
                                                                                    , 2014 6Part (B), No.32,Eng. &Tech.Journal, Vol.  

 

1111 
https://doi.org/10.30684/etj.32.6B.10 
2412-0758/University of Technology-Iraq, Baghdad, Iraq 
This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0 

 Continuous and Uniform Continuous Mappings on a 
Standard Fuzzy Metric Spaces 

 
 

Dr. Jehad R.Kider  
Applied Science Department/ University of Technology 
Email:Jahadramadhan@yahoo.com            
Zeina A.Hussain 
Applied Science Department/ University of Technology 

       
 
 

Accepted on: 13/5/2014                             &              Received on: 7/1/2014    

 
ABSTRACT 
    In this paper we introduced the definition of standard fuzzy metric spaces then 
we discussed several properties of this space after some illustrative examples are 
given. Then we defined a continuous mapping from standard fuzzy metric space 
(X,MX,∗) into a standard fuzzy metric space (Y,MY,∗) after that we proved some 
basic theorems of a continuous mappings. Finally we defined uniformly 
continuous mapping from a standard fuzzy metric space (X,MX,∗) into a standard 
fuzzy metric space (Y,MY,∗) then we proved several properties of uniformly 
continuous mapping.  
Keyword: Standard fuzzy metric space, Continuous mapping, Uniformly 
continuous mapping. 
                                                  

المستمرة والدوال المنتظمة الاستمراریة على الفضاءات المتریة  الضبابیة  الدوال
 القیاسیة

 
 الخلاصة 

ن أفي ھذا البحث قدمنا تعریف الفضاء المتري الضبابي القیاسي بعد ذلك ناقشنا عدة خواص لھذا الفضاء بعد 
الى  (∗,X,MX)عطینا امثلة توضیحیة . بعد ذلك عرفنا الدوال المستمرة من فضاء متري ضبابي قیاسي أ

 "للدوال المستمرة واخیرا ثم برھنا بعض المبرھنات الاساسیة (∗,Y,MY)خر أقیاسي ضبابي فضاء متري 
متري ضبابي الى فضاء  ∗,X,MX)عرفنا الدوال المستمرة المنتظمة من فضاء متري ضبابي قیاسي ( 

 خواص للدوال المستمرة المنتظمة . بعد ذلك برھنا عدة (∗,Y,MY)أخر قیاسي 
 

INTRODUCTION 
any authors have introduced and discussed several notions of fuzzy 
metric space from different points of view [1, 2, 8,10,11 and 12]. In 
particular, Kramosil and Michalek [7] generalized the concept of 

probabilistic metric space given by Menger [8], [11] to the fuzzy framework. Later 
on, George and Veeramani [2] have modified in a slight but appealing way the 
concept of fuzzy metric space of Kramosil and Michalek. Other recent 
contributions to the study of fuzzy metric spaces in the sense of [2] may be found 
in [3,4,5,6 and 9]. Here we introduce a new definition of fuzzy metric space we 
call it a standard fuzzy metric space then we give two examples to illustrated this 
notion after that in section one we explore several properties of this space. One of 
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the main aims in considering standard fuzzy metric spaces is the study of 
continuous functions. In section two we define continuous mapping from a 
standard fuzzy metric space (X,MX,∗) into a standard fuzzy metric space (Y,MY,∗) 
then we proved several properties of a continuous mapping. In section three we 
define a uniformly continuous mapping from a standard fuzzy metric space 
(X,MX,∗) into a standard fuzzy metric space (Y,MY,∗). 
Every function which is uniformly continuous is necessarily continuous we give a 
counter example to show that converse may not be true. Also we prove that 
uniformly continuous mapping maps a Cauchy sequence into a Cauchy sequence 
and we give an example to show that continuous mapping does not maps Cauchy 
sequence to a Cauchy sequence.    
  
Standard fuzzy metric spaces 
Definition 1.1:[1] A binary operation ∗: [0,1] × [0,1] → [0,1] is a continuous t-
norm if ∗ satisfies the following conditions: 
1- ∗ is associative and commutative. 
2- ∗ is continuous. 
3- a∗1 = a for all a ∈ [0,1]. 
4- a∗b ≤ c∗d whenever a ≤ c and b ≤ d where a,b, c,d ∈[0,1]. 

