δ* - connectedness in tritopological space

Asmhan Fleih Hassan Al-Zuhairy Kufa Unversity - college of education for girls

ABSTRACT :-

In this work, I introduce a new definition for δ^* -connectedness in tritopological space. Also i study the basic specifications for the new definition of δ^* -connectedness and.

INTRODUCTION :-

Throughout this paper I adopt the notations and terminology of [1], [2], [3], [4] and [5], X and Y are finite sets. And let (X,T,Ω,ρ) be a Tritopological space, a subset A of X is said to be δ^* -open set iff $A \subset T - int(\Omega - cl(\rho - int(A)))$. [¹], and the family of all δ^* -open sets is denoted by δ^* .O(X). The complement of δ^* -open set is called a δ^* -closed set, δ^* .C(X) denoted to The family of all δ^* - closed sets of X. The relative tritopological space for Y is denoted by (Y,T_y,Ω_y,ρ_y) such that $T_y = \{ G \cap Y : G \in T \}$, $\Omega_y = \{ G \cap Y : G \in \Omega \}$ and $\rho_y = \{ G \cap Y : G \in \rho \}$ then (Y,T_y,Ω_y,ρ_y) is called the subspace of

tritopological space (X,T,Ω,ρ) . And the relative tritopological space for Y with respect to δ^* -open sets is the collection $\delta^*.O(X)_v$ given by ;

1- δ^* - separated sets in tritopological space .

<u>1.1 Definition :</u>

Let (X,T,Ω,ρ) be a tritopological space , Tow non empty subsets A and B of X are said to be δ^* -separated iff $A \cap \delta^*$ - $cl(B) = \phi$ and δ^* - $cl(A) \cap B = \phi$. These two conditions are equivalent to the single condition $[A \cap \delta^*$ - $cl(B)] \cup [\delta^*$ - $cl(A) \cap B] = \phi$

1.2 Example :

Let $X = \{a,b,c,d\}$, $T = \{X, \varphi, \{b,c,d\}\}$, $\Omega = \{X, \varphi, \{a\}\}$ and $\rho = \{X, \varphi, \{a\}, \{c,d\}, \{c\}, \{b,c\}, \{a,c,d\} \{a,c\}, \{a,b,c\}, \{b,c,d\}\}$.

(X,T) , (X,Ω) , (X,ρ) are three topological spaces on X , then $(X,T,\Omega,\rho$) is a tritopological space , such that :

$$\delta^* .O(X) = \{ X, \varphi, \{a\}, \{c\}, \{a,b\}, \{a,c\}, \{c,d\}, \{a,d\}, \{b,c\}, \{a,c,d\}, \{a,b,c\}, \{a,b,d\}, \{b,c,d\} \}$$

If we take A = {a} and B = {c}
Then [A \cap \delta^* - cl(B)] \cap [\delta^* - cl(A) \cap B] = ({a} \cap {c}) \cap ({a} \cap {c})) = \varphi Hence {a} and {c} are \delta^* - separated sets.

Also ({a,b} and {c,d}), ({a,d} and {b,c}) etc. are δ^{τ} -separated sets.

<u>1.3 Theorem :</u>

Let (Y,T_y,Ω_y,ρ_y) be a subspace of a tritopological space (X,T,Ω,ρ) and let A, B be two subsets of Y, then A, B are δ^* -separated iff they are δ_v^* -separated.

