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Abstract:

By using the definition of generalized Lyapunov —Like function and some
types of stability , we give a new bounds for Lyapunov function , which is lead
to getting some types of stability depending on some hypothesis which is depend
on this function . we proved that those bounds and hypothesis on Lyapunov
function satisfies the conditions where the using nonlinear systems will be stable
,also the type of stability of the system depends on those bounds and hypothesis
We got four types of stability which are (globally stable, globally
asymptotically stable, exponentially stable and uniformly exponentially stable).
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1.Introduction:

Among many forms of performance specifications used in design ,the most
imp-  ortant requirement is that the system be stable .An unstable system is
generally conside- red to be wuseless. When all types of system are
considered (linear,nonlinear,time- invariant, and time-varying) the definition of
stability  can be  given in many  different  forms [5].

It is recognized that the Lyapunov function method serves as a main
technique to reduce a given complicated system into a relatively simpler system
and provides useful applications to control theory [6,9,11,12,18]. There have
been a number of interesting development in searching the stability criteria for
nonlinear differential system[1,4,7,13].

The use of Lyapuvov functinals is certainly the main approach for deriving
sufficient conditions for the asymptotic stability[17].

The result of A.M. Lyapunov has come into widespread usage in many
topics of mathematics. In particular, it continues to be of great importance in
modern treatments of the asymptotic behaviour of the solutions of differential
system. In the language of dynamical systems ,one wishes to determine the
nature of the global attractor. In doing this ,one often uses special properties of
functions in the equations or,indeed, of the nature of the model itself [2,14].

A fundamental notion in the stability analysis of dynamical systems is that of
global asymptotic stability (GAS) which characterizes systems for which all
trajectories converge to some equilibrium in a reasonable manner. When
considering differential equations, there are two equivalent definitions of the GAS
property. The more common definition is that a system is GAS if it is both

(locally)  stable and  satisfies an  attractivity = property  [3].

The exponential stability for nonlinear system ,in general may not be easly
verified. Only a few investigations have with exponential stability conditions for
nonlinear time-varying system[15,16].

2.Basic facts:

Consider the nonlinear system described by the time-varying differential
equation:
X'(t) = f(x(t),t),t >0

X(ty) = Xp,t, =20
Where x(t) € R"(R"is the n-dimensional Euclidean vector
space), f(x,t):R"xR* - R"
is a given nonlinear function satisfying f(0,t) =0 forall t e R"(R"is the set of all

non-negative real numbers).we shall assume that the conditions are imposed on
system (1) such that the existence of its solutions is guaranteed.

1)
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Definition(2.1):[10]
A function V(x,t) : R" xR™ — R is Lipschitzian in x (uniformly in t e R") if
there isa number L >0suchthatforallteR",
V (%, 1) =V (%, 1) < L%, — %, |, (X, %,) € R" xR"

Where| || is the Euclidean norm.
Definition(2.2):[10]

A function V(x,t): R" xR™ — R is called a generalized Lyapunov-Like
function for system(1) if V (x,t) is continuous in t e R"and Lipschitzian in

x € R" (uniformly int)
and there exist positive functions A, (t), 4, (t), 4;(t) and there exist positive
numbers k, p,q,r,d such that :

A" sV )< 2,0 v(x,t) eR" xR
V'(x,t) <=4, )| —ke ™, vt >0,xeR"/{0}

()

3.Globally and globally asymptotically stable:

Definition(3.1):[8]
Let the origin be a solution of the system (1) , the system (1) is said to be :
a. globally stable if there exists a function « such that for each x, € R"all

the solutions x(x,,t) are defined on [0,) and satisfy:
%%, D) < (|, ), vt = 0

b. globally asymptotically stable if there exists a function « such that for
each
X, € R" all the solutions x(x,,t) are defined on [0, 0) and satisfy :

[xC0. 8] < & t0)

Theorem(3.2):
The system (1) is a globally stable if it admits a generalized Lyapunov-Like
function

which is bounded as: V(x,t)
0,e " 0|x|” <V (x,t) < 6,6 x| (3.2.1)
V/(x,t) < -0, x| —ke* e ") (3.2.2)

