. &Tech.Journal, Vol. 32,Part (B), No.6, 2014

Continuous and Uniform Continuous Mappings on a
Standard Fuzzy Metric Spaces

Dr. Jehad R.Kider

Applied Science Department/ University of Technology
Email:Jahadramadhan@yahoo.com

Zeina A.Hussain

Applied Science Department/ University of Technology

Received on: 7/1/2014 &  Accepted on: 13/5/2014

ABSTRACT

In this paper we introduced the definition of standard fuzzy metric spaces then
we discussed several properties of this space after some illustrative examples are
given. Then we defined a continuous mapping from standard fuzzy metric space
(X,My,*) into a standard fuzzy metric space (Y,My,*) after that we proved some
basic theorems of a continuous mappings. Finally we defined uniformly
continuous mapping from a standard fuzzy metric space (X,My,*) into a standard
fuzzy metric space (Y,My,*) then we proved several properties of uniformly
continuous mapping.
Keyword: Standard fuzzy metric space, Continuous mapping, Uniformly
continuous mapping.
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INTRODUCTION

any authors have introduced and discussed several notions of fuzzy

metric space from different points of view [1, 2, 8,10,11 and 12]. In

particular, Kramosil and Michalek [7] generalized the concept of
probabilistic metric space given by Menger [8], [11] to the fuzzy framework. Later
on, George and Veeramani [2] have modified in a slight but appealing way the
concept of fuzzy metric space of Kramosil and Michalek. Other recent
contributions to the study of fuzzy metric spaces in the sense of [2] may be found
in [3,4,5,6 and 9]. Here we introduce a new definition of fuzzy metric space we
call it a standard fuzzy metric space then we give two examples to illustrated this
notion after that in section one we explore several properties of this space. One of
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the main aims in considering standard fuzzy metric spaces is the study of
continuous functions. In section two we define continuous mapping from a
standard fuzzy metric space (X,My,*) into a standard fuzzy metric space (Y,My,*)
then we proved several properties of a continuous mapping. In section three we
define a uniformly continuous mapping from a standard fuzzy metric space
(X,My,*) into a standard fuzzy metric space (Y,My,*).

Every function which is uniformly continuous is necessarily continuous we give a
counter example to show that converse may not be true. Also we prove that
uniformly continuous mapping maps a Cauchy sequence into a Cauchy sequence
and we give an example to show that continuous mapping does not maps Cauchy
sequence to a Cauchy sequence.

Standard fuzzy metric spaces
Definition 1.1:[1] A binary operation *: [0,1] x [0,1] — [0,1] is a continuous t-
norm if * satisfies the following conditions:
1- = is associative and commutative.
2- * is continuous.
3- axl=aforalla e [0,1].
4- axb <c*d whenever a < ¢ and b < d where a,b, ¢,d €[0,1].
Remark 1.2:[2] For any r; > r, we can find r3 such that ryx r, >, and for any ry
we can find an rs such that rs*rs > r, where r,r,,rs,rs,rs €(0,1).
We introduce the following definition.
Definition 1.3: A triple (X,M,*) is said to be standard fuzzy metric space if X is
an arbitrary set, * is a continuous t- norm and M is a fuzzy set on X? satisfying the
following conditions:
(FM1) M(x,y) >0forall x,y € X
(FM3) M(x,y)=1ifandonlyifx=y
(FM3) M(x,y) = M(y,x) forall X,y € X
(FMy) M(x,2) > M(x,y) *M(y,z) for all x,yand z € X
(FMs) M(x,y) isa continuous fuzzy set

Example 1.4: Let X=N, and let axb = a.b for all a, b €[0,1].

Ifx<y
Define M(x,y) = |

»I<

Ify<x

forall x,y eN.
Then it is easy to show that (N,M,.) is a standard fuzzy metric space.

Example 1.5: Let X=R and let axb = a.b for all a, b € [0,1].
. _ 1
Define M(x,y) = pr= forallx,y e R.
Then it is easy to show that (R,M,.) is a standard fuzzy metric space.
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Definition 1.6: Let (X,M,*) be a standard fuzzy metric space then M is continuous
if whenever x,—x and y,—y in X then M(Xpy,) —M(xy) that is lim,_,
M(Xn,Yn) =M(X.y).

