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Abstract :  This research aims to develop an efficient model for high-dimensional data analysis by integrating the 

Bayesian Lasso method with Sliced Inverse Regression (BLSIR). The main problem addressed is that traditional 

methods, such as Ordinary Least Squares (OLS), struggle to handle data with many explanatory variables, especially 

in the presence of outliers or multicollinearity. By employing the BLSIR model, the results show that this method 

achieves higher accuracy in estimating significant variables and reducing the negative impact of non-influential 

variables compared to LASSO, SIR, and BLASSO methods. The model was tested on real data related to non-

alcoholic fatty liver disease, where BLSIR outperformed other methods in minimizing the Mean Squared Error 

(MSE) and Mean Absolute Error (MAE). This model shows significant improvements in handling high-dimensional 

data, offering better accuracy and variable selection. Its application in non-alcoholic fatty liver disease analysis 

proves its potential for broader use in various scientific and medical fields. Based on these findings, we recommend 

applying this method in other fields to analyze multidimensional data. The implementation was carried out using the 

R language program. 

Introduction: Statistics is an important and basic science. It is concerned with studying the methods of 

collecting, analyzing, interpreting, and predicting data. The purpose is to obtain accurate and useful information in 

order to make the right decisions in various fields. Due to the quick development witnessed by technology and 

information sciences in our modern era, which has greatly impacted the advancement of medical, natural, and human 

sciences. This technological and informational progress has clearly influenced the field of statistics, owing to its close 

connection with these sciences. This development was accompanied by the emergence of the high-dimensional data 

problem, where the number of explanatory variables (P) is greater than the sample size (n), i.e., (P > n).This type of 

data often includes several standardization issues, such as the presence of multicollinearity, extreme (abnormal) 

values, and other related problems. 

This type of data is also characterized by a number of properties, the most common of which is the property of high 

correlation between variables and the property of variables with a clustered structural structure and others. In this case, 

analyzing this data becomes difficult and complex, and traditional statistical methods cannot be applied, as they will 

yield incorrect results that could impact the decisions made. This is called the problem of dimensionality, and this 

problem has become the focus of attention of many researchers. The solution to this problem is to reduce the 

dimensions while preserving the characteristics and information of the regression in addition to improving the model. 

This is done by choosing a group of these variables called the subset (Subset). There are two methods for choosing the 

subset, which are the variable selection method (V.S) and the feature extraction method (F.E). In order to obtain 

sufficient dimensions, the method of reducing the sufficient dimension will be used, which is one of the feature 

extraction methods. This is done by reducing the number of variables (p) to a smaller number of dimensions (d), i.e. 

(p<d) while preserving the information and characteristics of the regression. There are two methods for extracting the 

feature, the first aims to find the (Central Suβspace) (finding an important subset of the original data) and an example 

of this is the Sliced Inverse Regression. The second method aims to find the (partial central distance) and the most 

famous of these is the Minimum Average Variance Estimator. Despite the advantages of these methods represented by 

reducing the dimensions, they suffer from reducing a number of variables (p) to a number of dimensions (d), but each 

dimension contains within it all the unimportant variables, the presence of which causes problems, including difficulty 

in interpretation, and sometimes leads to unreliable results. 

Research Problem 
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The main problem is in applying the Ordinary Least Squares (OLS) method to high-dimensional data where efficient 

estimates cannot be obtained. OLS suffers from two main problems: low prediction accuracy due to high variance, and 

difficulty interpreting the model in the presence of a large number of predictive variables. In addition, OLS is very 

sensitive to outliers, which may affect the distribution of the model residuals and make it non-normal, which violates 

the conditions for applying OLS. 

Research Objective 

The main objective of the study is to develop an efficient regression model to deal with high-dimensional (HD) data 

and address the problems caused by outliers and multicollinearity among predictive variables. The research seeks to 

improve prediction accuracy and reduce high variance in estimates by using regularization methods such as different 

regularization methods that impose penalties on the size of the parameters to facilitate the process of estimating the 

parameters in the case of a large number of variables and a small sample size. The thesis aims to employ the Bayesian 

Lasso method with the piecewise inverse regression method. 

