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Abstract:-

The aim of this paper is to present a method for solution special case of system of first
order nonlinear initial value problems of ordinary differential equation by a semi-analytic technique
with constructing polynomial solutions. The original problem is concerned with using two-point

osculatory interpolation with the fit equal numbers of derivatives at the end points of an interval
[0,1].

1. Introduction:-

Many problems in engineering and science can be formulated in terms of differential

equations [1],[2] .
In this paper we introduce the mathematical model of the damped simple pendulum
which introduced in [3] for some of its orbits.

Consider the second-order ODE that models the motion of an undriven pendulum of length
L supporting a metal bob of mass m and subject to a damping force :

mL y1" + cLy:i" + mg sin(y1) =0
where c is the damping coefficient ,y1 is the angle of the pendulum measured counter- clockwise
from the vertical ,and y1' is the angular velocity .Divide by mL ,setc/ m = a
and g/ L = 10. Using y1 and y'1 = y- as state variable and imposing specific initial conditions ,we
have the IVP :

y1= Y2 . yu0)=0

y2 =-10sin(y1) - ay2 y2(0) =10
the initial conditions model the pendulum hanging downward at angle 0 radians and with an initial
counterclockwise angular velocity of 10 radians / sec .

How changing the Mass Affects the Motion of the Pendulum for a =c/m , and c is assumed
to be a fixed positive number ,we see that changing the mass in the pendulum model(1) has an
inverse effect on damping force .So the pendulum with a large mass ( hence , light "friction" )
might whirl all the way up and over the pivot several times before frictional forces gradually
compel the pendulum .

To settle down to back-and-forth decaying oscillations about a downward vertical
position .The big change occurs when o switches from value 0 to a positive number, i.e., When the
damping is "turned on" .Of about 3 radians ,rightmost point on the leftmost orbit. The pendulum
that stops and falls back into a mode of decaying oscillations about y1=0,y>=0.
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It would be interesting to determine those crucial values of a which divide orbits that approach
the equilibrium point ( 2z ,0 ) from those approaching the equilibrium point ( (2n-2)x, 0 ). The
systems behavior is quite sensitive to small changes in the value of a near these critical values .

2. Description of Method
In this section ,we illustrates the semi-analytic technique which has general application to

equations of the following type :

y1=Yo , y1(0)=0

y'2 =-10sin(y1) —a Y2 , ¥2(0)=10 ... )

Where o€ (0, 2n)
We are particularly concerned with fitting function values and derivatives at the two end points of
a finite interval, say [0, 1] ,wherein a useful and succinct way of writing osculatory interpolant

P2n+1(X) of degree 2n + 1 was given for example by Phillips [4] as :

sz(x):i YO0 4,00+ (D) yO ) q, A%} oo @)
q, (%) = (x1/jHL-x)" 'y [:*S] X =Q 00/ e (3)

So that ( 2 ) with ( 3) satisfies :

YOO =(1) . J=0.1. 200 Py =0©) YR,
Implying that P2n+1(X) agrees with the appropriately truncated Taylor series for y(x) about x = 0
and x = 1.
Finally we observe that ( 2 ) can be written directly in terms of the Taylor coefficients a;
and b; about x = 0 and x = 1 respectively, as :
Paon+1(X) = ZO {a,Q;(0+(1)'b,Q,1x)} ... 4)
i
The simple idea behind the use of two-point polynomials is to replace y(x) in problem by a
P2n+1 (equation(2) or (4) ) which enables any unknown derivatives of y(x) to be computed . The
first step therefore is to construct the P2n+1 . T do this we need the Taylor coefficients of y1(x) and

y2(X) respectively about x =0 :
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yi=aptax+ >y ax (5a)
i=2
y2=by+b,x+ > bx" L (5b)
i=2

where y1(0) = a0, yi(0) = a1, ..., yi0) /il =ai,i=2,3,......
and y2(0) =bo, y2(0)=b1, ..., y.P0)/i'=hi,i=2,3,......

then insert the series forms (5a) and (5b) respectively into (1) and equate coefficients of powers of
X.
Also ,we need Taylor coefficients of y1(x) and y(x) about x = 1, respectively

yi=c,+C,(x-1) + i ¢ (x-1)' (6a)

i=2
y2=do+d (x-1) + > dix-1)' L (6b)
i=2
where y1(1) =co,yi (1) =c1, ..., yi®@) /il =ci,i=2,3, ......
and y2(1) =do, y2(1) =d1, ..., 2O /i'=di,i=2,3,......
then insert the series forms (6a) and (6b) respectively into (1) and equate coefficients of powers of
(x-1).
The resulting system of equations can be solved using MATLAB version 7.9 to obtain a; ,
bi, ci and d; ,for all i > 2, we see that ci$ and di$ coefficients depend on indicated unknowns co and
do .