Definition 1.7: Let (X,M,*) be a standard fuzzy metric space .Then B(x,r)
={yeX: M(x,y) > 1-r} is an open ball with center xeX and radius r, 0 <r < 1.

The proof of the following result is easy and hence is omitted.
Proposition 1.8: Let B(x,r;) and B(x,r,) be two open balls with same center x in a
standard fuzzy metric space (X,M,*).Then either

B(x,r1) < B(x,ry) or B(x,r,)c B(x,r;) where ry,r,e(0,1).

Definition 1.9: A subset A of a standard fuzzy metric space (X,M,*) is said to be
open if given any point a in A there existsr, 0 <r < 1 such that B(a,r) c A .A
subset B is said to be closed if B€ is open .

The idea of the proof of the following result is similar to the idea of result 3.2 in

[2] and hence is omitted.

Theorem 1.10: Every open ball in a standard fuzzy metric space (X,M,*) is an
open set.

The proof of the following result is easy, hence is omitted.

Theorem 1.11: Let (X,M,*) is a standard fuzzy metric space. Define 1= {AcX:
xeA if and only if there exists 0 < r < 1 such that B(x,r) c A} Then 1y is a
topology on X.

Theorem 1.12:_Every standard fuzzy metric space is a Hausdorff space.

Proof :

Let (X,M,*) be a standard fuzzy metric space. Let x and y be two distinct pints of
X. Then 0 < M(x,y) <1 .Let M(x,y) =, for some O<r<1. Now by Remark 2.2 for
each ro, r <rg <1, we can find an ry such that ry * r; > ry . Consider the open balls
B(x,1—ry) and B(y,1—ry).

Clearly B(x,1—ry) N B(y,1—r;) = @ for if there exists

ZEB(X,l—rl) N B(y,l—rl).

Then r=M(Xy) = M(X,z) *M (z,y) > r1*r; > 1o > r which is a contradiction.
Therefore (X,M,*) is a Hausdorff space.

Definition 1.13: A sequence (x,) in a standard fuzzy metric space (X,M,*) is said
to be converge to a point x in X if for each r ,0 < r < 1 there exists a positive
number N such that M(x,,x) > (1-r) , for each
n>N.

The idea of the proof of the following theorem is similar to the idea of the proof of
Theorem 3.11 in [2] and hence is omitted.
Theorem 1.14: Let (X,M,*) be a standard fuzzy metric space then for a sequence

(xn) in X converge to x if and only if lim,_,., M(X,,X) = 1.

Definition 1.15: A sequence (X,) in a standard fuzzy metric space (X,M,*) is
Cauchy if for each r, 0 < r < 1, there exists a positive humber N such that
M(Xp,Xm) > (1-1), for each m, n>N.

Lemmal.16:[13] Let f: X—Y be an arbitrary functionand A c XandB c Y.
Then f(A) < B if and only if A = f~1(B).

Definition1.17:[13]_Let X and Y be a standard fuzzy metric spaces and let A be a
proper subset of X. If f is a mapping of A into Y, then a mapping g:X—Y is called an
extension of f if g(x) = f(x) for each xeA, the function f is then called the restriction
of gto A.
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Definition1.18: A standard fuzzy metric space (X,M,x) is complete if every Cauchy
sequence in X converges to a point in X.

Continuous mappings

Definition 2.1: Let (X,Mx,*) and (Y,My,*) be standard fuzzy metric spaces and A
X. A function f:A—Y is said to be continuous at acA, if for every 0 < € < 1, there
exist some 0 < 6 < 1, such that My(f(x),f(a)) > (1- €) whenever xe A and

My(x,a) > (1- ). If f is continuous at every point of A, then it is said to be
continuous on A.

Theorem 2.2: Let (X,My,*) and (Y,My,*) be standard fuzzy metric spaces and AcX.
A function f:A—Y is continuous at acA if and only if whenever a sequence (x,) in A
converge to a, the sequence (f(x,)) converges to f(a).

