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Abstraet

In this paper an oplimal {Bayesian) fixed sample size procedure for selecting the
better of two Poisson populations is proposcd  and sludicd. Baycsian decision-
theoretic approach with different loss functions and Gamma priors are used o
construct this procedure. A suboptimal procedure that is based on posterior estimate
of the parameters and a method of obtaining an approximation to the optimal
procedure using Stirling's formula are also presented. Comparisons among (hese
nrocedures are made using performance characteristics such as Bayes risk and the
probability of correet sclection of the better population.

1- introduction

Suppose that 1T, (i=1,2) arc two Poisson populations. The quality of the ith
population is characterized by a positive real-valued parameter 4, the mean rate of
occurrences in a unit of time, space, volume ...(i=1,2). The problem is to sclect the
better of these Poisson populations on the basis of a fixed number of observations N
which 1s partitioned into ny and ny (not neeessarily are cqualy the number of
obscrvations taken [rom populations [T, and 11, respectively.

The better populaltion is defined to be the one with the largest mean rate of
accurrences. The ranked mean rates are denoted by Ap, ) = Af27, the values of

A [, 1 arc assumed Lo be unknown to us. Morcover we don't know which population is

assuciated with A [z1-
Qur poal is to design fixed sample size scleclion procedures that cnable us to
sclect the population associated with A {21, thus we have two-decision problem.

The statistical formulation as stated above is typical of many well-knovn
praclical problems in many situations in real life. For illustration, supposc we would
like to compare the performance of two different machines that produce sheet of
metal in continuous rolls, data may be collected on the number of defects x, that are
spolted in several time segments of, say, 5 minutes duration. It is rcasonable to

assume that X has a Poisson distribution with parameter A, (=1,2) for the two

machines. Our poal is to choose the machine that has high rate of defects. Iurther
examples on the situations where the Poisson model applicd and the problem of
practical interest is to sclect the better of two Poisson populations may be found in
Gibbons, Olkin and Sobel (1977). -

The following experimental conditions should be met.

1. The observations produced by cach population are independent each other.

2. A, and 2, the mean rates of oceurrences are constant during the experiment.
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Most of the previous work on the Poisson sclection problem seems (o be linited
to the classical approaches : the indifference zone approach and the subsct sclection
approach,

Alam (1971) considers three procedures for selecting the process correspouding
to he largest mean rate of occurrence using the indifference zonc approach.

Goel (1972) considered jnverse sampling rule to define a selection procedure for
selecting a subset containing the population associated with largest value of mean
rafe.

Alam and Thompson (1973) proposed a procedure 1o select simultancously the
pepulation associated with largest parameter and estimate this paramcter.

Huang and Wen Tao (1973) suggested two sclection procedures for choosing a
razdom subsel guaranteed 1o contain a 'best! population with a preassimed
probability,

Gupta and Huang (1975) considered the selection from k Poisson populations of
a variable size sybsct including that population with the largest parameter when {ixed
(caual) sample sizes are taken, In Gupta and Wong (1977), the problem of selecting a
suiset of k different Poisson processes including the best which ig associated with (he
Lupest value of the mean rate is discussed.

Gupta, Leong and Wong (1978) proposcd modified procedures to Gupta and
Huang (1975) with tabulated approximate values (detenimined by numerical metiods),
fer more details of this procedures, see Gibbons, Olkin and Sobel (1977).

Some contributions such as Nelson and Hong (2003) presented an mdifference
zone selection procedure which is sequential and has minimum number of swilches.
Nelson and Pichitlamken (2001) propose fully sequential indifference zone seluction
srocedures.

Sonie contributions using Bayesian approach have been made by Madhi (19806)
wlhio presented  Baycesian sequential procedures for Binomial and Multinomial
seleetion problems. Bland and Brateher (1968), Chick (1997). Chen (1995) and Chen
ctal (1996) have formulated the R&S problem as mulli-stage oplimization problem.

In this paper, a Buayesian fixed sample size for Poisson selection procedure is
proposed and studied using Bayesian decision theoretic formulation, The procedure iy
eptimal in the sense that it minimizes the average risk  with respect to certain prior
Jdiziributions on  the parameters, namely the family of Gamnma distributions.
Stuboptimal procedures are also suggested. Results  using Bayes risk and the
probability of correct sclection of the belter population are also presented.

