|rf| < C(z** + r*h) condition of stability, the large step of time gives
k71 kfl cmq" mavi’mnm Arrnr ‘XH‘"}"\ ﬁVF‘fl n R
<[@+2c-b)b+2c b+ = (bj—bj:) bl o L
j=1 j=1 T
C(T1+a + z_a h) + C(Tl+a + 7 h) | -
"_r,n;:::::ogo .l
1 1 k-1 1 k-1 1 max-emi=0.018
bl [+ 2¢ —b) byt + 2¢ T b+ X (b —bjs) bl +1 guaERaTLs

j=1 j=1
C(T1+a + Ta h)

bilC( + 2% h){(1+ 2 —py) + (2c(k —1)k_ii(bj ~bj) + bk} “
iz

\
\
3

o “ (5 [ 0 " "

so that ”ek+1ﬂ <Chbt(z¥"* +thy fork =01,... -
= Figurel. numerical and anlaytic graph of soluthins
Hence there is constant C such that: using explicit method of examble 1

“ek‘*’lﬂ < Ch (£ + 7h) for k=0,1,2,...

Figure (2) illustrates the exact and the numerical
solution by using implicit method, for a = and § = at
two time-stens with different choice of (h. 1.

Ifkt < T is finite the convergence is given by the
following theorem:

Theorem3: let Uki be approximate value of u(x;, ty)

computed by using equation (33), then there is a o B e
positive constant C such that: 1] e o ShE
UK =u(0, 6| <Clr+h)i =12,.. =Lk =12,...n =
% bests T X \
6- Numerical Examples: i""ﬂiiﬁj& Y N
.-‘mm-ennll . ;: x Y
Three examples with known exact solutions are 57 \
considered. The examples are chosen such that the T \
behavior of the solution has different ":*?V.;?" \
characterizations with space and time ranging from S . W A T i
polynomial, smus.mdal and .exponentllally decay. Figure2. numerical and anlaytic graph of soluthins
Example 1: consider equation (1), with using implicit method of examble 1

) . @) x%7*
a0 t) = (% =x*) sin(t = £)) = sin() +1) Ta-p 43)
_T@x*#

r@4-5

Figure (3)illustrates the exact and the numerical
)~ T(2.6275) (x* = x*) solution by using implicit method, for o = and B = at
two time-steps with different choice of (h, 1),
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Figure5 and 6 show exact and approximate solutions
by using implicit method, with different values of a
and B. Both are choosing to show how the
approximate solution go to exact solution with large
values of n and m.

= fepld)

Figure3. numerical and anlaytic graph of soluthii
using implicit method of examble 1.

rspace

Example 2:consider equation (1), with Figure5. numerical and anlaytic graph of soluthins
B T x*? 1)’ using implicit method of examble 2
a0 = el )~ (T T

rG-p) T(-p) ! (i)
~(r(®)-T(254) (x* - X o

(44) ok

the boundary conditions u(0,t) = u(1,t)=0, t>0 ; and

the initial condition u(x,0) = (x*-x*), x e [0,1], -:
whose exact solution has the form u (x,t) = (x*—x°) &[:3—
(exp(-t)). ok
00t ¥
N
Table 2 shone different choice of n, m, a and f3, for : R St r::’,: e ; ‘ ‘ |
tWO methods. 01 T 03 04 x‘s;‘;“ 06 a7 08 09
chala |B [m m |+ |2 |erl]ear Figure6. numerical and anlaytic graph of soluthins
4 S| 15| 16e4 | 20 | St 2 | St 9 | .026 | .0098 using implicit method of examble 2
S| 1.5 | 2500 | 50 St 2| St 9| .007 | .005
5115 [ 40 100 .01 0z | .027 | .00a Example 3: consider equation (1), where
Table 2 q(x, t) = (e H)[sin(zx) — (= ” sin(zx +%ﬂ)] (45)
Figure4 shows the exact and approximate solutions —([C3)~T(2.54))sin(zx)
using explicit method; goes to exact solution with With boundary and initial conditions: u(0,t) = u(1,t) =0;

high time step, different in error with different

cheice of 1 at table 2 shone that. t € [0,1] ;u (x,0) =sin(nx), x € [0,1]; with the exact

solution u (x,t) = sin(nx) ( exp(- t)),
ke )