Proof:

$$\delta_{y}^{*} - cl(A) = \delta^{*} - cl(A) \cap Y \text{ and } \delta_{y}^{*} - cl(B) = \delta^{*} - cl(B) \cap Y [1]$$

Now $\begin{bmatrix} \delta_{y}^{*} - cl(A) \cap B \end{bmatrix} \cup \begin{bmatrix} A \cap \delta_{y}^{*} - cl(B) \end{bmatrix}$

$$= \begin{bmatrix} \delta^{*} - cl(A) \cap Y \cap B \end{bmatrix} \cup \begin{bmatrix} A \cap \delta^{*} - cl(B) \cap Y \end{bmatrix}$$

$$= \begin{bmatrix} \delta^{*} - cl(A) \cap B \end{bmatrix} \cup \begin{bmatrix} A \cap \delta^{*} - cl(B) \end{bmatrix} [\text{ because } A, B \subset Y]$$

Hence $\begin{bmatrix} \delta_{y}^{*} - cl(A) \cap B \end{bmatrix} \cup \begin{bmatrix} A \cap \delta_{y}^{*} - cl(B) \end{bmatrix} = \phi \text{ iff}$

$$[\delta^* - \operatorname{cl}(A) \cap B] \cup [A \cap \delta^* - \operatorname{cl}(B)] = \varphi$$

It follows that A, B are δ^* -separated iff they are δ^*_v -separated.

<u>1.4 Example :</u>

Let $X = \{a,b,c,d\}$, $T = \{X, \phi\}$, $\Omega = \{X, \phi, \{b,c,d\}, \{a,c,d\}, \{c,d\}\}$ and $\rho = \{X, \phi, \{c\}, \{d\}, \{c,d\}\}$

(X,T) , (X,Ω) , (X,ρ) are three topological spaces then (X,T,Ω,ρ) is a tritopological space , such that :

 $\delta^*.O(X) = \{ X, \varphi, \{c\}, \{d\}, \{c,d\}, \{b,c\}, \{a,c,d\}, \{a,b,c\}, \{a,c\}, \{a,c\}, \{a,d\}, \{b,d\}, \{b,d\}, \{b,c,d\} \}.$

And let
$$Y = \{a,c,d\}$$
, then $Ty = \{Y, \phi\}$
, $\Omega y = \{Y, \phi, \{c,d\}\}$
and $\rho y = \{Y, \phi, \{c\}, \{d\}, \{c,d\}\}$

(Y,Ty), $(Y,\Omega y)$, $(Y,\rho y)$ are three topological spaces then $(Y,Ty,\Omega y,\rho y)$ is a subspace of a tritopological space (X,T,Ω,ρ) , such that :

$$\delta^{-}.O(X)y = \{ Y, \phi, \{c\}, \{d\}, \{a,c\}, \{a,d\}, \{c,d\} \}.$$

If we take $A = \{c\} \subset Y$ and $B = \{d\} \subset Y$ Then $[A \cap \delta^* - cl(B)] \cup [\delta^* - cl(A) \cap B] = (\{c\} \cap \{d\}) \cup (\{c\} \cap \{d\}) = \varphi$ Hence $\{c\}$ and $\{d\}$ are δ^* -separated sets. And it is clearly that $\{c\}$ and $\{d\}$ are δ^y *-separated sets.

And conversely ; it is clear that {c} and {d} are δ_y^* -separated sets then {c} and {d} are δ^* -separated sets .

<u>1.5 Theorem :</u>

If A and B are δ^* -separated subsets of a tritopological space (X,T,Ω,ρ) and $C \subset A$ and $D \subset B$, then C and D are also δ^* -separated.

Proof:

We are given that $A \cap \delta^*$ - $cl(B) = \phi$ and δ^* - $cl(A) \cap B = \phi$ (1) δ^* - cl(C) $\subset \delta^*$ - cl(A) and $C \subset A \Rightarrow$ Also $D \subset B \Rightarrow$ δ^* - cl(D) $\subset \delta^*$ - cl(B)(2) It follows from (1) and (2) that $C \cap \delta^*$ - $cl(D) = \phi$ and δ^* - $cl(C) \cap D = \phi$ Hence C and D are δ^* -separated .

1.6 Theorem :

Two δ^* -closed (δ^* -open) subsets A , B of a tritopological space (X,T,Ω,ρ) are δ^* -separated iff they are disjoint.

Proof:

Since any two δ^* -separated sets are disjoint, we need only prove that two disjoint δ^* -closed (δ^* -open) sets are δ^* -separated.