The algebraic manipulations needed for this process .\We are now in a position to construct a P2n+1(X)

and P, , (x) from (5) and (6) of the form (2 ) by the following :
Pane1(X) = Z;, {2 Q) + (1) G QLX) b v (7a)
and
P, (x) = ZO: [0 Qi) + (1) di QLK) b v (7h)

Where Qi(x) defined in (3) ,
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We see that (7) have only two unknowns co and do .

Now, integrate equation (1) to obtain :

Co—a= | fu(x,yn,y2)dx (8a)

O ey

do—bo= [ f(xyny2)dx . (8b)

O ey

use P2n+1 and IP32n+1 as instead of y; and y- respectively in (8) .

Since we have only the two unknowns co and do to compute for any n, we only need to
generate two equations from this procedure the two equations are already supplied by (8) and initial
condition. Then solve this system of algebraic equations using MATLAB version 7.9 to obtain co
and do ,so insert it into (7) thus (7) represent the solution of (1) .

The difficulty of this problem that is not in general possible to perform the integration
involving sin( Pzn+1 (X)) by using (8) .

Consider the use of alternative strategies .However we choose to continue with the integral form and
replace sin( Pan+1(X)) itself by a two-point polynomial gan+1(X) in (8). Thus by (5) and (6) we can write :
sin(y(x)):i A, (a,a;)x!

=0

Sin(y() =3 B (b, by) (1)

=0

for which we can construct the gan+1(x). Hence (8) become :

1 ~
co—0= j Poa0dx (9)
0
1 ~
do-10=-10 [ () dx —a [ Ppomdx . (10)
0
Here (9) and (10) becomes :
1
Fcodow) =-co+ [P () Ak L (11)
i 1 1 -
G(co,dow) = 10- do -10 [ ., () dX =W [Py () AX ..o, (12)
0 0
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Now ,for each value of w there is corresponding for ¢, and do .This suggests that there exists w
= w" such that for w > w". There are no solutions of the IVP, while for w<w" there are two. This
of course is a well- known feature of the problem .What we do now is to compute the threshold
value w” using our two-points method. Essentially this involves finding double root of (11) and
(12) for (co,do). Thus we have to solve (11) and(12) together with :

oF oG oG oF _ 0
oc, ad, ac, ad,
For the unknowns co,do and w. The results for n=2,3 are shown in table (1). We note that there is

no difficulty in taking higher values of n, if we wished to refine this value. Then from equations
(2) and (3) we have :

Ps = — 2.7107042776 x° + 3.7020658293 x* + 5.442563977570236 x° - 14.2142307069 x2 + 10 X

P7=— 0.2860462788x’ + 9.2735798449x°® — 9.1060233661x° + 30.4059634083x" -

4,5572962569x°
- 13.4774091037 x? + 10x

~

P, =51.8376420299x° — 143.1476264633x* + 118.4835473770126x° — 9.59112908226x* —
28.4284614138x + 10

P, = -128.83009481802 X’ + 448.9030079118 X® — 524.0939476192 x° + 176.5451202145 x* +
57.2088062242 x* - 13.6718887705x%> - 26.9548182073 x + 10

For more details ,table (1) gives the results of different nodes in the domain , forn=2, 3. Table (2)

gives a comparison between different methods to illustrate the accuracy of suggested method .
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Table 1 : The result of the method for n =2, 3 of example

Ps P7 P5 P7
Co | 2.219694822391575359 | 2.252768247672827718 | 2.219694822391575359 | 2.252768247672827718
do | -0.8460275517985956 | -0.8938150580593765 | -0.8460275517985956 | -0.8938150580593765
wW__| 2.842846141378345752 | 2.695481820727516889 | 2.842846141378345752 | 2.695481820727516889
X | Ps P7 P5 P7
0 0 0 10 10
0.1 | 0.863643356448571 0.863427393788980) 7.16592972894538 7.23785769033205
0.2 | 1.48002716350200 1.46437072749269 4.66608277606805 4.66167415390903
0.3 [ 1.89106818559481 1.84624472994892 2.77378543340702 2.68326464856785
0.4 | 2.14106245488569 2.06981049178053 1.54322003036112 1.47239865906943
0.5 | 2.27343242612440 2.19446012332854 0.871630104124934 0.919478014902600
0.6 [ 2.32747413151871 2.26574588809978 0.561525570124699 0.726634070419731
0.7 | 2.33510433560132 2.30900964440493 0.382887892454248 0.562313579515600
0.8 [ 2.31760769009681 2.32896842786205 0.135375254310834 0.214422897061533
0.9 | 2.28238388878854 2.31511200744141 -0.289472271568860 | -0.322899860693918
1 2.21969482238558 2.25276824772689 -0.846027552472862 -0.893815064545724

