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ct Abstra 
The paper aims at a detailed description of the water hammer due to a sudden 

valve closure. The transients of flow are computed by characteristic method and 

compared with many studies, experimental results, mathematical models and 

numerical simulations of other authors, as shown excellent agreement can be 

observed.  

 

 الملخّص
بالطشيمتِ حسب  الجشيان إغلاق صمامِ مفاجئِ. إنّ حذفكِ  بسببالىاحجت  وصفَ مطشلتِ الماءَ هزا البحث الى  هذّف  ي  

محاكاة الشياضيت والىمارج والة،  العمليتىخَائجِ والالذِساساثِ،  حمج المماسوت الىخائج المسخحصلت مع المميضةِ و

ؤلفيه الآخشيهِ، ال  .وسمكه ملاحظ الخىافك الممخاص لهزي الىخائجَ عذديت مِهْ الم 

 

Background1.  

The water hammer phenomenon is usually explain by considering an ideal 

reservoir-pipe-valve system in which a steady flow with velocity V0 is stopped by 

an instantaneous valve closure (see Fig. 1). The valve closure generates a pressure 

wave which travels at the wave speed or celerity, a, towards the reservoir at 

distance, L. The amplitude, P, of the pressure wave is given by the Joukowsky 

formula                                                                                                                           

 

….. (1) aVP      

where ρ is the mass density of the fluid. The traveling pressure wave reflects at 

the reservoir and returns at the valve at time 2L/a. Finally, a standing wave 

occurs in the pipe. In fact, water hammer is nothing more than the free vibration 

of the liquid column. The natural frequency of the vibration is a/(4L) for the open-

closed system of Fig. 1, Bergant, A. and Tijsseling, A. (2001).                                     
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Fig.1 Reservoir-pipe-valve system 

Basic Water Hammer2.  

The pressure waves in the ideal system of Fig. 1 are plane waves that obey the 

standard wave equation 
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with t =time, x=axial distance, and the wave speed given by the Korteweg formula 
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where K = bulk modulus of elasticity of the fluid, E = Young's modulus of 

elasticity of the pipe material, D = pipe diameter, e = pipe thickness and ψ = 1. 

The coefficient ψ accounts for the support conditions of the pipe and it may take 

values between 0.75 and 1. Eq (2) has exact solutions according to D‟Alembert. 

The pressure histories at valve and midpoint in Fig. 2 are the exact solutions for 

water hammer in an ideal reservoir-pipe-valve system, Bergant, A., et al., (2005). 
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Fig. 2 Basic water hammer in reservoir-pipe-valve system. 

Left: pressure at valve. Right: pressure at midpoint. 

Classic Water Hammer3.  

The pressure variations in Fig. 2 repeat forever; however, in reality, the pressure 

variations will die out because of friction and damping mechanisms. The classic 

theory of water hammer takes into account the effect of skin (fluid-wall) friction. 

In fact, it describes the transient free vibration of a liquid column. Pressure, P, 

and average velocity, V, obey the equations for conservation of mass and 

momentum, Vuuren, S.(2002): 

. . (4) 021







x

V
a

dt

dP


  

. . . (5) 0
2

sin
1







D
g

x

P

dt

dV VfV



  

  

ethod4. Characteristic M 

The characteristic method provides a popular technique for solving transient flow 

equations and has many advantages, Vuuren, S.(2002): 

- Stability criteria are firmly established. 

- Boundary conditions are programmable. 

- Minor loss terms may be retained if desired. 

- Extremely complex systems may be handled. 

- It is the most accurate of any of the finite difference methods. 

- It allows detailed analysis of complex systems.  

The two equations (4) and (5) may be replaced by some their linear combination. 