Variables selection procedure
(3) (4) (7) 

The regression model includes a large number of explanatory variables and it is not known which explanatory 

variables will affect the dependent variable. Therefore, a subset of the original variables is selected to obtain the 

smallest subset of important variables that have a significant effect on the dependent variable and achieve the best 

estimation model with high explanatory and predictive power. Variable selection plays an important role in the 

analysis of high-dimensional data because it reduces unimportant variables, reduces bias, provides faster and less 

expensive models, improves model prediction, and gives a good understanding of the data set. To achieve these goals, 

researchers have proposed many methods for variable selection V.S. They are divided into two types: traditional 

methods (Backward elimination procedure, Forward selection procedure, Stepwise selection procedure, Akaike 

Information Criteria). And regularization methods (Lasso, Group Lasso, Adaptive Lasso Method., Elastic Net Method, 

Adaptive Elastic Net Method, Reciprocal Lasso method). 

Lasso penalty function
(13) (14) 

Lasso method was proposed by (Tibshirani , 1996) and Lasso means Least absolute shrinkage and selection operator. 

It is an effective and powerful method for processing high-dimensional data (HD). It is also part of the family of 

penalty least squares, as it works on selecting variables and estimating parameters at the same time. It works on 

reducing some parameters and zeroing others to zero completely, and thus it can automatically achieve variable 

selection. Therefore, this method is very similar to the Ridge regression method from a theoretical point of view. 

Ridge regression adds the sum of squared coefficients (penalty I2 ) )∑  ̂ 
  

   ). 

But Lasso adds the absolute value of the sum of ∑   ̂  
    .  The researchers (Fan, Li, 2001) showed that this method 

produces biased estimates of large coefficients. Therefore, it does not have the oracle property. The properties of OP 

include (consistency, sparsity, homoscedasticity, and the ability to choose the true model with probability of one). 

Although these attractive features of Lasso have proven successful in a variety of situations, Lasso faces some 

problems. The first problem is that when n>p, the Lasso method cannot handle sets of highly correlated independent 

variables. The second problem is that the Lasso method cannot handle the information provided by explanatory 

variables that form sums. The third problem is if we have P explanatory variables and n observations. And if p>n then 

we choose n explanatory variables at most and in this way we will neglect some variables that have an effect on the 

model. This estimator is obtained by adding the penalty function to the least squares loss as in the following equation: 

   ̂        ∑   
      ∑        

        suβject to∑ |  |                           

=      ∑ (   ∑       )
 
  ∑ |  |

 
                                              

 

 
      ̂ 

 : Represents the penalty parameter or tuning parameter. 

β    Represents the estimators of the OLS method. 

P  Represents the number of variables since (J=1,……,P). 

n  Sample size since (i=1,….,n) 

The first part of the above equation represents the least squares loss, and the second part represents the Lasso penalty 

function. It controls the degree of shrinkage (contraction) of the estimator, so it plays a fundamental role in the process 

of selecting the significant variable and works to control the severity of the penalty. When it is 0= λ, no parameter is 

deleted and thus the number of variance increases, but when the value of λ>0 increases, it gives a greater reduction in 
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the complex model and provides criteria for selecting the variable, i.e. it gives models that are subject to change 

(Alkenani, Yn, 2013). The value of λ is determined through GCV (Generalize Cross Validation) as in the following 

equation: 

 

    
   

             
                             

    ∑       
 

 

   

                                       

The estimator of the Lasso method can be represented as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (2-1) An illustration of the Lasso method. 

The colored circles explain the sum of squares of the error with the estimator value of the least squares method that 

touches the penalty function represented by the diamond shape. 

Bayesian Lasso
(1) (13) 

It is a statistical model used in regression analysis, and combines two main concepts: Lasso and Bayesian Models. The 

Bayesian Lasso was proposed by the researcher (Robert Tibshirani) in 1996. The Bayesian regularization method was 

developed due to the difficulties in statistical inference of regression coefficients. On the other hand, the Bayesian 

method provides accurate inference even with small sample sizes, in addition to accurate estimation when p is greater 

than n (n<p). 

