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TWO FIXED POINT THEOREMS IN ORBITALLY COMPLETE
GENERALIZED METRIC SPACE
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Abstract:

The aim of this paper is to prove two results about the existence of
unique fixed point for self mappings defined on an orbitally complete, (or, on an
orbitally complete chainable) generalized metric space.These results based up on
general contraction mapping and locally general contraction mapping which
include some known results as corollaries. Therefore, our results unify and
extend the results in Dasl!l, Das and Day? and C’iri’c?*.
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1. Introduction and preliminaries:

For generalizing the notion of metric spaces, Branciari P! introduced a
general metric space by replacing the triangular inequality of a metric space by a
general one which is rectangular inequality .Also he proved a version of
Banach’s contraction principle in general metric space. And then, Das™ proved
the existence of the unique fixed point for Kannan mapping. Recently Das and
Day™ proved a fixed point theorem for uniformly locally contractive mapping.
Here, we prove two general theorems.The first one for contraction mapping
which defined on the orbitally generalized metric space and locally contraction
mapping.

Firstly, we denoted R™is the set of all non-negative real numbers and N
Is the set of all positive integers. Now we recall the definition of general metric
spaces:

Definition 1. 1: Let X be a nonempty set. Suppose that the mapping p: Xx X
—R *such that for all x , y € X and for all distinct points z ,v € X\ {X, y}, satisfies:

142



2012 4w 42321l 17 aladl) 48 pall o glall duulal) s

1. p(x,y)=0ifandonlyif x =y,

2. p(X,y)=p (¥ x),
3. pXY)sp(X2)+p(z,V)+p (v, y), (rectangular property),

Then the ordered pair (X, p) is called a generalized metric space (or shortly
G.M.S)).

Note that, any metric space is general metric space but the converse is not
true, for examples,

Examplel.2l: Let X={a,b,c,d,}. Define p :X x X =R by
p(a b)= p(b,a)=3, p(b, c)= p(c, b)=p(a, c)= p(c, a)=1,
p(a, d)=p(d, a)= p(b, d)= p(d, b)= p(c, d)= p(d, c)=4.

It is easily to show that (X, p ) is generalized metric space and it is not
metric space, since

p (@b)>p(ac)tp (cb)
3 > 1 +1
Examplel.3: Consider X=R, u: X x X R and u(X,y)= (x-y)?,

Clearly u is not generalized metric space and so is not metric space
since, for x=2, y=0, z=1 and v=1/2.We have

1(2,0)>u(2, D)+ u(1,1/2) + u(1/2,0)
Examplel.4: Let p: R x R —R*be a mapping such that

p(xy)=max{u (x,2), u V), p (Vy)},

where u as in example above, then p is generalized metric space. Therefore,
general metric space is a proper extension of a metric space.

Also, one can generate many generalization metric spaces by usual sense,
such as:
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Remark1.5P1: The generalized metric space is continues function on X x X.

Remark1.6 BI: As in the usual metric space settings, a general metric space is a
topological space with respect to the basis given by

B={B(x,r):xe X, re R*},where B(x,r)={ye X: p(x,y)<r} is
open ball centered by x and with radius r.

Definitionl.7: A point x in X is a fixed point of themap T : X =X if Tx =x .

Definition1.8 BI: Let (X, p ) be a G.M.S. A sequence {X»} in X is said to to be a
Cauchy sequence if for any &> 0 there exists n. in N such that forallm,n e
N with n >n,, one has p(Xn ,Xn+m) < & And the G.M.S. (X,p ) is called complete if
every Cauchy sequence in X is convergent.

Definition1.9: Let T be a self mapping on X. Let xo € X. A sequence {T"x} in X is
said to be an orbit of x by T and denoted by O(x, n)= {x,Tx,T?x,...,7"x} , for all
n €N. Also, O (X, ©) ={x,Tx,T?x,....

Definition 1.10: Let T be mapping on a G.M.S. (X,p) into itself. (X, p ) is said to
be T-orbitally complete if and only if every Cauchy sequence in O (X, %)
converges in X, for some x € X.

Definition 1.11: Let (X, p ) be a G.M.S. and A be a nonempty subset of X. We
define the diameter of A as 6(A) = Sup{p (X, y) : X,y € A}.