The paper is organized as follows : in scction 2 we present an oplimal

Jayesian)  fixed sample size scheme for selecting the better of (wo Putsson
“upulations using Gamma priors and various loss functions, The two-decision I'uisson
~oxeetion formulation is given in subsection 2.1. subsection 2.2 contains the Biyesian
leetion procedure {opm). In subscction 2.3 we drive the posterior expected losses of
zaking decision d; and d> for constant, lincar and quadratic loss functions. In s2ction
*we present the suboptimal sclection procedure (subopml) as an approxima!’on to
b oprocedure. In seclion 4 we deseribe the suboptimal seleetion procuedure
ubopm?2) based on posterior Bayes estimaic of the parameter. Comparisons [ the
-1emes using posterior expected loss-under lincar loss function is given in sccion 5.
aine Monte Carlo studies concerning the probability of correct selection of the betier
spulation are  given in section 6. Conclusions and future research are given in
xction 7.
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2. The Bayesian (Optimal) sclection procedure (Opm)
2.1 The Bayesian Decision-Theoretic Formulation

let /7, and [7, be two Poisson populations with unknown mean rates of
occurrences A, and A, respectively, and  consider the following two - decision
problem with deeisions :

(f; . }L; < ﬂ-;

and (1)

(E’g : »‘,- el q.

Corresponding  to the two  decision  problem  the parameler  space
Q--{(ﬂl A )05 <, 02, <o0} is divided into two disjoint sets 1 @, —{( /11 L)

02, <A, <0} and @,={(A,A): 0<4, <4, <o),

To obtain, an cxplicit Bayes rule (Bayes scleclion procedure) for this two
decision problem we must specily loss function and prior distributions. Supposc the
loss (unctions proposed are as follows :

0 if (4, 4,) €&,
L, A dYy=4 T T 2
A4 2d)) ) e, (2)
and
2 =2 (1) eQ
1,2(,1,12;({_._,):M1 Fhdde 3)

if (4, 4) 0,

Where r—0,1,2 gives the types of loss function, which arc constant, lincar and
quadratic respectively. L (i=1,2) is the loss funclion corresponding to decision ¢, and
Ky ond k; are positive constants (the same for cach pair ol A's ).

The Bayesian approach requires that we specify a prior density function
afi ), =12, expressing our belicfs about 4, before we obtamn data. From 2
mathematical point of view, it would be very convenient il 2, s assigned a prior
distribution which is a member of the conjugate family, tn this case is the fumily of
Gamma  distributions. Accordingly let A,(i=12) is assigned Gamma prior
10,00, A, Gammea (1],
function (Raiffa and Schlaifer (1968)) is given by :

distribution with  parameters The normalized density

l’.r

(,71)_1(5();) i A,”*'“’ JS0L>0A>0 (4)

Where
”: - the number of independent events occurred in a unit of time.
H ; T time.
A ; » the mean rate of occurrence
ItX;, = (x,']: x,:g:--wx;”), (i=1,2) be a random sample from populution. T,
thien the likelihood function is given by
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The posterior density function is derived from the prior density function (4} and
the assumed sampling mode] (3) by means of Bayes theorem as follows ;

ey /X, )= —_f(:‘:f /Mft_)__

- /e 7 2 )m( 2, ),
A
where

(f:)”;r(”: + ‘Z‘,xﬁ’)
g

’ n
met Xox

4 . f]‘- .F) * F=1 ¥
jl_‘l}lg‘ (nl ) n+ 1)

/(2,7 4, )_75( A ). =

"

" ! L 4 T e

et 7=+ +n and /1, = ;40 3 Xy
F=1

then

([ r;) nl i
T ( )“,r' / :\’;f ) - _I_-_L‘_.rr__ ¢ T j'f e
I(n!)
As the Gamma family is conjugate with the Pojsson sampling, it iy unnee: sy
U revise a Gamma prior on the basis of 4 sample from a Poisson population usiy,;
Payes' theorem, Givep the prior distribution and sample resulls, we nced stmpl: nole
tiat
o 144
1{;’:-' f; + 17 1!1](1 ”1’ = ”; + foyl ("_‘[‘}’2)!
je
1 15 the number of observations taken from cach population (N -2y » the total
~iber of observations taken from both populations),
The forcgoing is all {hat need in order (o obtain o Bayes rule (ayes seiveling
cocedure) for the tomponent two-decision problem.