If A and B are both disjoint and δ^* -closed, then : $A \cap B = C$, $\delta^* - cl(A) = A$ and $\delta^* - cl(B) = B$ [1] So that δ^* - cl(A) \cap B = ϕ and A \cap δ^* - cl(B) = ϕ Showing that A and B are δ^* -separated.

If A and B are both disjoint and δ^* -open, then A^c and B^c are both δ^* -closed so that :

$$\begin{array}{lll} \delta^{*-} \operatorname{cl}(A^{c}) = A^{c} & \text{and} & \delta^{*-} \operatorname{cl}(B^{c}) = B^{c} \\ \text{Also } A \cap B = \phi & \Rightarrow & A \subset B^{c} & \text{and} & B^{c} \subset A \\ & \Rightarrow & \delta^{*-} \operatorname{cl}(A) \subset \delta^{*-} \operatorname{cl}(B^{c}) = B^{c} & \text{and} & \delta^{*-} \operatorname{cl}(B) \subset \\ & \delta^{*-} \operatorname{cl}(A^{c}) = A^{c} \\ & \Rightarrow & \delta^{*-} \operatorname{cl}(A) \cap B = \phi & \text{and} & A \cap \delta^{*-} \operatorname{cl}(B) = \phi \\ \text{Hence} & \Rightarrow & A \text{ and } B \text{ are } \delta^{*-} \operatorname{separated} \end{array}$$

2- δ^* - connected and δ^* - disconnected sets in tritopological space .

2.1 Definition :

Let (X,T,Ω,ρ) be a tritopological space, a subset A of X is said to be δ^* -disconnected iff it is the union of two non empty δ^* -separated sets. That is, iff there exist two non empty sets C and D such that $C \cap \delta^*$ - $cl(D) = \phi$, δ^* - $cl(C) \cap D = \phi$ and $A = C \cup D$, A is said to be δ^* - connected iff it is not δ^* -disconnected.

2.2 Example :

Let $X = \{a,b,c\}$, $T = \{X, \varphi, \{b\}, \{a,b\}\}$ $\Omega = \{X, \varphi, \{c\}\}$ and $\rho = \{X, \varphi, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}$ $(X,T), (X,\Omega), (X,\rho)$ are three topological spaces on X, then (X,T,Ω,ρ) is a tritopological space, such that : $\delta^*.O(X) = \{X, \varphi, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{b,c\}\}$ If we take $A = \{a,b\}$, $C = \{a\}$ and $D = \{b\}$, then : $A = C \cup D$ and $\{a\} \cap \{b\} = \varphi$ And $C \cap \delta^*$ - cl(D) = $\{a\} \cap \{b\} = \varphi$, δ^* - cl(C) $\cap D = \{a\} \cap \{b\} = \varphi$ Then $\{a\}$ and $\{b\}$ are δ^* -separated sets. Hence the set $\{a,b\}$ is δ^* -disconnected. But $\{a,c\}, \{b,c\}, \{b\}, \{a\}$ are δ^* -connected sets.

2.3 Remark :

- (**i**) The empty set in δ^* .O(X) is trivially δ^* -connected.
- (ii) every singleton set in δ^* .O(X) is δ^* -connected since it cannot be expressed as a union of two non empty δ^* -separated sets.

2.4 Definition :

Two points a and b of a tritopological space X are said to be δ^* -connected iff they are contained in a δ^* -connected subset of X.

2.5 Example :

In the last example the points a and c are δ^* - connected because they are contained in {a,c} which is δ^* - connected subset of X.

2.6 Theorem :

Let (Y,T_y,Ω_y,ρ_y) be a subspace of a tritopological space (X,T,Ω,ρ) and $A \subset Y$, then A is δ^* -disconnected iff it is δ_y^* -disconnected . equivalently, A is δ^* -connected iff it is δ_y^* -connected.