The Bayesian regularization model includes two steps: 

First: Determine the prior distribution of regression coefficients, which is the most important step in the Bayesian 

method for selecting variables and estimating coefficients together. The main idea of Bayesian analysis is to minimize 

the variance of the estimator while increasing the bias. Therefore, the choice of the prior distribution must be accurate 

because choosing an inaccurate or incorrect prior distribution can lead to a number of problems including Giββs 

sample convergence problems, posterior estimation problems, and instability. Second: Calculating the posterior 

distribution, Tibshirani (1996) proposed that if the regression coefficients are identical and independent (i.e. double 

exponential), the Lasso estimate can be interpreted as a posterior estimate, and as a result, many Lasso techniques 

have been proposed over the years by other researchers to use the Laplace analogy, for example, )Figueiredo2003;Βae 

and Mallick 2004;Yuan and Lin 2005) and in 2008 Park, Casella developed a complete Bayesian analysis based on 

Lasso analysis based on the description of the Laplace conditional model. 

π    ⁄   ∏
 

√  
 

 
          √  ⁄                                              

Sufficient dimension reduction (SDR)
(6) (10) 

  

Cook (1998) proposed a theory of sufficient dimension reduction to reduce a number of explanatory variables without 

losing regression information. Dimension reduction methods are one of the main methods that researchers need to 

analyze high-dimensional (HD) data, especially in recent years. This is after the development of data collection 

methods, data storage, and storage capacity. These developments contributed to the emergence of the "curse of 

dimensionality" problem. This problem has become the focus of attention of many researchers. The main task of the 

concept of dimensionality (SDR) is to reduce the number of explanatory variables and simplify the study of 

relationships by selecting a subset of variables that actually affect the model. That is, transforming data from a high-
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dimensional space to a low-dimensional space while preserving the characteristics and regression information. That is, 

it replaces the original predictive variables with linear structures while preserving regression information. There are 

two types of dimensionality reduction methods. The first type is subset selection. The second type represents feature 

extraction methods. 

Sliced Inverse Regression (SIR) 

The Sliced Inverse Regression (SIR) method is considered one of the most important methods for reducing the 

dimensions of the variables included in the analysis, where the data has high dimensions (i.e. it suffers from the 

problem of dimensionality CD). This method was proposed by the researcher (1991, Li). It is known that regression 

analysis studies the relationship between the dependent variable y and the independent variables (X'S) represented by 

(E(y /x)). As for the inverse regression of the SIR slices, it studies the relationship in an inverse manner between the 

dependent variable (y) (Dependent Variaβle) and the independent variables (X'S) (Independent Variaβle), i.e. it makes 

the variable y represent the independent variable, and X represents the dependent variable, represented by (E(x ⁄ y)) . 

This method has been applied and used widely in various fields, including finance, economics, and medical fields. 

This method divides the model into multiple slices according to the values of the dependent variable y, and then 

different statistical operations are performed for each slice. It also works to integrate the information of all slices and 

obtain the latent root information. The largest of them is chosen to represent the effective trends (e. d .r) of the SIR, 

and here we mean (e. d .r) The vector resulting from the reduction process that represents the new shape of the data, 

and its dispersion is proportional to the dispersion of the original variables (X). The inverse regression curve cannot be 

straight, and this curvature plays an important role in finding trends (e. d .r). If the inverse regression curve is straight, 

we may not be able to find more than one trend. It is difficult to estimate the normal regression parameters for high-

dimensional data if there is a dimensionality problem CD, inverse regression can address this problem by dividing the 

regression into P slices (E(   y)) since (i=1,2,…,p). In this case, the dimensionality problem will be neglected if we 

assume that   ̅represents the arithmetic mean of the variable X and assume that     ̂   ̂        ̅    is a simplified 

version of Z, where  ̂ represents the covariance matrix of the variable X. Let h represent the number of slices and    

represent the number of observations of the    slice. So m is a simplified version of   ̂  ∑  ̂ 
 
    ̂  ̂ 

  where   ̂    

 ̂ is the Z-rate of slice y. Let us assume that ( ̂   ̂    ̂   ) which represents the eigenvalues corresponding to 

the eigenvectors   ̂   ̂   ̂      ̂    of  ̂ . If the area d of     ⁄   is known, then span( ̂)= span( ̂   ̂   ̂       ̂ ) is 

a consistent estimator of )   ⁄ ( , when   ̂   ̂     ̂  . The SIR method relies on finding effective trend estimates that 

serve as parameters (β'S) through which the data is transformed into the reduced form and the original data is replaced 

for ease of handling, and in turn it is considered to address the problem of dimensions or (the curse of dimensions), 

that the model on which the SIR method relies is similar to the nonparametric and semiparametric regression model 

and is represented by the following formula: 

   (  
     

     
        

    )                                    
Where: 

    is a vector of unknown parameters, and k=1,2,3,…,m. 

