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Abstract 

In this paper we derive the proposed general formula for 1) The  alternative  
statistic T  for the MA(q) process that was introduced  in [5] 
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2) The variance of the estimated statistic T̂ of that statistic. 
 
Introduction 
Consider a real, zero mean stationary MA(q) process {Zt}tεz, generated by the 
following equation:  
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where B is backward shift operator on t and {at} is a sequence of independent and 
identically distributed random variables with finite variance 2

aσ . 
The fitted model is: 
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where qθθ ˆ,...,1̂  are estimated. 
The goodness of this fitting to the set of data is generally tested by comparing the 

observed values {z1,…, zN}with the corresponding predicted values of the fitted 
model. If the fitted model is good, then the residuals should have a behavior close to 
white nose. 

In this way, we would like to find a statistical procedure to check if the model is 
valid or in other words to construct an adequacy test. 
The approach is generally, founded on calculation of residuals 
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with assumption 0,...,ZZ qt−  observable and 0ˆ,....,ˆ aa qt−  equal to zero and to check 

that the sequence Naa ˆ,....,ˆ1 behave like the sequence of realizations of  independent 
random variables. 

Box and Pierce (1970)[1] show that under the hypothesis of model specification, 
provided that m moderately large the statistic 
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ˆ  is the residual autocorrelations, is asymptotically distributed as 2χ  with 

(m-p-q) degrees of freedom. 
A simple modification studied later in detail by Ljung and Box(1978)[4] 
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appears to have a distribution very much closer to asymptotic 2χ . 
Another different statistic was proposed by Mokkadem(1993)[5] based on the spectral 
density )(wfZ  of the process {Zt}he introduced the quantity  
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and modified  it in 1994[6].  
we derive the general formulas of alternative statistic T  introduced in [5],[6] and the 
variance of the estimated statistic T̂  of that statistic. 
 
Test based on the alternative statistic 
Mokkadem[6] introduced and proposed a test of white noise based on the modified 
parameter  
 ),( ffT ′ simply denoted by T as  
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Since the quantity T(f,f ΄ ) verity the following main property: 
P1: T(f,f ΄ )≥0 and T(f,f ΄ )=0 if  and only if  f / f΄ =constant, that we  
This statistic (5) estimated when a sample {Z1,…, ZN} is observed by 
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where   )(ˆ wf  is the truncated estimator of spectral density )(wf , given by  
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is the theoretical covariance of the process{Zt} which variance is 
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 Mokkadem (1994) [6] proposed a different approach based on the spectral density 
)(wfa  of the process {at }which are i.i.d. if and only if  )(wfa =constant. 

The test for randomess is obtained as a test of  
H0: )(wfa =constant  against 
H1: )(wfa ≠constant. 

We will reject H0 if  >T̂ t, where t is positive real number under the test  
H0: T=0 
H1: T>0 
In [2] the test is: 
H0: The sequence {Zt} is a white noise 
H1: The alternative hypothesis under which the sequence {Zt} is an ARMA process 
 
Power of the test on the statistic T̂  
The power of the test 
Ho: The process {Zt}is white noise. 
H1: The process {Zt} is MA(q),  
On T̂  at the significance level α is given by the following probability  
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ˆ −  is asymptotically standard normal distribution under Ho by Theorem 2 

[see Drouiche, K. and Mohdeb,Z.(1995)[2]. 
Under H1 for N large the distribution of T̂  can be approximation i.e ),( 2ΓTN where 
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Now we must calculate T and Γ2  
1) Calculating the statistic T of  MA(q) Model 
Let {Zt}be a MA(q) process which generated by the following equation: 
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where 2
aσ  is the variance of the process {at}, since  
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hypothesis, then  
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The equation(16) is the general formula for the statistic that introduced by  
Mokkadem [5],[6] for MA(q) model, where 
 1) Calculating the variance of  T̂  
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       The variance of  T̂  given in [3] by the following formula 

dw
k

wf
N

Z 22 ))(1(1
∫− −=Γ
π

ππ
                                  (17) 

 
where 

∫−=
π

ππ
dwwfk Z )(

2
1   

)])1cos((...)3cos(

)2cos(2)cos(2[
2

)(

)1(

1
)1(

3

1
3

2

1
2

0 1

1

1
1

2
2

wqw

wkwwf

qq

k
qkk

q

k
kk

q

k
kk

q

k

q

k

q

k
kkkk

a
Z

−+++

++−=

∑∑

∑∑ ∑ ∑
−−

=
−+

−

=
+

−

=
+

= =

−

=
+

θθθθ

θθθθθθ
π
σ

          (18)[3] 

 in [3] where  θ0=1 and    ))1cos(())1cos(( 1

)1(

1
)1( wqwq q

qq

k
qkk −=−∑

−−

=
−+ θθθθ  

∑

∑∑ ∑∑

=
−

−

=
+

=

−

=
+

=

=−
−

++

+++=

q

k
k

aq

q

k
kk

q

k

q

k
kkk

q

k
k

a

wq
q

wwkw
k

k

0

2
2

1

2

1
2

0

1

1
1

1

2
2

2

2
)])1sin((

)1(
...

)2sin(
2
1)sin(2)sin(22[

)2(

θ
π

σθθ

θθθθθθπ
π
σ

π
π

 

 

dw
e

N
dw

e

N q

k
k

q

k

ikw
k

q

k
k

a

q

k

ikw
ka

2

0

2

2

12

0

2
2

2

1

2

2 )
1

1(1)
)

2
(2

1
1(1

∫
∑

∑
∫

∑

∑
−

=

=

−

−

=

=

− −
−=

−
−=Γ

π

π

π

π
θ

θ

π
θ

π
σ

π

θσ

π
 

 

dwe
N

dwe
NN

ikw
kq

k
k

ikw
kq

k
k

4

0

22

2

0

2

2 1
)(

11122
∫ ∑
∑

∫ ∑
∑

−

−

=

−
−

−

=

−+−−=Γ
π

π

π

π

π

π

θ
θπ

θ
θππ

π  

2

2

1

2

1

2

2 ]
]1[

4
[1

∑

∑

=

=

+
=Γ q

k
k

q

k
k

N θ

θ
                              (19) 

that is the variance of the statistic T̂   and the power of the test as function of  
 θ1,…, θk   is given  by  
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where  tα , T   and Γ  are given respectively by (10),(16) and (19). 
F is the distribution function of the random variable N(0,1). 
Conclusion 
This paper has been devoted to model adequacy checking. The two proposed  
 formulas  are: 
1) For alternative statistic T introduced in [5],[6] used only when {Zt} is a MA(q) 
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2) For the variance of the estimated T̂  . 
  These formulas are very easy and simple in using. 
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