ON TESTS FOR MODEL ADEQUACY CHECKING

Kareema Abdul-Kaddum AL-Kafaji

Department of Mathematics, College of Education

Abstract

In this paper we derive the proposed general formula for 1) The alternative statistic T for the MA(q) process that was introduced in [5]

$$T(f, f') = \log \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{f(w)}{f'(w)} dw - \frac{1}{2\pi} \int_{-\pi}^{\pi} \log \frac{f(w)}{f'(w)} dw \quad \text{and in [6]}$$
$$T(f, f') = \log \frac{1}{2\pi} \int_{-\pi}^{\pi} f(w) dw - \frac{1}{2\pi} \int_{-\pi}^{\pi} \log f(w) dw$$

2) The variance of the estimated statistic \hat{T} of that statistic.

Introduction

Consider a real, zero mean stationary MA(q) process $\{Z_t\}_{tez}$, generated by the following equation:

$$Z_t = (1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_q B^q) a_t$$

where B is backward shift operator on t and $\{a_t\}$ is a sequence of independent and identically distributed random variables with finite variance σ_a^2 .

The fitted model is:

$$Z_t = (1 - \hat{\theta}_1 B - \hat{\theta}_2 B^2 - \hat{\theta}_3 B^3 - \dots - \hat{\theta}_q B^q) a_t$$

where $\hat{\theta}_1, ..., \hat{\theta}_q$ are estimated.

The goodness of this fitting to the set of data is generally tested by comparing the observed values $\{z_1, ..., z_N\}$ with the corresponding predicted values of the fitted model. If the fitted model is good, then the residuals should have a behavior close to white nose.

In this way, we would like to find a statistical procedure to check if the model is valid or in other words to construct an adequacy test.

The approach is generally, founded on calculation of residuals

$$\hat{a}_{t} = (1 - \hat{\theta}_{1}B - \hat{\theta}_{2}B^{2} - \hat{\theta}_{3}B^{3} - \dots - \hat{\theta}_{q}B^{q})^{-1}Z_{t}$$
(1)

with assumption $Z_{t-q},...,Z_0$ observable and $\hat{a}_{t-q},...,\hat{a}_0$ equal to zero and to check that the sequence $\hat{a}_1,...,\hat{a}_N$ behave like the sequence of realizations of independent random variables.

Box and Pierce (1970)[1] show that under the hypothesis of model specification, provided that m moderately large the statistic

$$\hat{Q} = N \sum_{k=1}^{m} \hat{r}_k^2 \tag{2}$$

where $\hat{r}_k = \frac{\sum_{t=k+1}^{N} \hat{a}_t \hat{a}_{t-k}}{\sum_{t=1}^{N} \hat{a}_t^2}$ is the residual autocorrelations, is asymptotically distributed as χ^2 with

(*m-p-q*) degrees of freedom.

A simple modification studied later in detail by Ljung and Box(1978)[4]

$$\hat{Q}' = N(N+2) \sum_{k=1}^{m} \frac{\hat{r}_k^2}{N-k}$$
(3)

appears to have a distribution very much closer to asymptotic χ^2 .

Another different statistic was proposed by Mokkadem(1993)[5] based on the spectral density $f_Z(w)$ of the process $\{Z_t\}$ he introduced the quantity

$$T(f,f') = \log \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{f(w)}{f'(w)} dw - \frac{1}{2\pi} \int_{-\pi}^{\pi} \log \frac{f(w)}{f'(w)} dw$$
(4)

and modified it in 1994[6].

we derive the general formulas of alternative statistic T introduced in [5],[6] and the variance of the estimated statistic \hat{T} of that statistic.