ε  represents the term of the random error independent of (X). 

And (f) represents an unknown function. 

 

In this case, the problem of dimensionality was addressed using the inverse regression method. The inverse regression 

model can be represented as follows: 

      =∑     
    

 ̂     
                                    

     

Basic algorithm for (SIR): 

1-Unify the values of the variable (X) by asymptotic transformation to obtain 

 ̆   ̂  
 
 
      ̅                                                                        

Where  ̂represents the sample covariance matrix, and   ̅represents the sample mean respectively. 

2-Dividing the range from    to H into slices (           ), assuming that the proportion of   that falls in slices H 

is ̂ . The experimental proportion is calculated using the following formula: 

  ̂  (  ⁄  ∑      
 
   )                                         

Where     can take two values either 0 or 1 depending on whether   is in slice H or not.  

3-In each slice the sample mean of  ̌ is calculated and is referred to as with ( ̂                      ( ̂  
     ̂  ∑  ̆      

). 

. 
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 -Perform a weighted PC  for the data at ((h=1,2,3,…, )m   h) as follows  Find the weighted covariance matri   

 ̂  ∑  ̂  ̂  ̂ 
  

     and then search for the characteristic values and vectors. 

 

5-Let k be the largest characteristic vector which is (the row of vectors) (k=1,2,3,….,k) To get  

 ̂   ̂  ̂  
    

                                
 

    ∑                 ⁄
    , Since  k=1,2,3,…,K    

    denotes the covariance matrix of the matrix X. Steps 2 and 3 produce an initial estimate of the standard inverse 

regression curve E(Z⁄y). The adjustment of the weights in the principal components analysis in step   is to take into 

account the presence of different sample sizes in different sectors. The first k components determine the most 

important subarea for tracing the path of the inverse regression curve E(Z ⁄y). Finally, step 5 rescales the original 

scale. Thus,   ̂   can be used to bias as an estimate of the direction of the standard inverse regression curve (EDR) 

and the area of β(EDR) estimated by ̂  , the area generated by  ̂   . 

 

Shrinkage Sliced Inverse Regression Method
(9)(10) 

In (2005), the researcher (NI et al.) proposed the SIR shrinkage estimator (SSIR-L) method that combines the Lasso 

penalty and the SIR method. SIR provides an estimated Span of( ̂)  the central subspace     ⁄   and the elements of  

 ̂        are usually non-zero. If there are many independent variables or those variables are highly correlated, in 

this case we will need a subset of these variables to obtain sufficient predictors. Assuming that some rows of the 

coefficient matri  β are all zero, the Lasso method was used to develop the inverse regression by compressing some 

rows of the matri  β to zero. In order to improve interpretability, Cook (200 ) formulated the inverse spline regression 

to improve some regression problems by reducing: 

       ∑  ̂ 
    

 ̂      
                                                    

 

   

 

Therefore,                   and                 . Assuming that   ̂    ̂      represent the values of (A&C) 

that minimize F . Span( ̂)is equal to the space spanned by the largest (d) among the eigenvectors of ( ̂   ), it is not 

necessary that the value of  ̂  is unique. By focusing on the coefficients of the independent variables, the researcher 

(Ni et al.) reformulated F(A&C) as follows: 

       ∑   ̂ 
 
 

  ̂ 
 

  ̂      
   ̂   ̂ 

 
 

  ̂ 
 

  ̂                     
 
           

Since: 

β  represents the value that zeroes the previously mentioned equation, which is the value of β. 