01 N=20; N=160000
tstep2  tstepd
Mxerri= 0026
Mr-em2=000%8
a05; bet§

E 2 = L L ” L) “ -OS “” o “ L1 1
xspace xspace
Figure4. numerical and anlaytic graph of soluthins Figure7. numerical and anlaytic graph of soluthins
using explicit method of examble 2 using explicit method of examble 3
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Figure7 shows how the approximate solution goes
to the exact solution with choose the higher time
step, with fixed (a = 0.8, B = 1.5) and choose (n =
10”4; m = 10) to achieve the condition of stability.

(m=40.:n=40

l=0.5; be=1.5

| max-emi=0.2
max-em2=0.1

3] " (3 " 0] " 1] 1
xspace

Figure8. numerical and anlaytic graph of soluthins
using implicit method of examble 3

Figure 8 shows how the maximum error become
small with high time step (t = 0.075; t = 0.25), with
fixed (a= 0.5, B = 1.5) and choose (n = m = 40).

2i=08 ; bet 5

| max-emi=0.159
maxem019 |

0 " ” L3 " " “ “ “ L1 1
e

Figure9. numerical and anlaytic graph of soluthins
using implicit method of examble 3

Figure 9 shows how the maximum error become
small with high time step (t =0.075; T =0.25), and
with large choice of (n = 100; m = 40), fixed (a =
0.5, B =1.5).

el sl
1= T T T T T : T T =
this figure:not out conditio
4 -4
m=10 ;n=1000
It 4
2 4
3
x1 & e s St
5 JPSA et 5 o R
i B
[ + —
1- 2|
- 4
= 4 i L i i i L =
] 1] [’} (3] " [ “ 1] " [T} 1
»apace

Figurel0. where (m,n) are not satisfy condation
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Figure 10 shows what happen to approximate
solution with chosen values of n, m that didn’t
achieve the condition of stability.

IF (et sinfp)
T

t/ s : : : i

o Ml Here W chiotse et ; X
choosen 200 | i ; N

large to see the ugo | ! Y

M fo.exact seltion vith.. : ‘

. / large n. ; ‘ i Y
" ” 1 " 5 [ i [0 » 1

xspace
Figurell. where (m,n) are satisfy condation

Figure 11 shows that good approximation with
chosen large n ,m with fixed n and m achieved
condition of stability and fixed a and .

U (exp4'sinpP)

20132000 with fised dl and be and kesp the | ! "
....{conditen of sttt the approimate soion goto... | ; LK
exact with largen m : { : H
| | | | | \
| 1] n [} " [ 1 1 [ 1] 1
space

Figurel2. shown the same example with choice n,m large

Figure 12 shows the choice of n = 20, m = 32000 the
condition of stability is done and with fixed o and 8
good approximation with chosen large n ,m.
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Conclusion

in this work implicit method gives approximate
solution better than explicit with the same time and
space split periods i.e same choice of (m,n). see
Figure (1-9). Morever implicit method is
unconditionlly stability and it’s faster than explicit
method because it isn’t need high value of m or n to
give small error. The explicit method has stability
with this condition , _ z% _ 1 ,this mean if we

h? =~ B

choose m integer number (i.e choose h= 1/m) then
we must choose n (i.e 7=1/n ) tosatisfy this quality,
see Figurel0 where (m,n satisfy
condation ) ,Figurell shows the same examble but
with n,m to satisfy condation ,Figure 12 shows the
same example with choice n,m larger than Figure
10,11.The adding of any terms, like the integral
term, will don’t give any changing in stability and

are not

converg ,because, (since we use the method of
trapezoidal to approximate integral term and it has
error smaller than the order error of exiplicit or
implicit methods, with this not: exiplicit method
don’t change in condition of stibilety).
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