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Abstract 
      The present study is concerned with three dimensional nonlinear analysis of rein-
forced concrete arch  structures subjected to dynamic loading .  
         Material nonlinearity as a result of tension cracking, strain softening after crack-
ing,  nonlinear response of concrete in compression, crushing of concrete and  yield-
ing of the reinforcement are considered . 
         The three dimensional computational model is adopted in the present study. The 
eight  and  twenty  noded hexahedral isoparametric elements are used for the spatial 
discretization of concrete , while the steel reinforcement is assumed to have uniaxial 
properties in the direction of the bars and it is incorporated in the concrete brick ele-
ment by assuming a  perfect bond .  
         Concrete is considered as a linear elastic strain softening material in tension and 
as an elasto–viscoplastic material in compression. A classical elasto – viscoplastic 
model is used in the present study to model the steel reinforcement . 

  الخلاصة
  . الديناميكية المعرضة للأحمالحليل الاخطي الثلاثي الأبعاد للأقواس الخرسانية   المسلحة و يتعلق البحث الحالي بموضوع الت

         و لقد تم إستخدام التمثيل اللاخطي للمادة في التحليل المجرى ضمن هذه الدراسة كما أخذ بنظر الاعتبار دراسة العوامـل                    

دار الانفعال بعد التشقق و السلوك اللاخطي للخرسانة تحت الضغط مع تهشم اللاخطية للمادة و تشمل تشقق الخرسانة بالسحب و انح

  . الخرسانة و مطيلية حديد التسليح 

و استخدام العنصر الفضائي الواحد للكونكريت من ثمانية أو عشرين عقده و            .          المنشأ الخرساني مثل بموديل ثلاثي الأبعاد       

 يفترض أن حديد التسليح له مواصفات أحادية الاتجاه و باتجاه قضبان التسليح  و لتمثيـل                 ،بينما(isoparametric)هو من نوع ال     

المنشات الخرسانية المسلحة تم فرض وقوع حديد التسليح ضمني داخل عنصر الخرسانة الطابوقي الشكل و كذلك بافتراض وجود                  

  .رابطة محكمة بينهما 

 بعد التشقق عند خـضوعها لإجهـاد   (strain softening)ية و لها هبوط بالانفعال          تتميز الخرسانة بكونها مادة مرنة خط

 لتمثيـل حديـد     اللدونه لزجة   –و قد تم اعتماد مادة مرنة       .   لدنة عند خضوعها لإجهاد الضغط     – لزجة –الشد، و بكونه مادة مرنة      

  .التسليح

Description  Symbol 

Strain – nodal displacement matrix . [B] 
Strain – nodal displacement matrix of steel . [Bs] 
Damping coefficient. c 
damping matrix.  [C]  
Elasticity matrix  [D]    
Stresses – strain matrix of steel .  [Ds]    
Elastic Young’s modulus . EO 
Young’s modulus of concrete .  Ec 
Young’s modulus of steel . Es 
Ultimate compressive strength for concrete . f′c
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Tensile strength for concrete . ft
Yield stress for steel . fy 
x , y and z  components of gravity direction vector .  f1 ,f2 , f3
External nodal forces in x , y and z – direction respectively . Fxi ,Fyi ,Fzi 
Gravity constant . g 
Fracture energy . Gf 
Jacobian matrix . [J] 
Jacobian matrix for steel member .  [Js] 
Total stiffness matrix .     [K]   
Concrete and steel stiffness matrices respectively .  [K] c , [K] s 
Mass  matrix . [M] 
Shape function . [Ni] 
Vector of internal resisting forces . {R} 
Vectors of nodal displacements .                                                         {U} 
 
Vectors of nodal velocities and accelerations  respectively . 