    ( ̂)=      ̂     ̂ represents the estimator of      ⁄     and represents 

Then the researchers explained the shrinkage estimator of the inverse regression method for (   ⁄ ) 

 

by minimizing the following equation: 

∑   ̂ 
   

  ̂   ̂
 
     ( ̂ ̂ )      ∑| 

 
|                            

 

   

    

 

   

 

Where (  ̂  ̂))reduces the value of G(β,C). 
Inverse Lasso Regression: 

Researcher Li et al. in 2019 defined the traditional inverse Lasso regression and indicated that this regression is 

estimated by studying the following optimization problem: 

         
 

 
   ́                                                       

where ɳ is the eigenvector associated with the largest eigenvalue. Li et al. also pointed out that as long as         

Formula (13) can be followed to find the space-spanned solutions β. Formula (31) can be considered as a penalized 

least squares problem under the condition  β <λ. The matri    in (13) is p⨉n. The estimated latent vector  ̂   extracted 

from the estimated variance-covariance matrix    ̂      according to the SIR model should be a linear combination of 

the vertical vectors of the matrix x. Hence, it can be assumed that  ̃     is a vector of the artificial response variable 

where: 
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 ̂  
 

 
  ̃ 

Thus, we can find an estimate of β by finding the solution to the following optimization problem  

       
 

  
  ̃      

                        

In 2019, researchers Li et al. provided an algorithm called Lasso-SIR, which is an effective algorithm for estimating 

the vector β. From formula (1 ), we find that  

 ̃  
 

  ̂
   ́ ́ ̂                                                                                           

Where M is a matrix n⨉H,  C is a constant, M is the largest latent value of  

 

   
́   

 

 
   ́  

ɳ   is the latent vector   
  

 
  . Therefore, when multiplying the latent vector  ̂ by the latent value ̂  , we find that 

formula (15) is satisfied and we have 

 ̂   
 

 
   ̃                                                                                                            

Below is the Lasso-SIR algorithm as indicated by researchers (Li et al.) in 2019.  

1-Let  ̂      ̂                                             ̂                 

2-Let  ̃  
 

  ̂
       ̂ and solve the Lasso optimization problem 

 ̂                           
 

  
  ̃       

         

Where    √
      

  ̂
 for sufficiently large constant C; 

3-Estimate    by   ̂    

 

3-Bayesian Lasso Sliced Inverse Regression (ΒLSIR)
(9) (10) 

Based on model (6) and formula (14), we can study the inverse Lasso model according to Bayes' method and estimate 

the values of (β)Col that represent all linear combinations of the β space (space spanned). Because there is no previous 

study to employ the Bayes method for the Lasso-SIR model, we will rely on the method proposed by researchers 

(Casella, Park) in 2008 to estimate the parameters of the SIR regression model as a non-linear model. Here, the 

hierarchical model will be assumed for the studied model in addition to the subsequent distributions and the Giββs 

algorithm to generate samples. 

 

Hierarchical model: 

 s we mentioned previously and based on model (6) and (1 ) and assuming that β is a variable that follows the 

Laplace distribution and after reformulating formula (14), we have the following: 

         ̃     ́    ̃        ∑    
 
       

The pyramid model can be written as follows: 

 

 

 ̃               
       

       
      

      (    
    )                                                                                               

          
      

      

     
      

              
 

  

 
 
    

 

    
                                                                           

     
       

                                                                                                               
                                                                                                      
                
 

 

 

Where the normal mixed-exponential distribution is adopted  
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 to represent the prior distribution (Laplace distribution) of the parameter β. 

Complete conditional posterior distributions
(9)(10) 

Based on the hierarchical model (17), we can assume that the complete conditional posterior distributions 

of the assumed parameters of the studied model are as follows: 

The complete joint density function for all prior distributions 

                       
  (     

    )     
      

Now we list the complete posterior distributions. 

1- The complete posterior distribution of β is the multivariate normal distribution with mean     ́ ̃ and variance 

      where    ́    
    . 

2- The complete posterior distribution of     is the inverse gamma distribution with shape parameter 
   

 
 

 

 
    

and scale parameter   ̃      ́               ́     
               . 

3- The complete posterior distribution of 
 

  
    is the inverse Gaussian distribution with shape parameter     and mean 

parameter  √
    

  
 .  

4- The complete posterior distribution of     is a complete distribution of shape parameter      and rate parameter 

(rate)  ∑
  
 

 

 
   .   

RLSIR Model Algorithm: 

In this section, the computational steps of the Giββs algorithm will be included in generating samples from posterior 

distributions as follows, noting that all values of x will be converted to standard values: 

1- Sampling    where samples of the variable   will be generated, which is an artificial variable after assuming that 

x N(0,Σ) from the multivariate normal distribution with mean  β and variance      . Here,     is considered as 𝝨 

the variance and covariance matrix of the multivariate normal distribution. 