2 The Procedure (opm)

For the two-decision problem considered above, the Baycesian sclection
eedure is given gs follows -
make  decision ¢/ Ar<ly that s selecting IT,as  the better  population
FR G by )<, 0
|
nake  decision d> 424, that is sclecting Il,as the beter population

W hid) 2R 15d,) '

Where Ri(A,2,:d ), (1=1,2) is the posterior expeeted loss for the decision el
- caleulated as follows :
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B2, 2 fdf):ET(A,.A_,/”;.:;,H;,.-;)[Lf (A4 d )], i=12

where w(2,,A, /n},6],n3,45 Jon the expectation sign is the joint posterior of
2, end A, with respect to which the expectation is being performed.

The optimal posterior expected loss using opmis R(4,,4, }=min(K,.R,)

2.3 The Posterior Expected Loss for Some Loss Funcilions

In (his subscetion, we derive the posterior expected losses of making decision ¢
and o> for constant, linear and quadratic loss functions , supposc the losscs in making
decision ¢, and d; arc constant, then the posterior expected losses arc delbned a3
follows:

()7 () T (04 )
f(n:,') o (i)

Where 77() is a gamma function with a similar form for d2, R,(4, 4,5d,) -

R (A, A d, )=1I1

If the losses are lincar, then the posterior expected losses will be

S (4 KT (P R (AR
]{1()\‘1 ‘Aﬁ;dl):kl n:. :; + ( ) ( ) ( n}il
- i 5 —])‘(n =D )™
Ny + i-DYG ) 1(n (F-+nits — o =50
( ) Zl mAjtl g F S
JA] 5 (D!
With a similar form Lor the posterior expected loss for da, R, (4,,4,,d,)

=

Similarly for the Quadratic losses, the posterior expeceted losses are grven by
(] Dy S () ) (] f+2)

j\ 3y { ;\, B - k
(A daidly) = { () ()T

2y ; 2.sz L )” (!")JF(HI + j+1)

o Gy AT )™ A
(n +1ny  (ng 1)n} ”‘?\;’ () ) L () )
(65)° (13)° o D(nf)jl(t]+e3)""

With a similar form for the posterior expected loss for da, Ry(4,,4,,d;).

3. The Suboptimal Selection Procedure (Subopml)

Using stirling's formula {or 'q'proximating {actorials, we can obtain the
approximations posterior cxpected loss Ki(4,4,4,) and Ra(A,2,;d,) for constant,

lincar and quadratic losscs given in scction 2.3.
The procedure subopml is given as follows :
make decision d; (select [1,as better population) if

R0, 0,0d ) <R 2(0,4,:d,)
and
make deciston & (seleet IT, as better population) if

Ry(h,dyed, )2 R 2(2,,0,:d,)

ALY
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Under constant losses, & and & are given by :
. 1) @) ’Ht’ W+ —-])
R (AAd)=k| 1 (/) ,( J ( )}( / |, with a simijar
() (.?Jr)*(’z' "7 2(:'+: )

form for KA, 4,,d

Under linear losses, £ and &7 will bC'

(I.J‘(z ﬂ”’m, m'-,f)
(1)’ 2(2;) e U c((- £y

5 (A oich )=

"

Y fu‘“‘
T L}‘S‘.

(f (m]w;'q L) L(f!,' -~ l) 2(!q)" ](n}‘] Jwr;—!yq'hr?_;)
7=

N g’}l *_.
©)G+) "’ 2+ )"UH(QJ@Q({ D

Similar form for K, (2, ),d)
Sunilarly under quadratic losses, K and &, havc the forms :
o I N2
n’/),},/)x(il’]); (fi(j*iﬂ ()(H(Hﬂ)
() (f’.?} J"(;‘_}j 20;} 7(/_H;)!§Ijlf
f}ﬂ:ﬂ' i (z‘ n’ 2'1,2 (I)’ (1, )"(Zf{)z(})’+})

r fh’ !
I r 1 . o
A g 7 cf(az)zm—f) C(H: }*’”

12! ! (1’} (}g H)H' A S (f)’ﬁ) +])Hm+]—-])

AT S oot g e o

With a similar form for & 24,4,d,).