Remark 1.2:[2] For any r1 > r2 we can find r3 such that r1∗ r2 ≥ r2  and for any r4 
we can find an r5 such that r5∗r5 ≥ r4 where r1,r2,r3,r4,r5 ∈(0,1). 
We introduce the following definition. 
Definition 1.3: A triple (X,M,∗) is said to be standard fuzzy metric space if X is 
an arbitrary set, ∗ is a continuous t- norm and M is a fuzzy set on X2 satisfying the 
following conditions: 
(FM1)  M(x,y) > 0 for all x, y ∈ X 
(FM2)  M(x,y) = 1 if and only if x = y 
(FM3)  M(x,y) = M(y,x) for all x, y ∈ X 
(FM4)  M(x,z) ≥ M(x,y) ∗M(y,z) for all x, y and z ∈ X  
(FM5)  M(x,y)   is a continuous fuzzy set 
 
Example 1.4: Let X= ℕ, and let a∗b = a.b for all a, b ∈[0,1]. 
 
                                       x

y
      If x ≤ y 

  Define M(x,y) =                
 
                         
                                   y

x
     If y ≤ x 

 
for all x, y ∈ℕ. 
Then it is easy to show that (ℕ,M,.) is a standard fuzzy metric space. 
Example 1.5: Let X=ℝ and let a∗b = a.b for all a, b ∈ [0,1]. 
Define M(x,y) = 1

e|x−y|  for all x, y ∈ ℝ . 
Then it is easy to show that (ℝ,M,.) is a standard fuzzy metric space. 
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Definition 1.6: Let (X,M,∗) be a standard fuzzy metric space then M is continuous 
if whenever xn→x and yn→y in X then M(xn,yn) →M(x,y) that is  limn→∞ 
M(xn,yn) =M(x,y). 
Definition 1.7: Let (X,M,∗) be a standard fuzzy metric space .Then B(x,r) 
={y∈X: M(x,y) > 1-r} is an open ball with center x∈X and radius r, 0 < r < 1. 
The proof of the following result is easy and hence is omitted. 
Proposition 1.8: Let B(x,r1) and B(x,r2) be two open balls with same center x in a 
standard fuzzy metric space (X,M,∗).Then either  
B(x,r1) ⊆ B(x,r2) or B(x,r2)⊆ B(x,r1) where r1,r2∈(0,1). 
Definition 1.9: A subset A of a standard fuzzy metric space (X,M,∗) is said to be 
open if given any point a in A there exists r , 0 < r < 1 such that B(a,r) ⊆ A .A 
subset B is said to be closed if Bc is open . 
The idea of the proof of the following result is similar to the idea of result 3.2 in 
[2] and hence is omitted. 
Theorem 1.10: Every open ball in a standard fuzzy metric space (X,M,∗) is an 
open set. 
The proof of the following result is easy, hence is omitted.  
Theorem 1.11: Let (X,M,∗) is a standard fuzzy metric space. Define τM= {A⊂X: 
x∈A if and only if there exists 0 < r < 1 such that B(x,r) ⊂ A} Then τM R is a 
topology on X. 
Theorem 1.12: Every standard fuzzy metric space is a Hausdorff space. 
Proof : 
 Let (X,M,∗) be a standard fuzzy metric space. Let x and y be two distinct pints of 
X. Then 0 < M(x,y) < 1 .Let M(x,y) = r , for some 0<r<1. Now by Remark 2.2 for 
each r0, r < r0 < 1, we can find an r1 such that r1 ∗ r1 ≥ r0 . Consider the open balls 
B(x,1−r1) and B(y,1−r1).  
Clearly B(x,1−r1) ∩ B(y,1−r1) = Ø for if there exists  
z∈B(x,1−r1) ∩ B(y,1−r1). 
Then    r = M(x,y) ≥ M(x,z) ∗M (z,y) ≥ r1∗r1 ≥ r0 > r which is a contradiction. 
Therefore (X,M,∗) is a Hausdorff space. 
Definition 1.13: A sequence (xn) in a standard fuzzy metric space  (X,M,∗) is said 
to be converge to a point x in X if for each r ,0 < r < 1 there exists a positive 
number N  such that M(xn,x) > (1-r) , for each  
n ≥ N . 
The idea of the proof of the following theorem is similar to the idea of the proof of 
Theorem 3.11 in [2] and hence is omitted. 
Theorem 1.14: Let (X,M,∗) be a standard fuzzy metric space then for a sequence 
(xn) in X converge to x if and only if limn→∞ M(xn,x) = 1. 