2 — Main results

Let (X,p) be generalized metric spaces and T be a self mapping on X .We
recall the following three contractive conditions!’:

I. Forall xyyin X,74,0 <A< 1 such that p (Tx,Ty) <1 p(x,y). (Banach
principle )

ii. For all x,y in X,7 B ,0<8 <% such that p(Tx,Ty) < B [p(X, TX)+p(y,Ty)].
(Kanann principle)

li. For all x,y in X,7 & ,0< a <% such that p(Tx,Ty)< a [p( X, Ty)+ p(
y,TX)].(Chatterge principle)
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The conditions in (i), (ii) and (iii) are independent since, if the
mapping T satisfies (i)will be continuous but, if it satisfies (ii)or(iii) may be
discontinuous .The following examples illustrate this facts :

Examples2.1:
1- T satisfies (i) is continuous.
Let T:[0,1] —[0,1] , Tx= x/3 but not (ii) when x=0 and y=1/3.
2- T satisfies (ii) and T is discontinuous.
Let T: [0, 1] — [0,1] such that Tx=x/4 if x &[0, ¥2) and Tx=x/5 if
X €[¥2,1].
3- T satisfies (ii) not satisfies (iii).
Let T:R—>R, Tx=-x/2 take x=2, y=-2.
4- T satisfies (iii) not satisfies (ii).
Let T:[0,1] —[0,1] ,Tx =x/2 if x€[0,1) and Tx=0 if x=1 take x=%,
y=0.

Remark2.2 ["1:

1- The condition (i) ,(ii)and (iii) can be written in the following equivalent
form
Forall x,yin X,0<h <1
p(TxTy)s h max{( p (xTx) + p(y,TY)/2 , p(xy), (p(X.Ty)+

p(Y, TX))/2}. ... (.1)
2- The class of mapping in (1) above is a subclass of the mapping satisfying

the follows :
For all x,y in X. 0 <4 <1.

o 2/)1 (Tx,Ty)s 2 max{ p (x,Tx) , p (¥,Ty), p (X.y), p (X,TY), p (¥, TX)}.

The following example illustrate the above remark
Example2.3 Bl: Consider X = [0, «) with usual distance and T: X—X, such that

Tx =x? [2(x+1), then for x,y in X, p(Tx,Ty) < % p(x)y). So T
satisfies condition (2.2). For x> 1, p(Tx,T2x) = x*(2x+3)/2(x+1)(2x+1)

and max{p(x,2x),[p(x,Tx)+p(2x,T2x)]/2,[p(x, T2x)+p(2x,Tx)]/2} = x.

Given any h satisfying 0< h <1, one can find value of x large enough so that
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X2 (2x+3)/2(x+1)(2x+1) > h.
Such as x =1 ,h = 1/12 ,therefore T does not satisfy (2.1).

As in the case of usual metric space (X, d) we can show the following
proposition, for details see [4] =
Proposition2.4: Let T be mapping of a G.M.S. (X, p) into itself satisfy (2) and n
€ N, then
1. ¥xeXand Vi, jefl,2,...,.n} = p(TX,TX) < q 6(0(x, n)).
2. ¥neN, Fk<ns p(x, T*)=q 6(O(x, n)).

Proposition2.5: Let T be mapping of a G.M.S. (X, p ) into itself satisfy (2.2), then
0(0(x, ©)) <1/(1+2q) p(x, Tx) holds V'xe X.
Proof: Let xe X, since 6(0(x, 1)) <6(0(x, 2)) <...

Therefore, 6(0(x, «)) =sup{ O(x, n):neN} .The result will be true if we
show that

0(0(x, n)) <1/(1+2q) p(X, TX), ¥neN.
Let ¥neN from2 in proposition 2.4, 7 T*x € 6(O(x, n)), 1< k <n such that

p(X, TX)= 8(0(x, n)).
(2.3)

By 1 in proposition2.4 and (2.3)
p(X, TX) < p(x, TX)+ p(TX, T2X)+ p(T?x, T*X).
0(0(x, n)) < p(X, TX)+ q 6(0(x, n))+ q 6(0(x, n))
= 0(0(x, x)) < 1/(1+2q) p(X, TX),

This completes the proof =
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Now, we will prove our first result

Theorem2.6: Let T be a self mapping satisfying (2.2) on X and X be T -orbitally
complete generalized metric space. Then T has a unique fixed point in X.