The optimal posterior expected loss under subopml is R° = min( R, R, .

- The Suboptimal Pr ocedure (subome)
A Baycsian suboptimal scheme is proposed with decision criteria based on e

sterior probabilities of 4, and 4,, the posterior Bayes estimator of /1 (1 L2 with

Jecl o the gamma posterior distribution s given by E(A /x )_ —-. This 5

i

apted by the need for o quick, casy procedure, to select the belter of two Poisin
lations, which allow for the incorporation of information about the pariumcicrs
- sampling information, ignoring the decision- -theoretic structure and mdlﬂprcnu
2 formulation. Suppose n obsecrvations are taken from ecach population und o
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assumed to be independent, this procedure is given as follows @ Select dy o 4, < A,

~ Ea E tad
if i1 <A; and Sciectdy: Ay 24, i Arzls
For the sake of risk comparison, we use the following procedure

Lot R = Ry(A,0:d,) if di<da, R =Ry(Ayrdy) if 2420
So R’ will be the optimal risk using subopm?2

5. Comparisons and Discussion Under Posterior Expected Losses
This scction contains some pumerical results about the efficiency of these
schemes relative to opm for the lincar loss {function, various N and various priors.
From table I we nete that, the posterior expected loss for the optimal procedure
is less than or cqual to the posterior expeeted loss for the suboptimal 1 and subopiiunal
2 procedures. Also it is clear from the table that as N increases, {he Dayes risk
decreases in all schemes.

2.1 The Algorithms for the opm and subopmli Procedures
1. Specily prior parameters a,¢; ,i=12, sample size n, parameters for populations
A >0 and constant losses ki
2. Generate a random sample of size n rom populations J1,, (XX, .., X il Iind
1

s =2, Xy as follows :
J-d

1L Fori=l ton
it. Generate a random number U, e [0,1]

I TTU, = e then j=j+] and goto ii clse s~ s+
!

3. Caleulate the posterior parameter for populations I, i-=/,2
M ot L e "_
n,=n, b8, f=L+tn

4. Tind the posterior expeeted loss for decision oy and d; (R,(2, 4., ),

1,(4,4,;d,) for opm procedure and R‘f(/?.;,)»_;,'d,), R’B(A;,;tg,'f!;,) for

subopml procedure).

Tuble 1
Comparisons of the schemes using Bayes risk under lincar loss function for
various prior and various N

ko=k,=5 , A=(96)

I'rior prob. N opm Subopnil Subopm?
10 2. 444837E-02 7.027235C-02 2.4448370-02

(3,306,3) 14 3.549442E-03 4.7155408E-02 3549442603
20 1.281756E-03 3.324223E-02 1.28175613-03
10 3.163718L-02 7.330076E-0G2 3.1637181:-02

(6:5)(6,3) 14 4.736941E-03 4.550013LE-02 4.736941E-03
20 1.624834E-03 3.207349E-02 1.62483412-03

£
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6. The MC Studies
For some applications it is of interest to compare the procedures mentioned 1n
the previous sections under criteria other than risk such as the probability of correct
sclection of the better population.- Using this performance measure, some Monic Carlo
(MC) simulations werc carried out to cvaluate the effectiveness of our procedurcs.
Subscction 6.1 contains description of the MC studies. In subscction 6.2 we
present some MC results of estimates and discussion.

6.1 Description of the MC Studics

In this subscction we bricfly describe the method of MC simulation as it is
applicd 1o our procedures. MC studies have been carried out to investigate the
probability of correctly sclecting the better of two Poisson populations.

The simulation program performs large number of runs (=3000), which arc
assumed to be independent, in order to obtain MC estimates with high precision. At
cach run mutually independent Poisson obscrvations arc gencrated by using the
assumed probability model with 4, and 1, speeified in advance and then the sclection
pracedure is applicd. The obscrved values of probability of correct selection measure
arc accumulated. At the end of all runs, these accumulated values are divided by 7 to
obtain the MC estimates of probability of correet seleetion, On run of 5000 trials the
same 4, and 4, arc used.