     Definition 1.15: A sequence (xn) in a standard fuzzy metric space (X,M,∗) is  
     Cauchy if for each r, 0 < r < 1, there exists a positive number N such that  
     M(xn,xm) > (1-r), for each m, n ≥ N. 

Lemma1.16:[13] Let f: X→Y be an arbitrary function and A ⊆ X and B ⊆ Y. 
 Then f(A) ⊆ B if and only if A ⊆ f−1(B). 
Definition1.17:[13] Let X and Y be a standard fuzzy metric spaces and let A be a 
proper subset of X. If f is a mapping of A into Y, then a mapping g:X→Y is called an 
extension of f if g(x) = f(x) for each x∈A, the function f is then called the restriction 
of g to A. 
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Definition1.18: A standard fuzzy metric space (X,M,∗) is complete if every Cauchy 
sequence in X converges to a point in X.  
Continuous mappings 
Definition 2.1: Let (X,MX,∗) and (Y,MY,∗) be standard fuzzy metric spaces and A ⊆ 
X. A function f:A→Y is said to be continuous at a∈A, if for every 0 < ε < 1, there 
exist some 0 < δ < 1, such that MY(f(x),f(a)) > (1- ε) whenever x∈A and 
 MX(x,a) > (1- δ). If f is continuous at every point of A, then it is said to be 
continuous on A. 
Theorem 2.2: Let (X,MX,∗) and (Y,MY,∗) be standard fuzzy metric spaces and A⊆X. 
A function f:A→Y is continuous at a∈A if and only if whenever a sequence (xn) in A 
converge to a, the sequence (f(xn)) converges to f(a). 
Proof:   First suppose the function f:A→Y is continuous at a∈A and let (xn) be a 
sequence in A converge to a. We shall show that (f(xn)) converges to f(a). Let 0 
< ε < 1 be given. By continuity of f at a, there exists some 0 < δ < 1, such that x∈A 
and MX(x,a) > (1- δ), implies  
MY(f(x),f(a)) > (1- ε).  Since limn→∞xn= a there exist some positive integer N such 
that n ≥ N implies MX(xn,a) > (1- δ). Therefore n ≥ N implies MY(f(xn),f(a)) > (1- 
ε). Thus limn→∞f(xn) = f(a)  
Now suppose that every sequence (xn) in A converging to a has the property that 
limn→∞f(xn) = f(a). We shall show that f is continuous at a. 
Suppose, if possible, that f is not continuous at a. There must exists  
0 < ε < 1, for which no δ, 0 < δ < 1 can satisfy the requirement that x∈A and 
MX(x,a) > (1- δ), implies MY(f(x),f(a)) > (1- ε). This means that for every δ, 0 < δ < 
1 there exists x∈A such that MX(x,a) > (1- δ) but MY(f(x),f(a)) ≤ (1- ε). For every 
n∈N, the number 1