Test based on the alternative statistic

Mokkadem[6] introduced and proposed a test of white noise based on the modified parameter

T(f, f') simply denoted by T as

$$T(f, f') = \log \frac{1}{2\pi} \int_{-\pi}^{\pi} f(w) dw - \frac{1}{2\pi} \int_{-\pi}^{\pi} \log f(w) dw$$
(5)

Since the quantity T(f,f') verity the following main property: P1: $T(f,f') \ge 0$ and T(f,f') = 0 if and only if f/f' = constant, that we This statistic (5) estimated when a sample $\{Z_1, ..., Z_N\}$ is observed by

$$\hat{T}(f,f') = \log \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{f}(w) dw \right| - \frac{1}{2\pi} \int_{-\pi}^{\pi} \log \left| \hat{f}(w) \right| dw \qquad (6)$$

where $\hat{f}(w)$ is the truncated estimator of spectral density f(w), given by

$$\hat{f}(w) = \frac{1}{2\pi} \sum_{k=-n}^{n} \hat{\gamma}_{k} e^{ikw}$$
(7)

where

$$\hat{\gamma}_{k} = \frac{1}{N} \sum_{j=1}^{N-|k|} Z_{j} Z_{j+|k|}$$
(8)

is the theoretical covariance of the process $\{Z_t\}$ which variance is

$$\hat{\gamma}_0 = \int_{-\pi}^{\pi} \hat{f}(w) dw$$
 then

$$\hat{T} = \log(\frac{\hat{\gamma}_0}{2\pi}) - \frac{1}{2\pi} \int_{-\pi}^{\pi} \log |\hat{f}(w)| dw$$
(9)

which asymptotically $\hat{T} \cong \frac{1}{\gamma_0^2} \sum_{k=1}^n \hat{\gamma}_k^2$ as $\gamma_k = 0$ for $k \neq 0$ and $\hat{\gamma}_k = \hat{\gamma}_{-k}$.

Mokkadem (1994) [6] proposed a different approach based on the spectral density $f_a(w)$ of the process $\{a_t\}$ which are i.i.d. if and only if $f_a(w)$ =constant.

The test for randomess is obtained as a test of

H₀: $f_a(w)$ =constant against

H₁: $f_a(w) \neq \text{constant}$.

We will reject H₀ if $\hat{T} > t$, where t is positive real number under the test H₀: T=0 H₁: T>0 In [2] the test is: H₀: The sequence $\{Z_t\}$ is a white noise

H₁: The alternative hypothesis under which the sequence $\{Z_t\}$ is an ARMA process

Power of the test on the statistic \hat{T}

The power of the test

H_o: The process $\{Z_t\}$ is white noise.

H₁: The process $\{Z_t\}$ is MA(q),

On \hat{T} at the significance level α is given by the following probability

$$\hat{P} = P_{H_1}(\hat{T} > t_{\alpha})$$

where t_{α} is such that

$$t_{\alpha} = \frac{\sqrt{2\pi}F^{-1}(1-\alpha)}{N} \tag{10}$$

Since $\frac{NT-n}{\sqrt{2n}}$ is asymptotically standard normal distribution under H_o by Theorem 2

[see Drouiche, K. and Mohdeb,Z.(1995)[2].

Under H₁ for N large the distribution of \hat{T} can be approximation i.e $N(T, \Gamma^2)$ where

$$\Gamma^{2} = \frac{1}{N\pi} \int_{-\pi}^{\pi} (1 - \frac{f(w)}{k})^{2} dw$$
(11)
and

$$k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(w) dw$$

Now we must calculate T and Γ^2

1) Calculating the statistic T of MA(q) Model

Let $\{Z_t\}$ be a MA(q) process which generated by the following equation:

$$Z_{t} = a_{t} - \theta_{1}a_{t-1} - \theta_{2}a_{t-2} - \dots - \theta_{q}a_{t-q}$$
$$= (1 - \theta_{1}B - \theta_{2}B^{2} - \dots - \theta_{q}B^{q})a_{t}$$
$$Z_{t} = \theta(B)a_{t}$$
(12)

it's spectral density is

$$f(w) = \frac{\sigma_a^2}{2\pi} \left| 1 - \theta_1 e^{-iw} - \theta_2 e^{-2iw} - \dots - \theta_q e^{-qiw} \right|$$
$$= \frac{\sigma_a^2}{2\pi} \left| 1 - \sum_{k=1}^q \theta_k e^{-ikw} \right|^2$$
(13)

where σ_a^2 is the variance of the process $\{a_t\}$, since

$$T = \log \frac{\gamma_o}{2\pi} - \frac{1}{2\pi} \int_{-\pi}^{\pi} \log f(w) dw$$
(14)