Using λ as a linear scale factor: 
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Regrouping terms: 
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Note that: 
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Multiplying by (λ) gives: 
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Equating the expression for (ds/dt) in each case, the following is obtained: 
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    or   
22 a  

So both equations are satisfied if a . Arbitrarily picking a  permits to 

rewrite equation (7) as :  
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Dividing through the wave speed, (a), gives: 
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Choosing a  as the other scale factor permits writing equation (7) as:  
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Remember, equation (10) is good only when:  a  or a
dt

ds
 

and equation (11) is good only when : a  or a
dt

ds
 

The result of these manipulations is that the two partial differential equations 

(4) and (5) are replaced by two ordinary differential equations (10) and (11) 

following certain rules, which relate the independent variables x and t in each 

case. If in addition, replacing p with γ(H-z), Wylie, E.B. and Streeter, V.L. (1993) 

,this substitution dives : 
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The fact that the relation between x and t in equation (12) must satisfy 

(ds/dt=a), has caused the equation (ds/dt=a) which is called the characteristic 

equation (12). A similar line of reasoning suggests that (ds/dt=-a) is the 

characteristic equation (13).                                                                                             

Fig.(3), which is line x-t plane for some unknown problems is examined. It is 

known that at any point on the x-t plane, say point P, the value of H and V is 

unique (i.e., the H and V values are independent of which characteristics they are 

approached from). It is also known that if the C+ and C– characteristics are 
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constructed through this point, two ordinary differential equations are obtained, 

which apply along their respective characteristics. The ordinary differential 

equations can now be expressed in finite difference from equation (12) which 

becomes:  
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and equation (13) which becomes :  
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Fig. 3 Interpolation of H and V values on a  ∆x-∆t  grid. 

 

In the preceding equations, (tp-0) in general is ∆t, and when these equations 

are multiplied by ∆t, they become:                                                                                  
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Each of the characteristic equation can be integrated to show that:                          

  . . . (18) tx a   

Once a finite difference numerical solution is used, the pipe must be divided 

into a discrete number of sections and proceed accordingly. If the pipe is divided 

into N sections, then each section will be of NLx /  length. Thus, t  can be 

calculated. It is possible to construct a grid of characteristics. 

Grid points along the x-axis represent points spaced x apart along the pipe 

and the values of V and H at these points on the x-axis represent initial conditions. 

Initial conditions are, generally, some steady state flow situation in the pipe. 

Picking a point P2 in the pipe on the x–t plane and writing equations (16) and (17) 
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for the known  VLe, VRi, HLe, HRi, f and D, it becomes clear that the equation have 

two unknowns. The two equations can be solved easily for HP2 and VP2. Notice 

that the known velocities are used to represent the friction term. To do otherwise 

would render the equations difficult to solve and would not noticeably improve 

the solution except when friction losses are very large. In the exceptional case, an 

iterative procedure is to be developed wherein friction losses would depend on a 

velocity averaged in some manner over the time interval.                                           

     The procedure described for point P2 , can be continued for other points until 

the values of H and V at points P2 through PN are calculated. The values of H and 

V at P1, PN+1 must be calculated with the assistance of boundary conditions. At the 

left-hand end of the pipe (near x=0) only the C
-
 equation is obtained which relates 

conditions between x2 and x1. The boundary conditions at x1(x=0) must provide 

another equation in HP1 and/or VP1 to be solved simultaneously with the C
-
 

equation. The same situation and requirements exist at the downstream end of the 

pipe with the C
+
 characteristic. 

 

 

 

 

 

 

 

 

 

 

Fig. 4 The method of characteristics staggered grid for a reservoir-pipe-valve system 

 

Once the boundary conditions are established, velocities and total heads at all 

the grid points at t=∆t can be calculated. These values are now used to write new 

equations to solve the values of V and H at the next time step where t=2∆t. This 

procedure is repeated until the solution has progressed the required amount of 

time. The result is a set of H and V values at discrete time intervals for N+1 

location along the pipe.                                                                                                    

The numerical solution procedure first assumes that the characteristic curves 

can be approximated as straight lines over each ∆t time interval. This assumption 

appears to be promising because a>>V ; however. It should be carefully noticed 

that the slope of each characteristic is generally slightly different from that of any 

other. The problem created in the finite difference approximation to the 

differential equations can be seen in Fig.(4). This grid size ∆x by ∆t has been set 

and once again the procedure is to find the values of V and H at P. The curved 

characteristics intersecting at P are approximated by straight lines. The slope of 
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the straight lines is determined by the known value of velocity at the earlier time. 

It is important to note that the characteristics passing through P do not pass 

through the grid points Le and Ri, but pass through the t=constant line at points L 

and R somewhere in between. 

From the completion and modification of equations (16) and (17), the 

following results:  
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The values of VL, HL, VR, HR are not known. 

However, the values of VLe, HLe, VRi, VC and HC are known. The unknown 

value of H and V at points L and R can be estimated by interpolation. In this case, 

linear interpolation will be used and the sketch below illustrates the relationships. 