.     .. 
{U}{U} 

Displacement components in x , y and z – direction respectively . U ,V ,W 
Global coordinates of ith node . xi  , yi , zi
Global or Cartisian coordinates . X , Y , Z 
Yield surface function . α c
Failure surface function . �� , �1 
Parameters of Newmark method . � , � 
Ultimate concrete strain . �cu
Mass density for steel and concrete respectively . �c , �s 
Stresses . � 
Stress  vector . {�} 
Poisson’s ratio . � 
Natural local coordinate system . ξ , ŋ , τ 

 
Introduction 
 In the past , the arch represents one of the few  structure systems which make 
it possible to cover large spans, AL-Dahash(2006) . The earliest inhabitants developed 
the arch as an important element of their architectural objects  as expressed by old 
bridges,  aqueducts and large public buildings .                                                                                       
         Today, the same importance is presented especially in construction of bridges  
and arched structures which are constructed in different shapes and from various ma-
terials such as brick, steel, reinforced concrete, ferrocement  and timber.                              
The main aim of the arch is to enhance the load carrying capacity more than that b y 
straight beam. This may be attributed to the stiffening behavior due to the                 
membrane action which leads to reduce the bending moment , shear forces and  axial 
forces. Arching beam, not only reduces the bending moments in the arch in compari-
son with a straight member of same properties and loading patterns, but even reduces 
the shear forces as discussed by Winter(1972) On the other hand, an axial compres-
sive force is introduced due to the arch action. This state of action is   compatible with 
the concrete material, which is relatively weak in carrying tension and shear stresses 
but adequate in carrying compressive stresses. With the advent of modern computers 
and sophisticated analytical techniques of concrete structures, an intense research ef-
fort has been used recently to model the concrete under short– time loading for one, 
two or three–dimensional stresses states there Morris (1968) studied  the effect of the 
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axial deformation in the strain energy expression and derived a three dimensional ex-
act stiffness matrix for curved beam, but Noor(1979) used the explicit central differ-
ence method in addition to Newmark’s average acceleration and Park’s stiffly stable 
method to study the nonlinear dynamic analysis of curved beam . Prathap(1982) pro-
posed the concept of (membrane locking) phenomenon to explain the very poor be-
havior of exactly integrated low order independently interpolated polynomial fields . 
AL-Naimi(1996) studied stresses analyses of the three dimensional reinforced con-
crete structures subjected to static or dynamic loadings. Nonlinear material and time 
dependent effects are included in the analysis. This research is concerned with creep 
and shrinkage as a time dependent behavior of  concrete . The material nonlinearities 
as a results of tension cracking, strain softening after cracking , the nonlinear response 
of concrete in compression, crushing of concrete and the yielding of the reinforcement 
are considered. AL- Daami(2000) developed a space curved beam element and used 
the exact strain energy expression. In the normal strain, the influence of the axial 
force, bending moment, bimoment, direct shear forces and torsion moment are in-
cluded . This research includes warping deformations for that the stiffness matrix can 
be used for thin– walled section. Besides its application to solid of revolution , the 
semi– analytical method can be applied to prismatic solids.  Chen (2005) discussed 
the (1/2) sub harmonic bifurcation and universal unfolding problems for an arch struc-
ture with parametric and forced excitation in their research. The amplitude frequency 
curved and some dynamical behavior have been shown for this class of problems by 
Liu et al. .     

The reinforced  concrete is a composite material made up of concrete and steel 
and it is efficient in the construction of some arched structures such as gable frames 
and arched bridges, AL-Dahash(2006) studied stresses analysis of the three dimen-
sional reinforced concrete arch structures subjected to dynamic loading . 
Concrete Stiffness Matrices 
         The elastic stresses is used to check for cracking and to modify these stresses to 
real viscoplastic stresses at each Gaussian points by AL-Dahash(2006) . Using the 
Gaussian product rules , the stiffness matrix linking node (i) and (j) is obtained : 
                                    T
Defining   [Tij ]c =  [Bi]   [D]   [Bj]  │J│ 
where ; │J│ is the determinant of Jacobian matrix ,                                                                                      
              [D]  is the elasticity matrix , 
               [B]   is the strain – nodal displacement matrix . 
                     NGAUSS    NGAUSS   NGAUSS 
then   [Kij]c   = ∑       ∑       ∑ [T]c (ξp , ŋq , �L )ij  wp . wq . wL                         (1)       
                         Pp = 1           q = 1          L = 1 

where ;  
wp , wq and wL   are the weighted values of the numerical integration ,  
NGAUSS  is the number of Gaussian points in (X , Y and Z) respetively .     
         In the 8 – noded element the sampling points are located at the centers of the six 
faces used by Hinton(1988). 
   