n
 is positive and therefore there exist xn∈A such that MX(xn,a) > 

(1- 1
n
 ) but  

MY(f(xn),f(a)) ≤ (1- ε). The sequence (xn) then converges to a but the sequence 
(f(xn)) dose not converge to f(a). This contradicts the assumption that every sequence 
(xn) in A converging to a has the property that limn→∞f(xn) = f(a). Therefore, the 
supposition that f is not continuous at a must be false∎ 
Definition 2.3: Let (X,MX,∗) and (Y,MY,∗) be standard fuzzy metric spaces and A ⊆ 
X. Let f:A→X and a be a limit point of A. We write limx→af(x) = b, where b∈Y, if 
for every 0 < ε < 1 there exists 0 < δ < 1 such that MY(f(x),b) > 1- ε wherever x∈A 
and  MX(x,a) > 1- δ. 
Proposition 2.4: Let (X,MX,∗) and (Y,MY,∗) , A, f and a be as in Definition 2.3. Then 
limx→af(x) = b if and only if limn→∞f(xn)= b for every sequence (xn) in A such that 
xn≠ a and  limn→∞xn= a. 
Proof:  
The argument is similar to that of Theorem 2.2 and is therefore not included. 
Proposition 2.5: A mapping f of a standard fuzzy metric space (X,MX,∗)  into a 
standard fuzzy metric space (Y,MY,∗)  is continuous at a point a∈X if and only if for 
every 0 < ε < 1, there exists 0 < δ < 1 such that , B(a,δ)⊆ f−1(B(f(a),ε)) where 
B(x,r) denotes the open ball of radius r with center x. 
Proof: 
 The mapping f:X→Y is continuous at a∈X if and only if for every  
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0 < ε < 1, there exists 0 < δ < 1 such that MY(f(x),f(a)) > (1- ε) for all x satisfying 
MX(x,a) > 1- δ i.e x∈B(a,δ) implies f(x)∈B(f(a),ε) or   
                             f(B(a,δ)) ⊆ B(f(a),ε)  
This is equivalent to the condition  
                             B(a,δ) ⊆  f−1(B(f(a),ε)) ∎ 
Theorem 2.6: A mapping f:X→Y is continuous on X if and only if  f−1(G) is open in 
X for all open subset G of Y. 
Proof: 
 Suppose f is continuous on X and let G be an open subset of Y. 
We have to show  f−1(G) is open in X. Since ∅ and X are open, we may suppose that 
 f−1(G) ≠ ∅ and  f−1(G) ≠ X. Let x∈ f−1(G). Then f(x)∈G. Since G is open, there 
exists 0 < ε < 1 such that B(f(x),ε) ⊆ G. Since f is continuous at x, by Proposition 
1.4.6 for this ε there exists 0 < δ < 1 such that   B(x,δ) ⊆  f−1(B(f(x),ε)) ⊆ f−1(G) 
Thus, every point x of  f−1(G) is an interior point, and so  f−1(G) is open  
in X. Suppose, conversely, that  f−1(G) is open in X for all open subsets G of Y. Let 
x∈X for each 0 < ε < 1, the set B(f(x),ε) is open and so f−1(B(f(x),ε)) is open in X. 
Since x∈ f−1(B(f(x),ε)) it follows that there exists 0 < δ < 1 such that B(x,δ) 
⊆  f−1(B(f(x),ε)).  
By Proposition 2.5 it follows that f is continuous of x ∎ 
Theorem 2.7: 
 A mapping f:X→Y is continuous on X  if and only if  f−1(F) is closed in X for all 
closed subset F of Y. 
Proof:  
Let F be a closed subset of Y. Then Y-F is open in Y so that  f−1(Y-F) is open in X 
by Theorem 2.6. But  f−1(Y-F) = X-  f−1(F) so  f−1(F) is closed in X. Suppose, 
conversely, that  f−1(F) is closed in X for all closed subset F of Y. But the empty set 
and the whole space X are closed sets. Then X- f−1(F) is open in X and  f−1(Y-F) = 
X-  f−1(F) is open in X. Since every open subset of Y is of the type Y- F  where F is 
suitable closed set. It follows by using Theorem 2.6, that f is continuous∎ 
The characterization of continuity in terms of open sets of Theorem 2.6 leads to an 
elegant and brief proof of the fact that a composition of continuous maps is 
continuous.The idea of the proof of the following theorem is similar to the idea of the 
proof of the ordinary case . 
Theorem 2.8: Let (X,MX,∗), (Y,MY,∗) and (Z,MZ,∗) be a standard fuzzy metric 
spaces and let f:X→Y and g:Y→Z be continuous. Then the composition g∘f is a 
continuous map of X into Z. 
Proof: 
 Let G be open subset of Z. By Theorem 2.6, g−1(G) is an open subset of Y and 
another application of the same theorem shows that f−1(g−1(G)) is an open subset of 
X. Since (g ∘ f)−1(G) = f−1(g−1(G)), it follows from the same theorem again that 
g ∘ f is continuous ∎ 
The idea of the proof of the following theorem is similar to the idea of the proof of 
the ordinary case . 
Theorem 2.9: Let (X, MX,∗) and (Y,MY,∗) be a standard fuzzy metric spaces and let 
f:X→Y. Then the following statements are equivalent: 