Proof: First suppose the function f:A—Y is continuous at acA and let (x,) be a
sequence in A converge to a. We shall show that (f(x,)) converges to f(a). Let 0
< g < 1 be given. By continuity of f at a, there exists some 0 < & < 1, such that xeA
and Mx(x,a) > (1- ), implies

My (f(x),f(a)) > (1- €). Since lim,_X,= a there exist some positive integer N such
that n > N implies My (x,,a) > (1- 8). Therefore n > N implies My(f(xy).f(a)) > (1-
€). Thus lim,_,.f(x,) = f(a)

Now suppose that every sequence (x,) in A converging to a has the property that
lim,,_,.f(x,) = f(a). We shall show that f is continuous at a.

Suppose, if possible, that f is not continuous at a. There must exists

0 < ¢ < 1, for which no 3, 0 < & < 1 can satisfy the requirement that xeA and
Mx(x,a) > (1- 9), implies My(f(x),f(a)) > (1- €). This means that for every 3, 0 < 6 <
1 there exists xeA such that My(x,a) > (1- &) but My(f(x),f(a)) < (1- €). For every

neN, the number% is positive and therefore there exist x,, €A such that M(x,,a) >
(1- =) but

My (f(xpn),f(a)) < (1- €). The sequence (x,) then converges to a but the sequence
(f(x,)) dose not converge to f(a). This contradicts the assumption that every sequence
(x,) in A converging to a has the property that lim,_,.f(x,) = f(a). Therefore, the
supposition that f is not continuous at a must be falsem

Definition 2.3: Let (X,Mx,*) and (Y,My,*) be standard fuzzy metric spaces and A —
X. Let f:A—X and a be a limit point of A. We write lim,_,,f(x) = b, where beY, if
for every 0 < € < 1 there exists 0 < § < 1 such that My(f(x),b) > 1- € wherever xeA
and My(x,a) > 1- 6.

Proposition 2.4: Let (X,My,*) and (Y,My,*) , A, fand a be as in Definition 2.3. Then
limy_,,f(x) = b if and only if lim,_,f(x,)= b for every sequence (x,) in A such that
Xp#aand lim, ,,.x,= a.

Proof:

The argument is similar to that of Theorem 2.2 and is therefore not included.
Proposition 2.5: A mapping f of a standard fuzzy metric space (X,Mx,*) into a
standard fuzzy metric space (Y,My,*) is continuous at a point acX if and only if for
every 0 < & < 1, there exists 0 <& < 1 such that , B(a,8)c f~*(B(f(a),s)) where
B(x,r) denotes the open ball of radius r with center x.

Proof:

The mapping f:X—Y is continuous at ae X if and only if for every

1114



Eng. &Tech.Journal, Vol. 32,Part (B), No.6, 2014 Continuous and Uniform Continuous

Mappings on a Standard Fuzzy Metric
Spaces

0 < & < 1, there exists 0 < & < 1 such that My(f(x),f(a)) > (1- €) for all x satisfying
My(x,a) > 1- 6 i.e xeB(a,8) implies f(x) eB(f(a),s) or
f(B(a,0)) = B(f(a).¢)
This is equivalent to the condition
B(a,8) < f~1(B(f(a),c)) m