Where 6,,6,,6,, p,q,r,d and k are positive constants.
And the following condition is hold:

M m)(t—tp)

(
(3.2.3)3y >0:V(x,t) =V "9 (x,t)e ¢ <pe?
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Where 6 >m=

r/q
2

Forall (x,t)e R"xR"

Proof:
Let Q(x,t) =V (x,t)e™"

Qr(X,t) :V’(X,t)em(t—to) + mV(X,t)em(t_tU)

From (3.2.2)we obtain:
Q'(x,t) <—O,]x|" —ke* + mV (x,t)e™™
From the right hand of(3.2.1),we obtain:

r'q mr

-y =L

e

Hence:

| ﬂ(t—to)
Q'(x1) < |:9€r/q V7ix et  —ke* + mV(x,t)emt
2

mr

L)
<-—mV"7ixte?  —ke* +mV(x,t)e"" "

—-m)(t-t;)

<m|V(x,t) - V”‘*(xt)eq e") _ke?

From the condition (3.2.3),we obtain:
Q'(x,t) <mpe e —ke*

Since ke* >0, then:

Q (X t) < m}e—& m(t—ty)

Multiplying by e™ > 0,we obtain:

Q'(X,t) < m}e(m—5)(t—to)

t
Q(x,t) - Q(Xo,to) < J.mj,e(m*‘s)(sfto)ds

O

QXD £ QU tg) + L[ ]

my My (m-sxt)
<Q(Xg,t,) + —-——e 0
Q(Xy,t,) S m som

Since Q(X,,t,) =V (X,,t,) and 5 7 gm-0Xt%) 5 0| then:
m

my
X,t) <V (X,,t,) +
QA1) <V (Xguto) +
From the right hand of (3.2.1),we obtain:
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my
o—m

Setting: 6, x,|" + 5m7m — a(|x,) 20

QX 1) < G, x,|" +

Hence :
Q(x,t) < a(x,[)
From the left hand of (3.2.1),we obtain:

r 1/p
V(x,1) aM(t-t) j|

< Y%

[ <

Q]
6,

- u
< <L T
< g,
Therefore the system (1) is a globally stable.

Lemma (3.3):
In theorem (3.2) if the left hand of (3.2.1) is 6,e ™||x|” and Q(x,t) =V (x,t)e™,
then the system (1) is a globally asymptotically stable.

Proof:

Q(x,t) =V (x,t)e™

Q'(x,t) =V'(x,t)e™ + mV (x,t)e™

From (3.2.2),we obtain:

Q'(x,t) <—&,]x| e™ —ke*e™ +mV (x,t)e™
From the right hand of (3.2.1),we have:

rla
~[H" < —[V—(X’t)} es

0,

Hence:
2] Mt

Q'(x,t) < —Q—f/qv faxt)e? e™ —kete™ +mV(x,t)e™
2

Since ke*e™ >0 then:

mrt mr

Q'(x,t) < —mv "' (x,t)eTe

T mV(x, t)e™
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- ——m)t  (m——)ty
cmViet) v e’ e }e”“

i y (emitto) |
<mV(xt)-V"(xt)e e

From (3.2.35 we obtain:
QI(X,t) < m}/e(m—é)t

Q) ~ Qo) sjmw(m””ds

O

m .
Q(x,t) <Q(X,,t, )+ V_am-ote _ NV o(m-oy
-m

o—m

Since 5 my e(m >0 and Q(x,,t,) =V (X,,t,)e™ , then:

Q(X,t) <V (X,,t,)e™ + (Sm—ye(m‘”‘o

From the right hand of (3.2.1) , we obtain:

m
Q(x,t) < G,e™||x,||" + 5 ym g(M

Setting : 0,e™ [x,|* + ym ™ = g(||x.t,) = 0

From the new left hand of (3.2.1),we obtain:

= 0] e

1

S{Q(x,t)}”"

91
[alxlt) ]
s| e

Therefore the system(1) is a globally asymptotically stable.

4. Exponentially and uniformly exponentially stable:

Definition (4.1) [10]
The zero solution of system (1) is exponentially stable if any solution x(Xx,,t) of the

system(1) satisfies:

(%o, 1)]| < (%o, to)e 2, vt =t
Where a(h,t): R" xR" — R™is a hon-negative function increasingin he R",and disa
positive constant.
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If the function «(.) in the above definition does not depend on t,, then the zero solution
is called uniformly exponentially stable.