(i) f is continuous on X. 
(ii) f−1(B)��������� ⊆ f−1(B�) for all subsets B of Y. 
(iii)f(A�) ⊆ f(A)����� for all subsets A of X. 
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Proof: 
 (i)⇒(ii): Let B be a subset of Y. Since B� is a closed subset of Y, f−1(B�) is closed in 
X. Moreover f−1(B) ⊆ f−1(B�), and so f−1(B)��������� ⊆ f−1(B�). [Recall that f−1(B)��������� is the 
smallest closed set containing f−1(B)]. 
 (ii)⇒(iii): Let A be a subset of X. Then if B = f(A), we have  
A ⊆ f−1(B) and A� ⊆ f−1(B)��������� ⊆ f−1(B�). Thus f(A�) ⊆ f(f−1(B�)) = B� = f(A)�����. 
 (iii)⇒(i): Let F be a closed set in Y and set f−1(F) = F1. By Theorem 2.7, it is 
sufficient to show that F1is closed in X, that is, F1= F1���.  
Now f(F1���) ⊆ f(f−1(F)�����������) ⊆ F� = F so that F1���⊆ f−1(f(F1���)) ⊆ f−1(F) = F1 ∎ 
Definition 2.10: Let X and Y be a standard fuzzy metric spaces and let A be a proper 
subset of X. If f is a mapping of A into Y, then a mapping g:X→Y is called an 
extension of f if g(x) = f(x) for each x∈A, the function f is then called the restriction 
of g to A.  
If X and Y are standard fuzzy metric spaces, A ⊂ X and f:A→Y is continuous, then 
we might ask whether there exists a continuous extension g of f. Extension problems 
abound in analysis and have attracted the attention of many celebrated 
mathematicians. Below we deal with some simple extension techniques.  
Theorem 2.11: Let (X,MX,∗) and (Y,MY,∗) be two standard fuzzy metric spaces. Let 
f:X→Y and g:X→Y be continuous mappings. Then the set  
{x∈X: MY(f(x),g(x)) = 1} is closed subset of X. 
Proof:  
Let F = {x∈X: MY(f(x),g(x)) = 1}. Then X-F = {x∈X:0 < MY(f(x),g(x)) < 1}. We 
show that X-F is open. If X- F = ∅, then there is nothing to prove. So let X-F ≠ ∅ and 
let a∈X-F . Then MY(f(a),g(a)) < 1. 
Let MY(f(a),g(a)) = 1- ε, for some  0 < ε < 1 . Then by continuity of f  
and g there is 0 < δ < 1 such that   Mx(x,a) > 1- δ . Implies 
 MY(f(x),f(a)) > 1- ε and MY(g(x),g(a)) > 1- ε. Hence there exists  
(1- r) for some 0 < r < 1 . By Remark 1.2, such that  
                   (1- ε)∗ (1- ε)∗ (1- ε) > (1-r)  
Now  MY(f(x),g(x)) ≥ M(f(x),f(a)) ∗M(f(a),g(a)) ∗M(g(a),g(x)) 
                                 > (1- ε)∗ (1- ε)∗ (1- ε) > (1-r) 
For all x satisfying Mx(x,a) > (1- δ). 
Thus for each   x∈B(a,δ), MY(f(x),g(x)) < 1 , i.e, f(x) ≠ g(x). 
So B(a,δ) ⊆ X-F . Hence, X-F is open and thus F is closed ∎ 
Corollary 2.12: Let (X,MX,∗) and (Y,MY,∗) be standard fuzzy metric spaces. Let 
f:X→Y and g:X→Y be continuous mappings. If F = {x∈X: MY(f(x),g(x)) =1} is 
dense in X then f = g. 
Proof: 
 By Theorem 2.11, F is closed. Since F is assumed dense in X, we have X = F� = F i.e 
f(x) = g(x) for all x∈X∎  
Theorem 2.13: Let (X,MX,∗) and (Y,MY,∗) be standard fuzzy metric spaces. Let A be 
a dense subset of X and f:A→Y be a map. Then f has a continuous extension g:X→Y 
if and only if for every x∈X that is a limit point of A, the limit limy→xf(y) not only 
exists in Y but also equals f(x) in case x∈A. When the extension exists, it is unique. 
[Note that the stipulation limy→xf(y) = f(x) when x∈A says that f is continuous on A]. 
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Proof: 
 Suppose that f has a continuous extension g, and consider any x∈X that is a limit 
point of X. Since A is dense, x must be a limit point of A as well, as we now argue. 
Any ball B(x,ε) contains a point y∈X, y ≠ x.  
There exists B(y,έ) ⊆ B(x,ε) such that x∉ B(y,έ). Since A is dense,  
B(y,έ) contains a point a∈A. Thus B(x,ε) contains the point a∈A and  
a ≠ x. Now 
           g(x) = limy→xg(y)     [ g is continuous ] 
                    = limy→xg(y)     with y∈A [ x is a limit point of A ] 
                    = limy→xf(y)      [ g is an extension of f ] 
Thus,  limy→xf(y) exists and equals g(x). 
Conversely, suppose that for every limit point x∈X,  limy→xf(y) exists and that is 
equal to f(x) when x∈A.  
Define g(x) by: 
 