Theorem 2.6: A mapping f:X—Y is continuous on X if and only if f~1(G) is open in
X for all open subset G of Y.
Proof:
Suppose f is continuous on X and let G be an open subset of Y.
We have to show f~1(G) is open in X. Since @ and X are open, we may suppose that
f~1(G) # @ and f~1(G) # X. Let xe f~1(G). Then f(x)eG. Since G is open, there
exists 0 < ¢ < 1 such that B(f(x),e) < G. Since f is continuous at x, by Proposition
1.4.6 for this € there exists 0 < § < 1 such that B(x,8) < f~1(B(f(x),e)) = f~1(G)
Thus, every point x of f~1(G) is an interior point, and so f~1(G) is open
in X. Suppose, conversely, that f~1(G) is open in X for all open subsets G of Y. Let
xeX for each 0 < ¢ < 1, the set B(f(x),g) is open and so f ~(B(f(x),g)) is open in X.
Since xe f~1(B(f(x),)) it follows that there exists 0 < § < 1 such that B(x,5)
c f7H(B(f(x).2)).
By Proposition 2.5 it follows that f is continuous of X m
Theorem 2.7:
A mapping f:X—Y is continuous on X if and only if f~*(F) is closed in X for all
closed subset F of Y.
Proof:
Let F be a closed subset of Y. Then Y-F is open in Y so that f~1(Y-F) is open in X
by Theorem 2.6. But f~1(Y-F) = X- f71(F) so f~1(F) is closed in X. Suppose,
conversely, that f=1(F) is closed in X for all closed subset F of Y. But the empty set
and the whole space X are closed sets. Then X-f~1(F) is open in X and f~1(Y-F) =
X- f71(F) is open in X. Since every open subset of Y is of the type Y- F where F is
suitable closed set. It follows by using Theorem 2.6, that f is continuousm
The characterization of continuity in terms of open sets of Theorem 2.6 leads to an
elegant and brief proof of the fact that a composition of continuous maps is
continuous.The idea of the proof of the following theorem is similar to the idea of the
proof of the ordinary case .
Theorem 2.8: Let (X,My,*), (Y,My,*) and (Z,Mz,*) be a standard fuzzy metric
spaces and let :X—Y and g:Y—Z be continuous. Then the composition gof is a
continuous map of X into Z.
Proof:
Let G be open subset of Z. By Theorem 2.6, g~1(G) is an open subset of Y and
another application of the same theorem shows that f~1(g~1(G)) is an open subset of
X. Since (go H7L(G) = f~1(g~1(G)), it follows from the same theorem again that
g o f'is continuous m
The idea of the proof of the following theorem is similar to the idea of the proof of
the ordinary case .
Theorem 2.9: Let (X, My,*) and (Y,My,*) be a standard fuzzy metric spaces and let
f:X—Y. Then the following statements are equivalent:

(i) fiscontinuous on X.

(i) f~1(B) < f~1(B) for all subsets B of Y.

(iii)f(A) c f(A) for all subsets A of X.
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Proof:

(i)=(ii): Let B be a subset of Y. Since B is a closed subset of Y, f~1(B) is closed in
X. Moreover f~1(B) < f~%(B), and so f~1(B) c f~1(B). [Recall thatf~1(B) is the
smallest closed set containing f~1(B)].

(ii)=(iii): Let A be a subset of X. Then if B = f(A), we have

Acf(B)and A c f~1(B) < f~(B). Thus f(A)  f(f~%(B)) = B = f(A).

(iii)=(i): Let F be a closed set in Y and set f~1(F) = F,. By Theorem 2.7, it is
sufficient to show that F;is closed in X, that is, F;=F;.

Now f(F,) < f(f~1(F)) c F =F so that F;c f"*(f(F)) c f"*(F) =F, m

Definition 2.10: Let X and Y be a standard fuzzy metric spaces and let A be a proper
subset of X. If f is a mapping of A into Y, then a mapping g:X—Y is called an
extension of f if g(x) = f(x) for each xeA, the function f is then called the restriction
ofgto A.

If X and Y are standard fuzzy metric spaces, A < X and f:A—Y is continuous, then
we might ask whether there exists a continuous extension g of f. Extension problems
abound in analysis and have attracted the attention of many celebrated
mathematicians. Below we deal with some simple extension techniques.

Theorem 2.11: Let (X,Mg,*) and (Y,My,*) be two standard fuzzy metric spaces. Let
f:X—Y and g:X—Y be continuous mappings. Then the set

{xeX: My(f(x),g(x)) = 1} is closed subset of X.

Proof:

Let F = {xeX: My(f(x),9(x)) = 1}. Then X-F = {xeX:0 < My(f(x),0(x)) < 1}. We
show that X-F is open. If X- F = @, then there is nothing to prove. So let X-F # @ and
let ae X-F . Then My(f(a),g(a)) < 1.

Let My(f(a),g(a)) = 1- €, for some 0 < &< 1. Then by continuity of f

and g there is 0 < 6 < 1 such that My(x,a) > 1- 6 . Implies

My (f(x),f(a)) > 1- € and My(g(x),g(a)) > 1- €. Hence there exists

(1-r) forsome 0 <r < 1.By Remark 1.2, such that

(1- €)* (1- €)* (1-€) > (1-1)
Now My(f(x),9(x)) = M(f(x).f(2)) *M(f(a),9(a)) *M(g(a).9(x))
> (1- €)% (1- &)* (1- &) > (1-r)

For all x satisfying My(x,a) > (1- 3).

Thus for each xeB(a,d), My(f(x),g(x)) < 1, i.e, f(x) # g(x).