Proof: Let xe X. To prove {T" x } is Cauchy sequence, for n< m, By 1 in
proposition 2.4

p(TX, TMx)= p(TT"x, TM*1TN-1x)
<q 6(O(T™x,m-n+1))

By proposition2.4 Fki ,1<ki<m-n+ls
S(O(TIx,m-n+1))=p (T"x, T* T"1x)
Again by 1 in proposition2.4 we have
p (THIX, T T Ix)= p (TT™2%, T T"2X)

< q 3(0(T"2x,k1+1) )
< ¢ 6(0(T"2x,m-n+2))
p(T"X, T™X) < ¢ (O(T™x,m-n+1)) < gé (O(T"?x,m-n+2)),

Continue in the manner we have
p (T'X, T™X) < g 6(O(T™x,m-n+1)) <..... <" 6( O(x,n))
By proposition2.5
p(T™X,T7X) < ¢" /(1+20) p(x, TX) ,

Since limn—. Q" =0,then {T"x}is Cauchy sequence. Now since X is T-
orbitally complete, then there is ue X, lim T"x=u. To prove that Tu=u, let us
consider the following

p(u, Tu) <p(u, T"X)+ p(T"x, T X)+ p(T™1x, Tu)

< p(U, T"X)+p(T"X, T"*1x)+q max{p(T"X, u),p(T"xT"1x),
p(u,Tu),p(T"X.Tu),p(T™X, u)}
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< p(u, TX)+ p(T™, TX)+[ p(T™X,T™X)+ p(T"X, u)+ p(u,Tu)+ p(T
n+1X.U)]

Hence
p(u,Tu) < [(1+q) (p(u, T™)+ p(T"™, T™X) )+q p(u, T™X)]/ (1-0)
Since limn—. T"x=u then p(u,Tu) must be zero ,therefore u fixed point
The uniqueness follows from the condition 2 let v be another fixed point
p(uV)=p(Tu,Tv) =g max{ p(u,v), p(u,Tu), p(v,TV), p(u,Tv), p(v,Tu)}
< ¢ p(u,v), which is contradiction.
So, u must be equal v. Then T has unique fixed point.

Consequently, the result in [2, Theorem
1],[5,Theorem3.1]and[4,Theorem1] as special cases of Theorem(2.6).Also ,
we have the following corollaries:

Corollary2.7: If X as in Theorem 2.6 and T satisfies one of the following
conditions

1- p (Tx,Ty) < qmax{p (x,7x) , p(X.y)}
2- p (TX,Ty) < gmax{p (x,7x) , p(y, Ty)}

3- p(Ix,Ty) <a{p (x,Ty)+tp »Tx) }
4- condition (2.1)
Then T has a unique fixed point

Finally, if we replace T in above by TX( for positive integer k) then T also has
unique fixed point .

To prove second result in locally case we need to define a chainable
generalized metric space:

Definition2.8 M : A G.M.S. X is said to be e-chainable if for any two points a, b
€ X there exists a finite set of points a = Xo, X1, . . ., Xn-1, Xn = b such that
p (Xi-1, Xi) <e fori=1,2,3,...,nwheree >0
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Theorem2.9: If T is self mapping defined on a T- orbitally complete, €/2 -
chainable G.M.S. X satisfying the following conditions:
L If p(xy) <o=p(Tx,Ty)sA max{ p(x,Tx),p(y,T3),p(X.y),p (X, TY),p(y, TX)}, 0<
A<1,PX,yEX.
2. forall x,y,zeX, p(x,y) <e/2 and p(y,z) < e /2 implies p(X, z) <e.
Then T has a unique fixed point u in X. Moreover for some x in X, limm - » T™X
= u.