The values of X can be considercd as the observed valucs of random vanable,
possessing, the Poisson distribution that should be simulated according to the sampling
scheme, the following quantities are required for input £, 4, priors, loss function, N.
As measure of performance of the proposed procedures we shall use the probability of
correet selection  P(CS). In a MC experimentation (he population that has greater
mean rate is known to us, so we can check i the procedure gives a correct selcetion,
Afler t repetitions we estimate P(CS) by the [raction of correet selections in the ¢
repetitions. It can computed as follows

P(d,/d,) is the proportions 0[ number of times when the procedure takes

decision oy given decision ¢ is true In t repetitions.

PICS)=SP(d /d)  whered, 2 <Ay, dy: 220,
f=f

6.2 The Algorithms to Find the Probability of Correct Sclection
1. specily prior parameter 12.,f] ,i= 1,2, samplc size n {rom cach population, and the

parameter for populations 4, > ¢

2. take t=1,...,5000 replication
2. take an 1.1.d. sample of size n from populations II,, (in X ... X and (od
Jl
§ = X,
=1 d
. B+ XXy
4. caleulate the posterior Bayes estimators A, where 4, = _r_’fi.._ , i=12
[ +n
5. compare the posterior Bayes cstimators 4,, i=/2 and thc paramclers of

populations 4, to find the number of correet selcction and the number of not
correct selection for the subopm?2 procedure. for the opm and subopm! procedures

AL
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compare j; , =02 and Ri(4,4,:d;), Ry(2,2,:d,) for opm procedure and

Rt!a;,/{;fd;), R-J’(/l;,l_;,'d;) for subopmI procedure.

5. aller 5000 replication compuic the probability of correct sclection P(CS) and the
probability of not correct sclection P(NCS).

(CS)-total number of correct selection /mumber of replications

"(NCS)= total number of not correct selection / number ol replications

3.3 The MC Results of P(CS): Comparison and Discussion

In this subscetion we compare and discuss the MC estimates of P(CS) of tI»
¢hiemes opm,subopm] and subopm?2. The numerical results arc presented in table 15
‘rom this table we note that the P(CS) increases as N increase for all proceduics [or
[sets of simulations. The table also shows that the P(CS) for the opm procedure is
saiter than or equal the P(CS) under the procedures subopm ] and subopm? for all set
- simulations, The P{CS) for the subopm] is greater than P(CS) for the subonm? for
.. sets of simulations.
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Table II
Comparisons of the schemes using P(es) under linear logs function for various

prior probabilitics, various N and various Ayand 4,

kl = kz =5
_P'rior prob. N apnl Subopm| Subopm2
10 1.000000 1.000000 9. 794000E-M
G0 4 1.000000 1.00000 :
) =(69) : : 000000 9.910000L-91
20 1.000000 1.000000 S.07000LE-01
10 1.000000 1.000000 9.868000LE-01
(6,3),(4,22)
e 14 1.000000 1.000000 9926000101
A=(5.8)
20 1.000000 1.000000 9.288000L-01
10 1.000000 1.000000 9830000001
7D 0 1.00000 840001
1=00.3) _dl_fl 1.000000 000000 9‘9“4%0]'—0_1
20 1.000000 1.000000 9.9095046015-01
10 0.980000E-01 0.94600013-01 8.00200E-01
(6,4),44,5) - : - o
14 9.980000L-01 9.9500001-01 8.9140001:-01
A=05 L - - —
20 1.000000 0.9920001°-01 9.5600001E-01
.- JESp—

7. Conclusions and Future Research
In this paper we proposed Bayesian {ixed sample size procedures for selecting

he betier of two Poisson populations using Bayesian decision-theoretic formulation
under different loss functions. A method of obtaining approximation {subopm!) to the
optimal procedure (opm) is suggested which is simpler in computation with [ittle
increasing in risk. The suboptimal scheme (subopm1) that based on posterior estimuale
is suitable when the number of alternatives are large as the computations procedures
are simple and fast.
Future rescarch directions include
1.Only Bayesian fixed sample procedures have been considered, an extension 1o
Bayesian sequential procedures would be usciul.

2.The case of two populations has been tuken up, an extension to more than two
populations would be straight forward, although not without computational

difficultics.

3.Applications of our approach can be explored in other task.

4.The exact formula for the probability of a correct sclection (P(CS)) can be
cxplored. - '

5 The work can be extend using exponential family and general loss function.
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