 Formulation of Load Matrix   
          External nodal forces have three components in x , y and z - directions  which 
are Fxi , Fyi and Fzi respectively . Gravity load is treated as consistent nodal forces . For 
node i of an element , the forces are ; 
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       Fxi                                            f1 
 
     Fyi        = ∫  [Ni]   �c. g              f2          .  dv.                                                                 (2) 
                    PV 

     Fzi                                            f3 
 
where ; v is the element volume , [Ni] is the shape function matrix , g is the gravity 
constant ; f1 , f2 and f3 are x , y and z - components of gravity direction vector , which 
are usually 0 , 0 and -1 respectively . 
Steel Stiffness Matrix 
         Using the Gauss – Legendre quadrature numerical integration scheme , the steel 
membrane matrix linking node (i) and (j) is obtained : 
                              T
Defining    [Tij]s =  [Bsi]   [Ds]  [Bsj] │Js│ 
                   NGASS       NGASS   
then  [Kij]s  = ∑        ∑   Ts (ξp , ŋq )ij  wp . wq                                                (3)    
                        Pp = 1      q = 1      

where NGASS is the number of Gaussian points of steel membrane . [Ds] , [Bs] , │Js│ 
, are  the stress – strain relation matrix, strain – nodal displacement matrix , and  the 
determinant of Jacobian matrix for steel membrane respectively . P
[K]  =  [K] c    +   [K] s                                                                                                       (4)                
Where ; [K]  is the total stiffness matrix of the element ,  [K]c   and  [K] s   are the 
concrete and steel element stiffness matrices , respectively . 
Dynamic Equilibrium Equation  
          The nonlinear dynamic equilibrium equations can be written in semi – discrete 
form as :       ..           .           
            [M]  {U} +   [C] {U}+   [K]  {U} =  {F} - {R}                            (5) 
                  .         ..          
where ; {U} , {U} and {U}  are vectors of nodal displacements , velocities and         
accelerations respectively , 
 [M]  and  [C]  are the mass and damping matrices , {F}  is the vector of external ap-
plied forces, and{R} is the vector of internal resisting forces . The global mass and 
damping matrices are defined as : 
                            T             
     [M]  =  ∫ [N]  �   [N]   dv                                                                       (6a) 
                 PV 

                                       T                
Defining   [Tij]  =  �c  [Ni]   [Nj]  │J│ 
 NGAUSS   NGAUSS   NGAUSS
then   [Mij]  =  ∑         ∑        ∑    [T] (ξp , ŋq , �L )ij  wp . wq . wL                   (6b) 
                Pp = 1           q = 1          L =  

                           T                
        [C]  =  ∫  [N] c [N]    dv.                                                                                                           (7a)        
                   PV  

                                                            
T                 

Defining   [ Tij]   =  c [Ni]   [Nj]  │J│ 
                     NGAUSS   NGAUSS   NGAUSS
   then       [Cij]   =   ∑       ∑       ∑  [T]  (ξp , ŋq , �L)ij  wp . wq . wL                 (7b) 
        Pp = 1           q = 1          L = 1 
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where T (ξp , ŋq , �L )ij  wp . wq . wL  is the transformation matrix , and (c) is the 

damping  coefficient . The vector of internal resisting forces {R} is given by the ex-
pression :       