where

 $\gamma_o = \sigma_a^2 (1 + \theta_1^2 + \theta_2^2 + ... + \theta_q^2)$ is the variance of MA(q) under the alternative hypothesis, then

$$T = Log \frac{\sigma_a^2 (1 + \sum_{k=1}^{q} \theta_k^2)}{2\pi} - \frac{1}{2\pi} \int_{-\pi}^{\pi} Log \frac{\sigma_a^2}{2\pi} \left| 1 - \sum_{k=1}^{q} \theta_k e^{-ikw} \right|^2 dw$$

$$T = Log(1 + \sum_{k=1}^{q} \theta_k^2) - \frac{1}{2\pi} \int_{-\pi}^{\pi} Log \left| 1 - \sum_{k=1}^{q} \theta_k e^{-ikw} \right|^2 dw$$
(15)

If $\left|\sum_{k=1}^{q} \theta_{k} e^{-ikw}\right| < 1$, then by using a Taylor series expansion of Ln(1-x) for |x| < 1

And the identity $\int_{-\pi}^{\pi} e^{\pm ikw} dw = 0$, $k \neq 0$ where Log|1-x| = Ln|1-x|, then

$$Log \left| 1 - \sum_{k=1}^{q} \theta_{k} e^{-ikw} \right|^{2} = Log \left| 1 - \sum_{k=1}^{q} \theta_{k} e^{-ikw} \right| \left| 1 - \sum_{k=1}^{q} \theta_{k} e^{kiw} \right|$$
$$= Log \left| 1 - \sum_{k=1}^{q} \theta_{k} e^{-ikw} \right| + Log \left| 1 - \sum_{k=1}^{q} \theta_{k} e^{kiw} \right|$$
$$= \sum_{j=1}^{\infty} \frac{(\sum_{k=1}^{q} \theta_{k} e^{-ikw})^{j}}{j} + \sum_{L=1}^{\infty} \frac{(\sum_{k=1}^{q} \theta_{k} e^{ikw})^{L}}{L}$$

Then the statistic

$$T = Log(1 + \sum_{k=1}^{q} \theta_{k}^{2})$$
(16)
Since $\int_{-\pi}^{\pi} Log \left| 1 - \sum_{k=1}^{q} \theta_{k} e^{-ikw} \right|^{2} dw = 0$ by the fact that
 $\int_{-\pi}^{\pi} e^{\pm kiw} dw = \frac{1}{\pm kiw} [\sin(kw) \pm i\cos(w)]_{-\pi}^{\pi} = 0$, where
1) $\cos(\pi) = -1$
2) $\sin(-\pi) = -\sin(\pi) = 0$

The equation(16) is the general formula for the statistic that introduced by Mokkadem [5],[6] for MA(q) model, where

1) Calculating the variance of \hat{T}

The variance of \hat{T} given in [3] by the following formula $\Gamma^{2} = \frac{1}{N\pi} \int_{-\pi}^{\pi} (1 - \frac{f_{Z}(w)}{k})^{2} dw \qquad (17)$

where

$$k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f_Z(w) dw$$

$$f_Z(w) = \frac{\sigma_a^2}{2\pi} \left[\sum_{k=0}^{q} \theta_k^2 - 2 \sum_{k=1}^{q} \theta_k \cos(kw) + 2 \sum_{k=1}^{q-1} \theta_k \theta_{k+1} + \sum_{k=1}^{q-2} \theta_k \theta_{k+2} \cos(2w) + \sum_{k=1}^{q-3} \theta_k \theta_{k+3} \cos(3w) + \dots + \sum_{k=1}^{q-(q-1)} \theta_k \theta_{k+(q-1)} \cos((q-1)w) \right]$$
(18)[3]
in [3] where $\theta_0 = 1$ and $\sum_{k=1}^{q-(q-1)} \theta_k \theta_{k+(q-1)} \cos((q-1)w) = \theta_0 \cos((q-1)w)$

in [3] where
$$\theta_0 = 1$$
 and $\sum_{k=1}^{n} \theta_k \theta_{k+(q-1)} \cos((q-1)w) = \theta_1 \theta_q \cos((q-1)w)$