2- Sampling    : where samples of the variable    will be generated from the inverse gamma model with a shape 

parameter 
   

 
 

 

 
   And a measurement parameter 

  ̃     ́( ̃            ́   
          ) 

3- β Preview  where the samples of the variable β will be generated from the multivariate normal distribution 

predictor.       ̃      .  

4- Sample  
 

  
 : where the samples of the variable 

 

  
    will be generated from an inverse Gaussian distribution with 

shape parameter      and mean parameter  √
    

  
 .  

5- Preview     : where    values will be generated from the gamma distribution. 

              ∑
  
 

 

 

   
  

 

The Real Data 

In this part , the researcher dealt with the analysis of real data related to the level of fat in the liver (response variable) 

and its relationship with a set of explanatory variables, as the data was collected through the records registered at the 

Specialized Center for Digestive Medicine and Surgery in Diwaniyah for the period from 1/1/2023 to 31/12/2023. 

This data represents patients with non-alcoholic fatty liver disease, of both sexes, as the researcher will apply the 

proposed method and the comparison methods referred to in the experimental aspect to this data with the aim of 

identifying the most important factors affecting the level of fat accumulation in the liver and contributing to the 

development of this disease in patients. 

Regression Model Variables 

1- The dependent variable (Y) is Liver Fat Percentage and represents the percentage of fat accumulation in the liver. 

The independent variables can be detailed as follows: 

2. X1: Age 

3. X2  Obesity (ΒMI) 

4. X3: Hypertension 
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5. X4: Unhealthy diet 

6. X5: Insulin resistance 

7. X6: Sedentary lifestyle (Physical Inactivity) 

8. X7: Blood cholesterol level 

9. X8: Type 2 diabetes 

10. X9: Blood triglycerides level 

11- X10: Liver enzymes level (ALT) and (AST) 

The proposed method (ΒLSSIR) was applied in addition to the comparison methods, which are the traditional Lasso 

method (L SSO), the Bayesian Lasso method (ΒL SSO), and the segmented inverse regression method (SIR). For 

the purpose of comparing the proposed method with the comparison methods, as well as for the purpose of finding the 

parameter estimates for the study variables and identifying the most important variables with a significant effect on the 

response variable. The table below shows the estimated parameters according to the mentioned methods. 

Table No. (1) Estimated values of regression model parameters for real data 

 

 
From the table above, and after determining the factors as follows: 

1. Age variable (X1): We notice that the estimated values of parameter (β1) for this variable are very low in all 

methods, indicating a small effect of age on the response variable, as we find that the ΒLSSIR method e cluded this 

variable. 

2. Obesity variable (ΒMI) (X2)   ll estimated values of parameter (β2) indicate a significant positive effect of 

obesity on the response variable, with the highest estimate in the ΒLSIR method (6.25 ), which means that an increase 

in ΒMI is associated with an increase in the response variable. 

3. Hypertension variable (X3): The estimated values of the parameter (β3) indicate a positive effect across all 

comparison methods, but we find that the ΒLSIR method e cluded the impact of this variable on the dependent 

variable, indicating that hypertension does not have a significant effect on the response variable, and this was 

confirmed by the doctors at the center after presenting the results to them. 

4. Unhealthy diet variable (X4): The estimated values of the parameter (β ) show a significant positive effect on the 

response variable, with the highest estimate in the ΒL SSO method, where the parameter value was 5.635. 

Methods BLSIR LASSO BLASSO SIR 

𝜷  0.001 0.056 0.014 2.015 

𝜷  6.238 3.164 3.118 4.254 

𝜷𝟑 0.009 1.954 1.221 2.021 

𝜷𝟒 3.214 4.985 5.635 5.324 

𝜷  7.120 4.958 2.001 2.685 

𝜷𝟔 0.007 1.025 1.002 1.952 

𝜷𝟕 0.002 3.256 0.031 0.072 

𝜷𝟖 10.233 7.120 6.023 6.365 

𝜷  6.125 1.854 2.232 2.791 

𝜷 𝟎 1.035 2.954 2.965 2.635 
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5. Insulin resistance variable (X5): The estimated values of the parameter (β5) vary between methods, with the 

highest estimate in the ΒLSSIR method, where the parameter value was 7.120, which is the highest value of the 

parameter among the other methods, which indicates a direct effect on the dependent variable. 