                   T 
      {R}  =   ∫   [B]   {σ} dv.                                                           (8) 
                   PPV 

where  {σ} is the vector of total stresses  
Nonlinear Solution Technique  
         Nonlinear problems is solid mechanics are classified into two forms , first non-
linearity due to strain – displacement relationship which is geometric nonlinearity , 
and secondly nonlinearity due to nonlinear stresses – strain relationship which is ma-
terial nonlinearity . In the present study , only the second form is taken into considera-
tion . The solution of nonlinear problems by the finite element method is usually at-
tempted by one of three basic technique. 
General 
a – Incremental Procedures  
         The basis of the incremental or piecewise linear procedure is the subdivision of 
the load into many small partial loads or incremental . The stiffness matrix may take 
different values during differential load increments . The displacement increments are 
accumulated to give the total displacement at any stage of loading , and the incre-
mental process is repeated until the total load has been reached . 
b – Iterative Procedures  
         The iterative procedure is a sequence of calculations in which the body or the 
structure is fully loaded in each iteration . Different approaches are updated , the vari-
able stiffness method , while in others a constant linear matrix is used throughout re-
quiring only a single matrix inversion .  
c – Mixed Procedures  
         The mixed procedures utilize a combination of the incremental and iterative 
schemes . The load is applied incrementally , but after each increment successive it-
erations are performed . This method yields higher accuracy but with a large cost of 
computational effort .This procedure is adopted in the present study .  
The Newmark Method 
          The Newmark method is an extension of the linear acceleration  that used by 
Hinton, E. (1988) .This method adopted in this work  , method . The dynamic equilib-
rium equation is linedrized and written at time (t n+1) as : 
               ..              .          
     [M]  {Un+1} +   [C] {U n+1}+   [K]  {U n+1} =  {F n+1}                       (9) 
 
 where the internal force   {R}  is not included .               
The following assumption on the variation of displacement and velocities are made 
within a typical time step ;       
                .         ..      ..
{U n+1} = {U n} + ∆t {U n} + ((1-2�){U n} + 2�{U n+1}) ∆t2/2               (10a) 
   .      .          ..      ..                    
{U n+1} = {U n} + ∆t ((1-�){U n} + �{U n+1})                                         (10b) 
          .       ..                
where ; {U n} , {U n} and {U n} are values of displacement , velocities and              ac-
celerations  known at time (t) . Parameters �and � control the stability and       accu-
racy of the method . When � is equal to (1/6) and �equal to (1/2) , relation (10)   cor-
responds to the linear acceleration method . Newmark method was originally pro-
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posed as an unconditional stable scheme . The constant – average acceleration method 
(also called trapezoidal rule) , in which case �is equal (1/2) and � equal to (1/4) is 
adopted in the present study . 
Computer Program for Dynamic Analysis  
         As apart of this work , a computer program DARC3 (three dimensional , nonlin-
ear, dynamic analysis) from Hinton(1988)used to solved the examples in this research 
. 
The program is coded in FORTRAN–77 and has been tested on the personal com-
puter, of the civil engineering department. This program is used to solve two types of 
structural material: steel and reinforced concrete ; consists of a main program and fifty 
one subroutines .In the present study, the Fortran Power Station 4.0 compiler pro-
duced by Microsoft incorporation was used to operate the program under PC Pentium 
IIII with Intel MMX 1.80 GHZ processor and 254 MB RAM  
Application (1): 
              A clamped circular arch which having cross section and reinforcement steel 
as in Figure (1) subjected to uniformly distributed normal load (1kg/cm2) with trian-
gular load – time function . The material  properties of concrete  and  steel  and  addi-
tion  parameters are shown in Table (1). 
         Tene(1975) analyzed this problem by linear theory to find the elastic stress and 
deflection for this problem. The effects of transverse shear deformation and rotary in-
ertia were first introduced in the theory of straight beam by Timoshenko , but they 
didn’t take the effective of damping in their studying . The numerical solution is ob-
tained by Houbolt´s method and by the finite differences and they used the time inter-
val equals to (0.01) . The number of location differences for half the arch was.                     
         AL–Maroof(1987) analyzed this problem by three dimensional elements based 
on the linear theory by the finite element method to get the variation of displacements 
and forces with time. No damping and damping ratios                   
(�0=2.6, �1=0.003846) is considered in the arch . In   both cases the arch is discritized 
by 10 curved elements . Also the numerical results obtained by the method of charac-
teristic by AL-Daami(1992) are compared with those obtained by  Tene(1975)  the 
agreement between the two solution is encouraging .                                                                                   
         In the present study , due to symmetry , half of the arch with five of twenty nod-
ded brick elements , and the center of arch is fixed in x and y direction but it is free in 
z – direction , for represented this we used the roller at the center of arch, as shown in 
Figure(1)(d). The steel reinforcement by a four layers two of them represent a longi-
tudinal top and bottom reinforcement with thickness equal to (0.161)cm for each and 
the others represent the lateral ties with thickness equal to (0.0565)cm for each and 
rotational angle equal to (90º) from the x-axis . For dynamic analysis , a constant time 
step of (0.01)sec. is used , a number of time steps is (60) , a number of iteration for 
nonlinear solution is taken equal to (500) .       
         The example is solved twice No damping is considered and with damping ratios 
(�0 �=2.6 , 1 =0.003846) and the results are compared with those obtained by Tene9) 
and Al-maroof() when solved the same example . Good agreement is found with these 
solutions . From Figures (2) , (3) and (4) , for central deflection without damping , the 
maximum different  found equal to ( 30% and 10%) when the results compared with 
Tene(1975)  and AL–Maroof(1987)  respectively. But for central deflection with 
damping the maximum different is equal to (20.6%) when the results compared with 
AL–Maroof(1987). The maximum different between central deflection with and with-
out damping that obtained from the present study equal to (60.29%) .  
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Table (1) Material Properties. 