Table 2: A comparison between different methods of example

Xi Y1by using RK method | Y1 by wusing AMB | P7by using Osculatory
method interpolation

0 0 00

0.1 0.862623503985462 0.862669856256729 | 0.863427393788980

0.2 1.45797311117741 1.45819725104960 | 1.46437072749269

0.3 1.82726417857771 1.82744679245478 | 1.84624472994892

0.4 2.02488229881121 2.02533707557721 | 2.06981049178053

0.5 2.09686353714629 2.09725218368877 | 2.19446012332854

0.6 2.07572364294706 2.07610269179243 | 2.26574588809978

0.7 1.98257884957417 1.98297735088020 | 2.30900964440493

0.8 1.83095294173355 1.83138106782495 | 2.32896842786205

0.9 1.63049143871119 1.63095014139590 | 2.31511200744141

1 1.39021250706271 1.39070333814617 | 2.25276824772689
X; | Y2 by using RK|Y2byusingAMB | )

| methoB(/j ’ metr?od ’ Pr by using

Osculatory
interpolation

0 10 10 10
0.1 | 7.24919381452187 | 7.2491601043333 | 7.2378576903320
0.2 | 4.73292943114355 | 4.7329184366403 | 4.6616741539090
0.3 | 2.74704714454101 | 2.7474732904896 | 2.6832646485678
0.4 | 1.28263229675577 | 1.2821759504236 | 1.4723986590694
0.5 ] 0.210727222320128 | 0.2105663865417 | 0.9194780149026
0.6 | 0.598981593153335 | 0.5989529888894 | 0.7266340704197
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0.7 | -1.24198646242225 | 1.2418807869361 | 0.5623135795156
0.8 | -1.77499394396582 | 1.7748696709399 | 0.2144228970615
0.9 | -2.21964146069200 | 2.2195531898594 | 0.3228998606939
1 -2.56791543515899 | 2.5679723802559 | 0.8938150645457

3. WELL POSED PROBLEM

Most problems obtained by observing physical phenomena generally thus, we have only
approximate the actual situation, it is of interest to know whether small changes in the statement of the
problem will introduce correspondingly small changes in the solution. This is also important because of
the possibility of rounding errors when numerical methods are used .

To discuss this problem we need the following definition :
Definition 1 [5]

The initial value problem :

d—y=(f,y), as<x<b, y@=a ... (13)
dx

is said to be a well-posed problem if :
1) a unique solution, to the problem exists ;

i) a perturbed problem : small perturbations of the data ( initial conditions!) cause
only small perturbations of the solution .
Otherwise the problem is said to be ill-posed problem .

For more details , the following theorem give specifies conditions which ensure that an initial value

problem is well-posed. The proof of this theorem can be found in the [5] .
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Theorem 1

Suppose D ={(x,y)|a< x<band —co<y<oo }, the initial value problem :

ﬂzf(x,y), asx<b, y@=a ... (14)
dx

is well-posed provided is continuous and satisfies a Lipschitz condition in the variable y on the set
D.

Consider the perturbed problem :

%:—z+x+1+§, 0<x<1 z(0)=1l+g,
" ,

where & and &, are constants. The solutions of equation can be showntobe y(x)=e™ +x and
z(X)=(1+¢&, -0 +x+7,
respectively. It is easy to verify that if |o|<e and |g,|<¢ , then:

lY()—2() H (S —&.)e ™ —S Il & | +| 51 1-e ™ |< 2¢

For all x , which corroborates the result obtained by the use of theorem 1.

In the same manner to determine whether a particular problem of system of first order initial value
problem has the property that small changes or perturbations in the statement of the problem introduce
correspondingly small changes in the solution ? As usual , we generalize above workable by the following
theorem :

Theorem 2
Suppose D ={(X,y,,...., ¥,, ):a < x <b,—oo(y, (o0, foreachi=1,2,...,m}. the system of IVP is

well-posed , if it is continuous and satisfies a Lipschitz condition defined on the set D .
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