Proof :

By theorem (1.3), two non empty subsets of Y are δ^* -separated iff they are δ_y^* -separated. Therefore A is the union of two δ^* -separated sets iff it is the union of two δ_y^* -separated sets. Hence the result.

2.7 Example :

Tt is clear in example (1.4), the set {c,d} is δ^* -disconnected then it is δ_v^* -disconnected, and the converse is true.

And the set {a,c} and {a,d} are δ^* -connected then it is δ_v^* - connected, and the converse is true.

2.8 Theorem :

A tritopological space (X,T,Ω,ρ) is δ^* -disconnected iff there exists a non empty proper subset of X which is both δ^* -open and δ^* -closed in X.

Proof :

Let A be a non empty proper subset of X which is both δ^* -open and δ^* -closed in X. We have to show that X is δ^* -disconnected :

Let $B = A^c$. Then B is non empty since A is a proper subset of X.

Moreover, $A \cup B = X$ and $A \cap B = \varphi$, since A is both δ^* -open and δ^* -closed, B is also both δ^* -open and δ^* -closed.

Hence δ^* - cl(A) = A and δ^* - cl(B) = B it follows that δ^* - $cl(A) \cap B = \varphi$ and $A \cap \delta^*$ - $cl(B) = \varphi$. Thus X has been expressed as a union of two δ^* -separated sets and so X is δ^* -disconnected.

Conversely ; Let X is δ^* -disconnected . Then there exist non empty subsets A and B of X such that δ^* - cl(A) \cap B = ϕ and A \cap δ^* - cl(B) = ϕ and A \cup B = X . Since δ^* - cl(A) = A and δ^* - cl(B) = B \Rightarrow A \cap B = ϕ .

Hence $A = B^c$ and B is non empty, A is a proper subset of X. Now $A \cup \delta^*$ - cl(B) = X. [since $A \cup B = X$ and $B \subset \delta^*$ - $cl(B) \Rightarrow X \subset A \cup \delta^*$ - cl(B) but $A \cup \delta^*$ - $cl(B) \subset X$ always]

Also $A \cap \delta^{*-} cl(B) = C \implies A = (\delta^{*-} cl(B))^{c}$ and similarly $B = (\delta^{*-} cl(A))^{c}$.

Since δ^* - cl(A) and δ^* - cl(B) are δ^* -closed sets, it follows that A and B are δ^* -open sets, and since $A = B^c$, A is also δ^* -closed. Thus A is non empty proper subset of X which is both δ^* -open and δ^* -closed.

In the same way we can show that B is also non empty proper subset of X which is both δ^* -open and δ^* -closed.

2.9 Corollary :

A tritopological space (X,T,Ω,ρ) is δ^* -connected iff the only non empty subset of X which is both δ^* -open and δ^* -closed in X is X itself.

Proof:

Easy to prove by using above theorem.

2.10 Theorem :

A tritopological space (X,T,Ω,ρ) is δ^* -disconnected iff any one of the following statements holds :

(i) X is the union of two non empty disjoint δ^* -open sets.

(ii) X is the union of two non empty disjoint δ^* -closed sets .

Proof:

Let X be a δ^* -disconnected. Then there exists a non empty proper subset A of X which is both δ^* -open and δ^* -closed. Then A^c is also both δ^* -open and δ^* -closed also $A \cup A^c = X$. Hence the sets A and A^c satisfy the requirements of (i) and (ii).

Conversely ; let $X = A \cup B$ and $A \cap B = \phi$, where A, B are non empty δ^* -open sets. It follows that $A = B^c$ so that A is δ^* -closed.

Since B is non empty, A is a proper subset of X. Thus A is a non empty proper subset of X which is both δ^* -open and δ^* -closed. Hence by the theorem (2.7), X is δ^* -disconnected.

Again, let $X = C \cup D$ and $C \cap D = \phi$, where C, D are non empty δ^* -closed sets. then $C = D^c$ so that C is δ^* -open. Since D is non empty, C is a proper subset of X which is both δ^* -open and δ^* -closed. Hence X is δ^* -disconnected by the theorem.