Considering the C
+
 characteristic 
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Solving of VL and HL gives: 
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Substituting the value of  (∆x/∆t)=a+VL gives: 
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a similar analysis for the C
-
 characteristic gives: 
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because (∆t/∆s) VRi-VC is of the order V/(a+V) which is very small compared with 

1, it is a good approximation to neglect the second terms in the denominators of 

equations (21) and (23). The result is: 
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The simultaneous solution of equations (19) and (20) for VP and HP gives: 
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where sinθ=dz/dx (positive for pipes sloping upward and negative in downstream 

direction) 

 

onditions5. Boundary C 

The boundary conditions, corresponding to the valve-pipe-reservoir configuration 

shown in Fig. 1, and assuming a sudden valve closure, are  

At the valve (x=L)                 

. . . (29)   0, tLVo              t < 0  

At the reservoir (x=o) 

. . . (30)       0,01
2

1
,0 2

0  tVKgHtp R     t < 0   

Where KR is the loss coefficient of the reservoir, and  
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Where VHP is the mean velocity of the initial Hagen-Poiseuille flow. 

Denotes the height of the fluid in the reservoir, which is considered constant.  

6. Case study 

In order to show the results of the application of the present work, the experiment 

carried out by Holmboe, E. L. and Rouleau, W.T. (1967), is reproduced. The 
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experiment corresponds to the situation shown in Fig. 1, in which the relevant 

parameters are the following:                                                                                         

Pipe length, L = 36 m, Pipe radius, R = 0.0127 m,                                                        

Kinematic viscosity, ν = 39.67 10-6 m²/s (at 27°C), Speed of sound,                          

a = 1324.4 m/s , The initial condition is a fully established Hagen-Poiseuille flow, 

with the valve completely open. At time t=0, the valve is suddenly closed. 

The following values were considered for the loss coefficient of the reservoir, KR 
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Results and Discussion 7.  

In Figs. 5 and 7, the time histories of pressures and mean velocities, all of them at 

x=L/2, are shown in non-dimensional form. Similarly, Figure 6 shows the pressure 

history at the valve, i.e. at x=L.                                                                                       

It is clear from Figs. 5 to 7 that the quasi-steady model provides a poor 

representation of the histories of all of the variables considered                                

   Results of the present work are compared against the experimental data of 

Holmboe, E. L. and Rouleau, W.T. (1967), the numerical model proposed by 

Zielke W. (1967), Vardy A. and Hwang K. (1991) and that of Prado, A. and 

Larreteguy, A. (2003).                                                                                                    

The note from Fig 5 and 6, the pressure histories that are in good agreement with 

both experimental, Zielke‟s numerical results and Prado.                                          

 Fig. 7 shows the dramatic difference in the histories of mean velocities obtained 

with the present model as compared to that obtained with the quasi-steady model. 

Conclusions8.  

The characteristics method is the most widely used method used to calculate pressure 

variations in unsteady flow, because, it is a numerical method with the capability of 

including most of the boundaries. Other methods require more assumptions and 

simplifications of the boundary conditions and this leads to a reduction in the analysis 

and results in accuracy. The ability of using of this method in computer programs 

increases its efficiency, resulting in accuracy and speed of analysis.This approach, as 

compared to the usual quasi-steady model, allows for a better representation of the 

pressure and velocity. In fact, the quasi-steady model is a particular case (the simplest 

and less-accurate one) of the new method.The test of the present work against 

experimental results by Holmboe and Rouleau, and mathematical models and numerical 

simulations of other authors, Zielke W. and Prado, A. and Larreteguy, E., show that the 

present work is able of obtaining comparable results. Moreover, the present methodology 

results simpler and less memory demanding than that of reference, Prado, A. and 

Larreteguy, E., which requires the storage of the history of the motion.                       

The present approach should also be able to deal with turbulent flows, although this 

would require the identification of a different set of exponents, or even the selection of an 

expansion other than into a polynomial one. This appears as the natural continuation of 

the present work.                                                                                                           
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Fig 5 Head fluctuation at midstream (x=L/2) after instantaneous valve closure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6 Head fluctuation at valve (x=L) after instantaneous valve closure. 
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Fig 7  Mean velocity at x=L/2 
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