$$k = \frac{\sigma_a^2}{(2\pi)^2} \left[2\pi \sum_{k=0}^q \theta_k^2 + \sum_{k=1}^q \frac{2}{k} \theta_k \sin(kw) + 2 \sum_{k=1}^{q-1} \theta_k \theta_{k+1} \sin(w) + \frac{1}{2} \sum_{k=1}^{q-2} \theta_k \theta_{k+2} \sin(2w) + \dots + \frac{\theta_1 \theta_q}{(q-1)} \sin((q-1)w) \right]_{-\pi}^{\pi} = \frac{\sigma_a^2}{2\pi} \sum_{k=0}^q \theta_k^2$$

$$\Gamma^{2} = \frac{1}{N\pi} \int_{-\pi}^{\pi} \left(1 - \frac{\sigma_{a}^{2} \left|1 - \sum_{k=1}^{q} \theta_{k} e^{-ikw}\right|^{2}}{2\pi \left(\frac{\sigma_{a}^{2}}{2\pi} \sum_{k=0}^{q} \theta_{k}^{2}\right)}\right)^{2} dw = \frac{1}{N\pi} \int_{-\pi}^{\pi} \left(1 - \frac{\left|1 - \sum_{k=1}^{q} \theta_{k} e^{-ikw}\right|^{2}}{\sum_{k=0}^{q} \theta_{k}^{2}}\right)^{2} dw$$

$$\Gamma^{2} = \frac{2\pi}{N\pi} - \frac{2}{N\pi \sum_{k=0}^{q} \theta_{k}^{2}} \int_{-\pi}^{\pi} \left| 1 - \sum_{-\pi}^{\pi} \theta_{k} e^{-ikw} \right|^{2} dw + \frac{1}{N\pi} \int_{-\pi}^{\pi} \frac{1}{\left(\sum_{k=0}^{q} \theta_{k}^{2}\right)^{2}} \left| 1 - \sum_{k=0}^{q} \theta_{k} e^{-ikw} \right|^{4} dw$$

$$\Gamma^{2} = \frac{1}{N} \left[\frac{4\sum_{k=1}^{q} \theta_{k}^{2}}{\left[1 + \sum_{k=1}^{q} \theta_{k}^{2}\right]^{2}} \right]^{2}$$
(19)

that is the variance of the statistic \hat{T} and the power of the test as function of $\theta_1, ..., \theta_k$ is given by

$$P_{\hat{T}}(\theta) = 1 - F(\frac{t_{\alpha} - T}{\Gamma})$$
(20)

where t_{α} , *T* and Γ are given respectively by (10),(16) and (19). F is the distribution function of the random variable N(0,1).

Conclusion

This paper has been devoted to model adequacy checking. The two proposed formulas are:

1) For alternative statistic T introduced in [5],[6] used only when $\{Z_t\}$ is a MA(q)

process under H₁ with the condition $\left|\sum_{k=1}^{q} \theta_k e^{-ikw}\right| < 1$

2) For the variance of the estimated \hat{T} .

These formulas are very easy and simple in using.

References

[1] Box, G.E.P.& Pierce, D.A.(1970), Distribution of Residual Autocorrelations in Autoregressive Integrated Moving Average Time Series Models. J.Am.Stat.Ass. 65, p.1059-26.

[2] Drouiche, K.& Mohdeb, Z.(1995),"On Test for Model Adequacy

Checking", Prepublic Actions, University' de Paris-Sud Mathematiques 425, 91405 Orsay France.

[3] Kafji, K.A.K.(2000),"The proposed general formula for the population spectrum of MA(q) Model" Unpublished research, College of Education, Univ. of Babylon.

[4] Ljung, G.M.& Box, G.E.P.(1978), On Measure of Lack of Fit in Time series Models, Biometrika 65, p.297-303.

[5] Mokkadem, A.(1993), On some tests for time series. Submitted.

[6] _____,(1994), Sur Quelques Nouveaux Tests pour les Series

Chronologiques, C.R. Acad. Sci. Paris, t.318, se'rie I, pp.755-58.