6. Physical Inactivity (X6): The estimated values of the parameter (β6) show a small positive effect on the response 

variable, with the lowest estimate in the ΒLSSIR method, as we find that the proposed method has e cluded the effect 

of this variable and we did not notice this in the other methods. 

7. Blood cholesterol level variable (X7): The estimated values of the parameter (β7) show a very small or no effect in 

all methods, indicating a non-significant effect of this variable on the response variable. 

8. Type 2 diabetes variable (X8): The estimated values of the parameter (β8) show a large positive effect on the 

response variable, as we notice the highest estimate in the ΒLSSIR method, where the estimated parameter value was 

10.233, which shows the superiority of the proposed method over other methods through the importance of this 

variable as it directly affects non-alcoholic fatty liver disease. 

9. Triglycerides (X9) variable: The estimated values of the parameter (β9) show a significant positive effect on the 

response variable, with the highest estimate in the ΒLSSIR method. 

10. Liver enzymes (X10) variable ((ALT and AST)): The estimated values (β10) show an almost equal positive effect 

across all methods, with slight differences. 

11. We conclude from this that the proposed method is superior in estimating and identifying the influential variables 

and excluding variables that have no effect on the model, as we note that the ΒLSSIR method has e cluded four 

variables (age, high blood pressure, sedentary lifestyle, blood cholesterol level), where the result was presented to 

specialist doctors who confirmed the validity of the results to a very large extent. 

12. For the purpose of further confirmation, the MSE and MAE criteria were calculated for all methods and their 

values were as in the following table: 

 

Table (2) MAE and MSE values 

 

 

 

 

 

 

 

 

 

 

 

From the above table, we notice that the ΒLSIR method obtained the lowest value for the MSE (1.1 2) and M E 

(0.685), making it the best among the four methods in estimating the parameters of the study variables. It is followed 

in second place by the ΒL SSO method, which obtained an MSE of (2.265) and an MAE of (0.693), indicating its 

good performance but slightly lower than ΒLSIR. In third place came the SIR method, which obtained an MSE of 

(2.395) and an MAE of (0.725), reflecting an average performance. Finally, the LASSO method was the least effective 

based on the high values of the MSE (2.965) and MAE (0.856), making it the least accurate in estimation among the 

mentioned methods. 

Conclusions 
In this section, the most important conclusions reached by the researcher through his study of this thesis will be 

discussed in its theoretical, experimental and applied aspects. The most important conclusions were as follows: 

1- The simulation results showed in all the tested examples that the proposed method (BLSIR) was superior after 

comparing it to the methods (LASSO), (BLASSO), and (SIR), and based on the two criteria (MSE) and (MAE), as it 

achieved the lowest value for the two criteria. 

2-It has been observed that the proposed method is more accurate as the sample size increases, as well as when the 

correlation increases. 

3- Four variables were excluded from the model using the proposed BLSIR method. 

4-The most important variables that have an impact on non-alcoholic fatty liver disease are (obesity, unhealthy diet, 

insulin resistance, type 2 diabetes, level of triglycerides in the blood, level of liver enzymes). 

5- Variables that have no effect on non-alcoholic fatty liver disease are (age, high blood pressure, sedentary lifestyle, 

blood cholesterol level). 

Methods MSE MAE 

BLSIR 1.142 0.685 

LASSO   2.965 0.856 

BLASSO  2.265 0.693 

SIR  2.395 0.725 
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Recommendations  
Based on the conclusions reached from the experimental side and real data, a number of recommendations were 

reached, which are summarized as follows: 

1- The study recommends using the BLSIR method in the case of high-dimensional data because of its accuracy in 

excluding variables that have no effect on the model. 

2- Use the proposed method (BLSIR) in fields other than the medical field because of its accuracy in estimating and 

selecting variables. 

3- Adopting the BLSIR method in the Specialized Center for Digestive Medicine and Surgery in Diwaniyah for the 

purpose of contributing to knowledge of the factors that affect non-alcoholic fatty liver disease for the purpose of 

avoiding or preventing it. 

4- Use the Bayesian inverse Lasso method (BRLASSO) with the segmented inverse regression (SIR) method, as it is 

one of the good methods for estimating parameters as well as selecting variables. 
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