                            f(x)                if    x∈A 
          g(x) =  
 
 
                            limy→xf(y)    if    x∉A but x∈Á    
 
Since A is dense in X, the function g is defined on the whole of X. We need to show 
that g is continuous. By the definition of a limit, for every positive number 
0 < ε < 1 , there exists a positive number 0 < δ < 1 such that f(y)∈B(g(x),ε

2
)  

whenever y ≠ x and y∈B(x,δ) ∩ A.Consider any z∈B(x,δ). In case z is an isolated 
point of X. Then g(z)∈B(g(x), ε

2
)  in view of the observation above. If z is not an 

isolated point of X, then g(z) is the limit of  f(y) as y→z in B(x,δ) ∩ A. 
Therefore  g(z)∈f(A ∩ B(x, δ))����������������� ⊆ B(g(x), ε

2
�����������) ⊆ B(g(x),ε)  

So that g is continuous of x. Hence g is continuous on X. By Corollary 2.12, it 
follows that g is the unique continuous extension of f ∎ 
Uniform Continuous Mappings 
Definition 3.1: Let (X,MX,∗) and (Y,MY,∗) be two standard fuzzy metric spaces. A 
function f:X→Y is said to be uniformly continuous on X, if for every 0 < ε < 1,there 
exists  δ, 0 < δ < 1 (depending on ε alone) such that  MY(f(x1),f(x2)) > (1- ε ) 
whenever  Mx(x1,x2) > (1- δ). 
Remark 3.2: Every function f:X→Y which is uniformly continuous on X is 
necessarily continuous on X. However the converse may not be true. 
Counter Example: Let X = Y = ℝ - {0} and  Mx(x, y) = 1

| x−y |
 if x ≠ y and  Mx(x,x) = 

1. Let a∗b = a∙b for all a, b∈[0,1]. Then (X,MX,∗) is a standard fuzzy metric space. 
Let  MY(y1, y2) = 1

|y1− y2 |
   and 

  MY(y1, y1) = 1 , for all y1, y2∈Y. Then (Y,MY,∗) is a standard fuzzy metric space. 
Define f:X→Y by f(x) = 1

x
  , x∈ℝ - {0}. It is easy to see that f is continuous. We shall 

prove that it is not uniformly continuous by exhibiting an ε for which no δ works. Let 
0 < δ < 1 be arbitrary. 
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Choose x = 2
1−δ

 and y = 1
1−δ

 .  

Then  Mx(x,y) = 1
| x−y |

 = 1
| 2
1−δ − 1

1−δ |
 = 1

1
1−δ

 = 1- δ  

But  MY(f(x),f(y)) = 1
| f(x)−f(y) |

 = 1

| 1−δ
2  −1+ δ |

 = 2
|1−δ| 

  > 1 

Thus, whatever 0 < δ < 1 may be there exists points x and y such that  
            Mx(x,y) > 1- δ , 0 < δ < 1 but  MY(f(x),f(y)) > 1 ∎ 
Remark 3.3: A continuous function may not map a Cauchy sequence into a Cauchy 
sequence as the following example shows: 
Example 3.4:  Let X = (0,∞) , a∗b = a∙b for all a,b∈[0,1]  
and let   MX(x1,x2) = 1

1+ | x1− x2|
  , then (X,MX,∗) is a standard fuzzy metric space. Let 

Y = ℝ - {0} and let  MY(y1,y2) = 1
 | y1− y2|

  , if y1≠ y2 and  MY(y1,y1) = 1. Let f: X→Y, 

f(x) = x, x∈X and f is a continuous function. Now ( 1
n
 ) is Cauchy sequence in X 

because it is convergent sequence. But (f(1
n
)) = ( 1

n
 ) is not a Cauchy sequence in Y. 