Theorem (4.2):
The system (1) is exponentially stable if it admits a generalized Lyapunov-Like
function V (x,t) which is bounded as:

£€" X" <V (x,t) <, x|’ (4.2.1)
VI(xt) < _€3||X”r ke ? (4.2.2)

Where ¢,¢,,&,,p,0,r,0,and k are positive constant.
And the following two conditions are hold:

—mr

r g (o) & &3

a. dy>0:V(xt)-V"i(x,t)e ¢ <y ,where 5 >—"
&
b. my >k ,where m= 83,
riq
&,

forall (x,t)e R"xR"
Proof :

Let Q(x,t) =V (x,t)e™
Q'(x,t) =V'(x,t)e™ + mV (x,t)e™
From (4.2.2) we obtain:
Q'(X,1) <—&,fx| e™ —ke *e™ + mV(x,t)e™
From the right hand of (4.2.1) we have:

L el

&

Hence:

—mr
£ M tto) ‘
Q'(x,1) < { v "9(x,t)e™e ¢ —ke™ " £ mV(x,t)e™
&

2

—mr

r/q mt T(titO) (m-o)t mt
<—mV " (x,t)e™e —ke +mV(x,t)e
—mr

M 1-ty)
<mV(x,t) =V "(x,t)e ¢ e™ —ke™ N

From the condition (a) we obtain:
Q'(x,t) <mpe %e™ —ke™"
< (my —k)e™

QU1 ~ Q1) = [ (my ~K)el™ s
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SmV_kémw%_mV_kémm
o—m o—-m

Since rm/—_ke(m"”t >0 , then:
o—m

my —K (m=5)t
X, t) < X,,1,)+——e 0
QXD < Qe 1) +

Since Q(X,,t,) =V (X,,t,)e™ , then:

Q(Xy t) <V (XO ’tO )emto + rgj/—_l(e(m_5)to

From the right hand of (4.2.1) we have:

V (X, tp) < &, %]

Hence:

my —k a(m-o)
o—m

Setting: &,[x,["e™ +n;%_n:<e(m‘5)t° = a([x,||t,) =0 , then:

QX 1) <&, %, e™ +

Q(x,t) < a(”Xo”’to)
From the left hand of (4.2.1) we have:

_ / _
V(x,t) T P eTm(t_t‘))

o <| Y

[ <

Q(x,t)e™ TP e
e

&1

[ <

o) ] e
&

Therefore the system (1) is exponentially stable.

Lemma (4.3):

In theorem (4.2) if Q(x,t) =V (x,t)e™* ™ | then the system (1) is uniformly
exponentially stable.
Proof:

Q(x,t) =V (x,t)e™

Q'(x,t) =V'(x, )" + mV (x,t)e"*
From (4.2.2) we obtain:
Q'(x,t) < —&5x| €™ —ke ™) 4 mVv (x,t)e™
From the right hand of (4.2.1), we obtain:
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—mr

& B —(t-to) _ . ~

Q'(x,t) < {—S}V Ta(x,t)e" e 1 —ke e 4 mv(x,t)em
&

r/q
2

M ty)
< m{v (x,t)=V""(x,t)e ¢ }e’“““o) _ ke %gm(t-to)

From the condition (a) and multiplying by e* >0, we obtain:
QK&DS(my_kmm%m%)

QU1 ~ Q1) = [ (my ~K)el™ 4 g

t
my —K _my—K_(maxtt)
X, t) <Q(X,,t,) + - e °
Q1) Qo tg) + =T
QX ) <V (X,.1,) + ”;y_k
my —k
-m
Setting : &,[x,|" + rgy—k
Q(x,t) < a(x,[)
From the left hand of (4.2.1),we obtain:

1/p -m t,
||x||{—v<x’t>} er

&

< &,fx|" +

= a(|x,[) =0, then:

[ Q(x.tye ™ TD B
<| 2| e

&

<

'am&mT”;?“w

Therefore the system (1) is uniformly exponentially stable.
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