So B(a,8) < X-F . Hence, X-F is open and thus F is closed m

Corollary 2.12: Let (X,My,*) and (Y ,My,*) be standard fuzzy metric spaces. Let
f:X—Y and g:X—Y be continuous mappings. If F = {xeX: My(f(X),g(x)) =1} is
dense in X then f = g.

Proof:

By Theorem 2.11, F is closed. Since F is assumed dense in X, we have X =F =F i.e
f(x) = g(x) for all xeXm

Theorem 2.13: Let (X,My,*) and (Y ,My,*) be standard fuzzy metric spaces. Let A be
a dense subset of X and f:A—Y be a map. Then f has a continuous extension g:X—Y
if and only if for every xeX that is a limit point of A, the limit lim,_,,f(y) not only
exists in Y but also equals f(x) in case xe A. When the extension exists, it is unique.
[Note that the stipulation limy_,,f(y) = f(x) when xeA says that f is continuous on A].
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Proof:
Suppose that f has a continuous extension g, and consider any xeX that is a limit
point of X. Since A is dense, x must be a limit point of A as well, as we now argue.
Any ball B(x,g) contains a point yeX, y £ x.
There exists B(y,&) < B(x,e) such that xg B(y,€). Since A is dense,
B(y,€) contains a point ac A. Thus B(X,g) contains the point acA and
a#x. Now
g(x) =limy_,g(y) [gis continuous ]

=limy_,g(y) withyeAT[xisa limitpointofA]

=limy_,f(y) [gisanextension of f]
Thus, limy_,,f(y) exists and equals g(x).
Conversely, suppose that for every limit point xeX, limy_,f(y) exists and that is
equal to f(x) when xeA.
Define g(x) by:

f(x) if xeA
9(x) =

limy_,f(y) if xeAbutxeA

Since A is dense in X, the function g is defined on the whole of X. We need to show
that g is continuous. By the definition of a limit, for every positive number

0 <e<1, there exists a positive number 0 <& < 1 such that f(y)eB(g(x),g)

whenever y # x and yeB(x,8) N A.Consider any zeB(X,5). In case z is an isolated
point of X. Then g(z)eB(g(x),g) in view of the observation above. If z is not an
isolated point of X, then g(z) is the limit of f(y) as y—z in B(x,0) N A.

Therefore g(z)ef(A N B(x,3)) < B(g(®),7) < B(g(X).¢)

So that g is continuous of x. Hence g is continuous on X. By Corollary 2.12, it
follows that g is the unique continuous extension of f m

Uniform Continuous Mappings

Definition 3.1: Let (X,Mx,*) and (Y,My,*) be two standard fuzzy metric spaces. A
function f:X—Y is said to be uniformly continuous on X, if for every 0 < ¢ < 1,there
exists 9, 0 < & < 1 (depending on ¢ alone) such that My(f(x4),f(x;)) > (1- ¢ )
whenever M,(x4,x5) > (1- d).

Remark 3.2: Every function f:X—Y which is uniformly continuous on X is

necessarily continuous on X. However the converse may not be true.
Counter Example: Let X =Y =R - {0} and M,(X,y) = |xiy\ if x #y and My(X,X) =
1. Let axb = a'b for all a, be[0,1]. Then (X,My,*) is a standard fuzzy metric space.

Let My(yq,y2) = T~ and
1~ Y2
My(yq,y1) =1, forall y;, y,€Y. Then (Y,My,*) is a standard fuzzy metric space.
Define £:X—Y by f(x) =§ , XeR - {0}. It is easy to see that f is continuous. We shall

prove that it is not uniformly continuous by exhibiting an € for which no 6 works. Let
0 < 6 < 1 be arbitrary.
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Choosex- andy = —y
t -t -1 4
Then M,(X, ) oy ‘% ia‘_ﬁ 1-6
But My(f(x),f(y)) _|f(x)—f(y)\_ 10 445 [1-9 >1

I_
Thus, whatever 0 < § < 1 may bezthere exists points x and y such that
My (x,y) >1-6,0 < < 1but My(f(x),f(y)) >1m
Remark 3.3: A continuous function may not map a Cauchy sequence into a Cauchy
sequence as the following example shows:
Example 3.4: Let X = (0,) , axb = a-b for all a,be[0,1]

and let Mx(x4,X;) = , then (X,My,*) is a standard fuzzy metric space. Let

,ify;#y, and My(yq,y,) = 1. Let f: XY,

1+ |X1— Xy
Y =R -{0} and let My(y1,y2) = ———
|y1— ¥l

f(x) = x, xeX and f is a continuous function. Now (% ) is Cauchy sequence in X

because it is convergent sequence. But (f(%)) = (%) is not a Cauchy sequence in Y.