Proof: Let x € X and M= max { p(x,TX),p(y, Ty),p(X, ¥),p(X,Ty),p(y,TX)}. M give
us fife probabilities as follows:

. If M=p(x, Ty).
To show that limm—.T"X = u. Let x €X and y=Tx. Since X is € /2
- chainable, we can find finite number of points
X= X0, X1, X2,..., X1t-1, X1t = T™*!x such that
Pp(Xi-1,Xi) < €l?2 for all i= 1,2,...t.
ceeee (2.4)

Without any loss of generality suppose that x #7 ™*x the points X,

X2, ..., X1t-1 are distinct (and different from x and T™!x. we shall show
that

p(x, T™Ix) < t1¢/2, as follows:

- Ift.=1, from (2.4)
p(X, T™X) = p(Xo,X1)

< c / 2.
ceeee (2.5)

- If t1=2, from condition 2 and (2.4)
p(X, T™X) = p(Xo,X2)
< €
veee (2.6)

= 2¢/2.
e (2.7)

Now if t1>2, consider two cases

Casel. First let t: be odd and t1= 2j+1, j > 1. Now
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pOX, T™IX) < p(X, X1) + p(X1,X2) + = =+ p(X2j, X2j+1)
<(@2j+1)e? [from (2.4)]
= ta e/2.
. (2.8)

Case 2. Let t; be even and t1=2j , j >2. Then
p(X, T™X) Sp(X, X2) + p(X2, X3) + = =+ p(X2j-1, Xj)
<e+ (2] — 2)e2 [from (2.4)and (2.6)]
= t1 €.
. (2.9)

From (2.5),(2.7),( 2.8)and (2.9), we obtain

p(X, T m*ix) < tie /2, 4 t1.
. (2.10)

By the same way

p(X, T m*2x) < tr € /2.
w (2.11)

We can find p(x, T™X) < tie/2, Vi€ N by the same way.
By induction,

p(T™x, T™x) <a™ p(x, T ™x)
p(TMx, T™Ix) < A t16/2
(2.12)
and
p(TMX, T™ix) <M p(x, T™iX) , VieN
<" tie/2.
(2.13)

Note that even if some of the points T™Xo,..., T" X are equal then the
result is true.
p(TMX, T™Ix)= p(T™Xo, TM(TX0) )=0

Now we shall first Note that if T™ x=T"x for some m, n€ N, m>n then let
p=m-nand
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u=T"x we have TP u=u and so T u = u, ¥k € N.if u=xo, X1, X2,..., Xr—1,Xr=
Tketly,
p(TMu, T™ u)< i re2, ¥YmeN for some fixed reN. Then

p(u, T u) = p(T®u, T*1u) < A re/2 — 0 as k—oo and this implies
Tu=u.

If T" x #T" x, ¥ m, n € N.now we show that {T" x} is a Cauchy
sequence in X.

Let keN, take m (>k) €N. Again consider two cases.
Case 1: Ifnisodd,sayn=2s +1,s>0, by (2.12) we have
p(TM x, T™ )< p(T™X,T™X) + p(TMIX,T™2X) + - -+
p(Tm+25X,Tm+25+1X)
<Aty e R+ €2+ o+ Bt € /2
<A ae/2.

Case 2: If niseven, say n =2s, s>1, by (2.12) and (2.13),
p(TmX, Tm+n X) S p(TmX, Tm+2x) + p(Tm+2X,Tm+3X) 4+ o o o4
p(Tm+25_1X,Tm+25X)
<Aty € RHA™2t3 €2+ ¢ o o HA™E I, €2
<AMe(t+A% 3+ o o e+, 2
="be/2

Where a=ti+it, + ¢ «+i%8t,and b=ty +42ts + « « 41571,
Therefore combining both the cases we have

p(TMX T X) <Mz €/2,

where z=max{a, b}.Since 1€[0,1), ™ — 0asm — o,
this shows that {T™x} is a Cauchy sequence in X. Since X is T-orbitally
complete,
{T™x} is convergent in X. Let
limn-oT™=u. ..
(2.14)

To show that T(u) = u we need two cases.
I- if T™x# T(u),u for any méeN,then by (2.14)
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p(U,Tu) <p(u, T™X) + p(T™X, T™IX) + p(T™1x,Tu)
<p(u,T™X) + A™ p(x, T™x)+ 1™ p(x, Tu)
<p(u,T™X) + 2™ [tie 2+ A p(X, Tu)]
lIMmoep(U,Tu) <liMmowp(U, T™X) + liMm—A™[tie 2+ 4 p(X, Tu)]

since A€ [0, 1), A" —» 0 as m —w , thus limm-p(u,Tu) =0.Hence
u=Tu.

ii- assume that T'x =u, T’x = T™x for somet. By (2.10)

p(u, Tu)= p(Tx ,T"x ) < 2t p(x,T *x) — 0 as t —oo.Hence
u=Tu.