Thus it is shown that if any one of the conditions (i) and (ii) holds, then X is δ^* -disconnected.

2.11 Corollary :

A subset Y of a tritopological space X is δ^* -disconnected iff Y is the union of two non empty disjoint sets both δ^* -open (δ^* -closed) in Y.

Proof:

Easy to prove.

2.12 Corollary :

Let (X,T,Ω,ρ) be a tritopological space and let Y be a subset of X. Then Y is δ^* -disconnected iff there exist non empty sets G and H both δ^* -open (δ^* -closed) in X such that : $G \cap H \neq \phi$, $H \cap G \neq \phi$, $Y \subset G \cup H$ and $G \cap H \subset X$ -Y.

Proof:

By corollary (2.10), Y is δ^* -disconnected iff there exist non empty sets G and H both δ^* -open (δ^* -closed) in X such that : $G \cap H \neq \varphi$, $H \cap G \neq \varphi$, $(G \cap Y) \cap (H \cap Y) = \varphi$ And $(G \cap Y) \cup (H \cap Y) = Y$ Now $(G \cap Y) \cap (H \cap Y) = \varphi$ $\Leftrightarrow (G \cap H) \cap Y = \varphi$ $\Leftrightarrow (G \cap H) \subset X - Y$ And $(G \cap Y) \cup (H \cap Y) = Y$ $\Leftrightarrow (G \cup H) \cap Y = Y$ $\Leftrightarrow (G \cup H) \cap Y = Y$ $\Leftrightarrow Y \subset G \cup H$. Hence the result.

2.13 Theorem :

A tritopological space (X,T,Ω,ρ) is δ^* -connected iff every non empty proper subset of X has a non empty δ^* - frontier.

Proof :

Let every non empty proper subset of X have a non empty δ^* - frontier ., to show that X is δ^* -connected . Suppose ; if possible ; X is δ^* -disconnected , then there exist non empty disjoint sets G and H both δ^* -open (δ^* -closed) in X. Such that $X = G \cup H$. Therefore $G = \delta^*$ -int(G) = δ^* -cl(G). But δ^* -fr(G) = δ^* -cl(G) - δ^* -int(G) [1] Hence δ^* -fr(G) = G - G = ϕ . Which is contrary to our hypothesis . Hence X must be δ^* -connected

Conversely, let X be δ^* -connected and suppose, if possible, there exists a non empty proper subset A of X such that δ^* -fr(A) = φ Now δ^* -cl(A) = δ^* -int(A) $\cup \delta^*$ -fr(A) = A $\cup \delta^*$ -fr(δ^* -cl(A)) [1] Hence δ^* -cl(A) = δ^* -int(A) = A showing that A is both δ^* -open and δ^* -closed in X and therefore X is δ^* -disconnected by theorem (2.7).

But this is a contradiction . Hence every non empty proper subset of X must have a non empty δ^* - frontier .

References :

- [1] Hassan . A. F. " δ^* open set in Tritopological spaces "MS.c thesis . University of Kufa , 2004.
- [2] Jaleel . I. D. " δ -open set in bitopological spaces "MS.c thesis . University of Babylon , 2003.
- [3] G.Castellini, "Connectedness, disconnectedness and closure operater , a more general aproach," Proceedings of the workshop on categorical topology (L'Aquila, 1994), Kluwer Academic Publisher (1996), 129-138.
- [4] Bourbaki, N. "General Topology", Addison Wesley Reading, Mass, 1966.
- [5] Hu, S.T., "Element of General Topology", Holden Day San Francisco, 1964.

الخلاصة :

في هذا العمل قدمت تعريف جديد للإتصال في الفضاء الثلاثي التبولوجي، وقد اطلقت عليه اسم (محلمه الإتصال) كذلك درست المواصفات الأساسية لهذا التعريف الجديد في الفضاء الثلاثي التبولوجي