Since  MY(1
m

 , 1
n
) = 1

| 1m− 1n|  
 = 1

| n−mmn |
 = | mn

n−m
 | > 1 . Hence it is not Cauchy  

sequence in Y∎ 
Theorem 3.5:Let (X,MX,∗) and (Y,MY,∗)be two standard fuzzy metric spaces and 
f:X→Y be uniformly continuous.If (xn) a Cauchy sequence in X then so is (f(xn)) in 
Y. 
Proof: 
 Since f is uniformly continuous, for every ε > 0, there exists δ,  
0 < δ <1 such that MY(f(x),f(y)) > 1- ε whenever Mx(x,y) > 1- δ for 
 all x, y∈X. Because the sequence (xn) is Cauchy, corresponding to  
0 < δ < 1 there exists N such that Mx(xn,xm) > 1- δ for all m, n ≥ N. We now 
conclude that MY(f(xn),f(xm)) > 1- ε for all n, m ≥ N and so (f(xn)) is a 
Cauchy in Y� 
Theorem 3.6:  Let f be a uniformly continuous mapping of a set A, dense in 
the standard fuzzy metric space (X,Mx,∗) in to a complete standard fuzzy 
metric space (Y,MY,∗). Then there exists a unique continuous mapping g: 
X→Y such that g(x) = f(x) when x∈A. Moreover g is uniformly continuous. 
Proof: 
 Since f is uniformly continuous, a fortiori, continuous, therefore, for every 
x∈A that is a limit point of  X, the limit limy→xf(y) not only exists in Y but also 
equals f(x). Therefore by Theorem 2.13, in order to prove the existence and 
uniqueness of such a continuous mapping g:X→Y, it is sufficient to show for 
every x∈X-A that f(y) tends to a limit as y→x. [ It is understood that y∈A 
because the domain of f is A]. 
Let x∈X be arbitrary. Since A is dense in X, there exists a sequence (xn) in A 
such that limn→∞MX(xn, x) = 1. Since (xn) is convergent, it is a fortiori Cauchy 
so by Theorem 3.5, it follows that (f(xn)) is a Cauchy sequence in the complete 
standard fuzzy metric space (Y,MY,∗) and hence converges to a limit, which 
we shall denote by b. Now consider any sequence (xń) in A with xń≠ x for each 
n and limn→∞xń = x. It follows from uniform continuity of f that, for  
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0 < ε < 1, there exists a δ, 0 < δ < 1 such that MY(f(z), f(y)) > 1- ε whenever 
MX(z, y) > 1- δ since limn→∞xn = x = limn→∞xń , there exists an integer N1, 
such that MX(xn, xń) > 1- δ whenever n ≥ N1. Letting n→∞, we get  
MY(limn→∞f(xn), limn→∞f(xn)́ ) ≥   1- ε i.e MY(b, limn→∞f(xn)́ ) ≥  1- ε. 
Since 0 < ε < 1 is arbitrary, it follows that limn→∞f(xn)́  = b, for every  sequence (xń) 
in A with xń≠ x for each n, and limn→∞xń= x. 
It follows, Proposition 2.4, that f(y) tends to a limit, namely b, as y→x.  
As already pointed out earlier, this shows that a unique continuous extension g of f to 
X exists. It remains to prove that g is uniformly continuous. Let x and x́ be two points 
of X such that MX(x, x́) > (1- r).  
Let (xn) and (xń) be sequence of points in A such that  
 limn→∞MX(xn, x) = 1 and  limn→∞MX(xn,́ x́) = 1. 
We can choose an integer N2 such that  MX(xn, x) > (1- r)  
and     MX(xn,́ x́) > (1- r)    whenever  n ≥ N2 
Now we can find 0 < δ < 1 such that (1- r) ∗(1- r) ∗(1- r) > (1- δ) 
By Remark 1.2 
 MX(xm, xń) ≥  MX(xm, x) ∗ MX(x, x́) ∗  MX(x́, xń ) 
                             ≥  (1- r) ∗(1- r) ∗(1- r) > (1- δ)  
For all m, n ≥  N2, it follows that MY(f(xm), f(xń)) > 1- ε 
Letting m→∞ and then n→∞ in the above in equality, we get,  
           MY(g(x),g(x́)) > 1- ε , whenever MX(x, x́) > (1- r) 
This proves that g is uniformly continuous � 
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