To prove the uniqueness of the fixed point, let veX, u#v and Tv =v.
Since X is €/2 —chainable, we can find a finite chain Xo, X1, X2,..., Xr-1, Xr
By the same sense of (2.10)
p(u, T™) <re?2.

p(T"u, T™) <A™ p(u, T™) , ¥m €N.
<A"re/2

Hence p(u,Vv) =p(T"u, T™) <i"re/2 — 0asm — oo, this implies u must
be equal to v.

This completes the proof of ( 7).
1. If M=p(X, ),

Proof of theorem 1 in[1].
1. IfM=p(x, TX)

Letx € Xand y=Tx,
= p(Tx, TX)< 1 p(x, TX) ,0<i<1
Stepl: Similarly as in Das [1], we can show limm - » T™X = u.

Step2:To show that T(u) = u we need two cases.
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I- if T"x# T(u),u for any neN,then
p(U,Tu) <p(U,T"X) + p(T"X, T™X) + p(T"x,Tu)
<p(u,T"X) + A" p(x, TX)+ A" p(X, TX)
<p(u,T"x) + A" [1 + 2] p(X, TX)
limn—op(U,Tu) <liMnowp(U,TX) + liMnoA"[1 + 4] ne2
since A€ [0, 1), A" —» 0 as n —oo , thus limn_«p(u,Tu) =0.Hence

u=Tu.
ii-assume that T' =u, T'x = T"x for some t
p(u, Tu)= p(T , T ) <A'p(X,TX) — 0 as t —oo.Hence u=Tu.
To prove the uniqueness of the fixed point, let veX, u#vand Tv=v.
s Since X is €/2 —chainable, we can find a finite chain Xo, X1, X2,..., Xr-1, Xr

by the same sense of (2.10)
p(u, Tu) <re?.

p(T"u, T™) <A™ p(u, Tu) , ¥Ym €N.
<A"re/2

Hence p(u, v) = p(TMu, T™) <Ai™re/2 — 0 as m — oo, this implies u
must be equal to
This completes the proof of ().

IV. If M=p(y,Ty)

p(Tx, Ty) <4 p(y,Ty)

Let y= Tx, p(TX, T?X) <4 p(TX, T%),but 2€[0, 1),
p(Tx, T?x)=0.Hence Ty=y.
To show that limp—.T"X =Vy.

p(T%p)=p(T"X, TTy) <A™ p(y, Ty)= 2" p(y.y) =0 .
To prove the uniqueness, letv eX,u#vand Tv =v.

p(u,v) =p(Tu, Tv)<ip(v, TVv)=0, this implies u=v.
This completes the proof of (IV).
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V. If M=p(y, T X)

p(T X, Ty) <4 p(y, TX)
Let y= Tx we obtain,

p(T X, TX) <A p(Tx, Tx)=0
Hence Ty =y.

To show that limn—.T"x =y.
p(Txp)=p(T7X, TTy) <A™ p(y, TX),
but A€[0,1),

p(y, T"x)=0.
To prove the uniqueness, letv eX,u#vand Tv=v.
p(U,V)=p(Tu, Tv)<Ap(v, Tuw=24p(v,u),

but € (0,1)= p(u, v)=0. This implies u=v. This completes the proof
of ( V). This completes the proof of theorems=

Corollary2.10: Theorem (1) in [1].

Corollary2.11: Let X as in Theorem 2.9, indeed ,condition(2)in
Theorem?2.9satisfied .If we replace condition (1) in Theorem2 by one of the
following

1
2

If p(xy) <o= p (Tx,Ty) < qmax{p (x,Tx) , p(X,y)}
If p(xy) <o=p (Tx,Ty) < gmax{(p (,Tx) + p(y, TY))/2 , p(x,y)}
3- If p(xy)<o=2p (Tx,Ty)<afp (x,Ty)+p 3,1x) }
4- If p(x,y) < 0= condition (2.1) satisfied
Then T has a unique fixed point.
Finally, if we replace T in above by T( for positive integer k) then T
also has unique fixed point .
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