Since My(i , %) = = n}_m‘ = | nrfr:n | > 1. Hence it is not Cauchy

mn

sequence in Ym

Theorem 3.5:Let (X,My,*) and (Y,My,*)be two standard fuzzy metric spaces and
f:X—Y be uniformly continuous.If (x,,) a Cauchy sequence in X then so is (f(x,)) in
Y.

Proof:

Since f is uniformly continuous, for every € > 0, there exists 6,

0 < & <1 such that My(f(x),f(y)) > 1- € whenever My(x,y) > 1- 6 for

all x, ye X. Because the sequence (x,) is Cauchy, corresponding to

0 < 8 < 1 there exists N such that My (x,,,X,,) > 1- 6 for all m, n > N. We now
conclude that My(f(x,),f(xm)) > 1- € for all n, m > N and so (f(x,)) is a
Cauchy in YL

Theorem 3.6: Let f be a uniformly continuous mapping of a set A, dense in
the standard fuzzy metric space (X,M,,*) in to a complete standard fuzzy
metric space (Y,My,*). Then there exists a unique continuous mapping g:
X—Y such that g(x) = f(x) when xeA. Moreover g is uniformly continuous.
Proof:

Since f is uniformly continuous, a fortiori, continuous, therefore, for every
xeA that is a limit point of X, the limit lim,_,,f(y) not only exists in Y but also
equals f(x). Therefore by Theorem 2.13, in order to prove the existence and
uniqueness of such a continuous mapping g:X—Y, it is sufficient to show for
every XxeX-A that f(y) tends to a limit as y—x. [ It is understood that ye A
because the domain of fis A].

Let xeX be arbitrary. Since A is dense in X, there exists a sequence (x,) in A
such that lim,_,,,Mx(X,, X) = 1. Since (x,) is convergent, it is a fortiori Cauchy
so by Theorem 3.5, it follows that (f(x,,)) is a Cauchy sequence in the complete
standard fuzzy metric space (Y,My,*) and hence converges to a limit, which
we shall denote by b. Now consider any sequence (X,,) in A with X,# x for each
nand lim, X, = X. It follows from uniform continuity of f that, for
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0 < e < 1,thereexistsad, 0 < & < 1such that My (f(2),f(y)) > 1- e whenever
Mx(z,y) > 1- & since limp_X, = x = lim,_X, , there exists an integer Ny,
such that My (X,, X;,) > 1- 6 whenever n > N;. Letting n—oo, we get
My (1Mo F ), limnL o f(x)) = 1- g ie My (b, limy L, f(xy)) = 1-&.
Since 0 < € < 1 is arbitrary, it follows that lim,_..f(x;) = b, for every sequence (X,)
in A with X,# x for each n, and lim,_,,.X,,= X.
It follows, Proposition 2.4, that f(y) tends to a limit, namely b, as y—x.
As already pointed out earlier, this shows that a unique continuous extension g of f to
X exists. It remains to prove that g is uniformly continuous. Let x and x be two points
of X such that My (x, x) > (1-r).
Let (x,) and (X;,) be sequence of points in A such that
limp_ My (X, X) =1and lim,_ My (X, X) = 1.
We can choose an integer N, such that My (X, X) > (1-1)
and My (X, X) > (1-r) whenever n>N,
Now we can find 0 < & < 1 such that (1-r) *(1-r) =(1-r) > (1- d)
By Remark 1.2
Mx (Xm, Xn) = Mx (Xm, X) * My (X, X) * My (X, %;,)
> (1-r) *(1-1) *(2-1r) > (1- 9)

Forall m, n > N, it follows that My (f(X.,,), f(X,))) > 1- ¢
Letting m—o0 and then n—oo in the above in equality, we get,

My (9(x),9(X)) > 1- €, whenever My (x,X) > (1-1)
This proves that g is uniformly continuous [}
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