 
Value 

 
Symbol , unit  

Material Properties and 
Additional Parameter 

 

200000 EC (kg/cmPP2) Young’s Modulus 
300 Fc (kg/cmPP2) Compressive Strength 
48 Ft (kg/cmPP2) Tensile Strength 
0.16 � Poisson’s Ratio 
0.0035 �cu Ultimate Compressive Strain 
0.153 Gf (kg/cm) Fracture Energy 
10 �c Yield Surface Function 
0.24E-05 �c 

(kg.secPP2/cm4) 
Mass Density 

0.3055  0 a 
0.76   1 a 

 
Fluidity Parameter 

1.84 �0 
1.09 �1

 
Failure Surface Function 

 
 
 
 
 
 
 
Concrete 

2000000 ES (kg/cmPP2) Young’s Modulus 
3500 Fy (kg/cmPP2) Yield Stresses 
14 �s 

(kg.secPP2/cm4) 
Mass Density 

0.2 � Poisson’s Ratio 

 
 
Steel 

0.5 �  
0.25 �  

Newmark’s 
Parameters 
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Reinforcement Details : 

α  

(a)

(c)

P(t)  

1.0 

0.003 0.03 

  

Z

X

Note: 
All Load in kg 
All Dimension in cm 

(d) 

45° 

20 

 
Gauss Point (3) 

 
 

Figure (1) Circ  
 
 
 
 
 

              
Main Reinforcement 10-φ3.5cm  
Web Reinforcement φ31.2cm @ 10cm 

(b)  

t 

 

1 
2 

3

Y
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4 
 U=V=W=0 

(a) geometry and loading of arch    (b) cross section      (c) load – time relation 
(d) finite element idealization and numbering of half of the arch 
ular Arch Under Trian
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Fig-
(2) Time – Displacement in Z - Direction Response for 
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 Dynamic Response of the Circular Arch at (� = 90°). 
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Figure (3) Time – Displacement in Z - Direction Response for Dynamic R
of the Circular Arch Without Damping at (� = 90°). 
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Figure (4) Time – Displacement in Z - Direction Response for Dynamic Response 
of the Circular Arch With Damping at (� = 90°). 
 
  Application (2): 
         In this example , the effect of thickness of reinforced layers , time step and ini-
tial displacement are studied on a simply supported arch having cross section and re-
inforcement steel shown in Figure (5) are subjected to a concentrated load with har-
monic excitation load – time function p(t)=1+sin0.1t . The material properties of con-
crete and steel are given  in Table (2), AL-Dahash(2006)  . 
         Figure (5(d)) shows the details of the finite element mesh for the   reinforced 
concrete arch with seven eight noded brick element . The steel    reinforcement repre-
sented by  four  layers , two of them represent the  longitudal top and bottom rein-
forcement with thickness equal to (0.524)cm for each layer and the others represent 
the lateral ties with thickness (0.0094)cm for each layer and  rotational angle equal to 
(90°) from x – axis. For dynamic analysis , a constant time step of (0.01sec.) is used, 
(150) numbers of time steps , a number of iteration for nonlinear solution is taken 
equal to (500) .  
        In this example Figure (6) shows the effect of change time step on central    de-
flection of arch, if the time step decreases, the central deflection converges to   exact 
solution . the maximum difference percent  between time step(0.01 and 0.005)sec. is 
(29.23%) . The effect of thickness layers of main reinforcement on central deflection 
of this arch is studied, three cases from reinforcement were analyzed . The first case 
has main reinforcement with thickness of layers equals to (0.51)cm and (0.21)cm for 
the second case with maximum difference percent equal to (14.5%) . Finally , the 
third case is without main reinforcement layers, with the maximum difference percent 
equal to (12.7% and 25.4%) with thickness of main reinforcement equals to (0.21 and 
0.51)cm respectively . Figure (7) shows that ,the central deflection increases if the 
thickness of main reinforcement layers decreases .  
             The effect of initial displacements at hinge in x – direction on central                      
deflection is studied and the result explained the initial displacement on vibration in 
deflection . Figures (8) and (9) show the difference between the central deflection 
without the initial displacement and with the initial displacement equal to                 
(0.2,-0.2)cm with maximum deflection percent equal to (29.6% and 27.5%)            
respectively . When the initial displacement equal to (0.2)cm , the maximum stress at 
Gauss point Numder (6) (at the center of arch) is equal to (-123)kg/cm2 but it is equal 
to (110)kg/cm2 when the initial displacement is equal to (-0.2)cm , the maximum per-
cent difference is equal to (10.6%) . But when no initial displacement, the          
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maximum stress at Gauss point Number (6) is equals to (-8.5)kg/cm2 as shown in Fig-
ures (10) and (11) . 
 
 
 
 
 
 
 
 
 
 
 
 
   
Table (2) Material Properties. 
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Figure (6) The Effect of Time Step on Time – Displacement  
in Z - Direction Response at Center of Arch . 
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 Fig-
ure (7) Effect the Thick of Main Reinforcement Layers on         
 Time – Displacement in Z - Direction Response at Center of Arch . 
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Figure (8) The Effect of Initial Displacement in X - Direction on 
Time – Displacement in Z - Direction Response at Center of Arch . 
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 Figure (9) Effect the Initial Displacement opposite X – Direction 
on Time – Displacement in Z - Direction Response at Center of Arch . 
 

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Time (sec.)

-10.00

-8.00

-6.00

-4.00

-2.00

0.00

2.00

4.00

St
re

ss
es

 in
 X

 - 
D
ire

ct
io

n 
(k

g/
cm

2)

 
Figure (10) Time – Stress in X - Direction Relation 
at Gauss Point NO.6 (at center of arch) . 
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Figure (11) Effect of  Initial Displacement   on Time – Stress 
  Response at  Gauss Point NO.6 (at center of arch)  . 
 
 
Conclusions: from the present study , can noticed that 
1- If initial displacement happened in the supports of the arch , the maximum    cen-

tral deflection increases , when this displacement is in the direction of  X – axis 
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with magnitude equal to (0.2,-0.2)cm, the maximum difference percent of cen-
tral deflection by (57.5%) . 

2-  The maximum central deflection for arch structure plain concrete is greater than         
itis of reinforced arch with (0.236)cm thick for main layers and (0.127)cm thick 
for web layers reinforcement by about (7.4%) . But the maximum stresses in 
arch’s center for plain concrete is less than that for this reinforced arch with  
main and  web reinforcement by about (30%) in elastic stage . 
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