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Abstract

The aim of this research is to study the effect of the width to depth ratio (b¢/d) and the curvature of
the steel I-section horizontally curve beams on their ultimate strength and the statical response. The
research adopts three — dimensional nonlinear finite element analysis of steel I-section horizontally curved
beams under static load. The twenty-node isoparametric brick element has been used to represent the steel
element; also, the Von-Mises yield criterion is used to compute the stress level of plastic deformation.
Elastic-perfect plastic model is used to represent the behavior of steel under tension and compression
stresses. Thirty beams have been analyzed with the same length, mesh, material properties and boundary
conditions. The effect of by/d ratio is considered by taken different values (0.5-2.5) with the same area of
cross section. Also, the effect of curvature was studied by considering different values from beam with half
circle to straight beam. It is obtained that the change of (b¢/d) ratio reveals that the load-carrying capacity
increasing about 30-50% when the ratio changed from (1) to (2) for the same area. So, it is found that the
change of (b¢/d) ratio is more effectively when the curvature is high. The results appear that the (b¢/d) ratio
equal to 1.5-2 is optimum for different values of curvature.

Elastic-perfect plastic . (Von-Mises)
(0.5-2.5) by/d
/ % 50 30

(2-1.5)

1. Introduction
1.1 Background and Previous Research

Steel I-Section horizontally curve beams are used in building construction especially
in bridges, where the need to augment traffic capacity in urban highways is vital.

The plastic analysis for the determination of collapse loads for horizontally circular
curve beams was done by Jordian, et. al., 1974. The analysis was for the case of two
concentrated loads placed at any point on the arc of the beam. In 1985, Kaoro, et. al.
investigate the effects of curvature and the effect of cross section dimensions on the
effective width of horizontally simply supported curve beam for box and channel cross-
section under uniformly distributed loads. In 1990, Hsu, Fu and Schelling, developed a
more exact horizontally curve beam finite element in which the true warping degree of
freedom conforms the warping. Shanmugham, et. al. and Tan, 1995, tested a ten steel
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horizontally curved beam. The results obtained from experiments on two sets of [-beams.
The object of this study is to determine the ultimate load capacity of steel I-beams, with
intermediate lateral restraint and to examine the effect of curvature on the behavior of
these beams under bending loads. Khalid and John, 1999, summarized the results from an
extensive parametric study, using finite element method in which simply supported
curved composite multi-cell bridge prototypes are analyzed to evaluate the moment and
deflections between girders due to truck loading and dead load. In 2001, Young-Lin and
Bradford investigate the nonlinear behavior of steel I-section beams curved in plan under
vertical loading and proposed straight forward formulas for their design against combined
bending and torsion actions. Recently, in 2008, Al-Mutairee investigates the analysis of
three dimensional horizontal beam (steel, concrete and composite) subjected to static and
dynamic loads. For steel beam, the effect of tapering ratios, curvature and many other
parameters, were taken into account on the behavior and dynamic response of curved
beams.

1.2 Object and Scope of Research

As shown all previous researchers did not study the effect of width to depth (b¢/d) ratio on
the statical response of steel I-section horizontally curved beam. The main object of this
research is to study the effect of change (bgd) ratio of I-section (which is taken into
account for the same area of section). This is important in manufacturing of the section,
and one can gain best performance of section for the same area. In addition, the curvature
of the beam was investigated to take their effect of bg/d ratio.

2. Finite Element Idealization

2.1 Steel Idealization

Twenty-node isoparametric quadratic brick element was employed for analysis of in-
plane curved beam. This element has been successfully used by many three dimension
nonlinear studies (Cervera, el. al.,1988), (Al-Sherrawi, 2001) and (Al-Mutairee, 2008).
The element has its own local coordinate system r,s,t, as shown in Figure(1), with origin
at the center of the element such that each local coordinate ranges from (-1) to (+1).

X
Figure (1): The Twenty-Node Isoparametric Quadratic Brick Element in Cartesian
Coordinates.
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2.1.1 Shape Functions of the 20-Node Brick Element

The displacement components at a particular point p (,s,t) within the element are
defined using the nodal values at each of the twenty nodes and the quadratic shape
functions such that: (Cook, 1974)

u(r,s,t)=§Ni(r,s,t)ui
v(r,s,t)=§l:Ni(r,s,t)vi ...(1)

W(r,s,t)=§:Ni(r,s,t)Wi

Where Nj(r,s,t) is the shape function at node i. The shape functions for the twenty-nodes
have the following forms:

N, =%(1+ rr.)(1+ss; )L+t )rr, +ss, +tt, —2), i=1-413-16

N, =%(1+ r2)(1+ss)(1+tt),  1=6,81820
N, =%(1+ rm)(1-s2)1+tt),  i=51719,7 .2)
N, =%(1+ r)(1+ss)(1+1t2)  i=9101112

The Cartesian coordinate values of any point p(r,s,t) within the element may be defined
as:

x(r,s,t):iNi(r,s,t)xi
y(r,s,t):élNi(r,s,t)yi ..(3)

z(r,s,t)ngi(r,s,t)zi

where X;, yi and z; are the Cartesian coordinates of node i

2.1.2 Strain-Displacement Representation
For three-dimensional finite element analysis, the strain components can be evaluated as:
(Zienkiewicz, 1977)

€, [ON, / 0x 0 0
g, 0 ON. /0N, 0
u.

20 0 0 oN. /oz ||
$ =2 | v, - .(4)
Yo | ‘=|ON;/0y ON,;/ox 0 w
Yy, 0 ON,/oz oN, /oy|- "
(Y 2x ] _5Ni | 0z 0 aN, /6X_
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The shape function N; is a function of both local and Cartesian coordinates. The
derivative of the shape function can be given by the usual chain rule as:

ON, /or oxlor oylor ozlor||ON,/ox ON, / ox
ON, /dsy=|ox/ds dylds dz/ds|{aN,/ayp=[I]<oN, /ey ..(5)
ON,/ot| |ox/ot oylet ozlét||oN, 6z oN, / 6z

where, [J] is known as the Jacobin matrix.
Then the shape function derivatives with respect to X, y and z axes can be obtained as:

ON. / &x oN, / or
oN, /oy b==[3]"{8N, /65 ...(6)
oN, / oN, /ot

2.1.3 Stiffness Matrix for Twenty-Noded Brick Element
For an element of volume V, the stiffness matrix may be expressed as: (Dawe, 1984)

[]. = j [] [D][B]dv, (7

In three dimensional elements, the differential volume, dve, may be written as;:

dve=dx.dy.dz ...(8)
Equation (8) can be transformed into natural coordinates as:
dve=|J| dr.ds.dt ...(9)

where |J| is the determinant of the Jacobin matrix. The limits of integration in the natural
coordinates become -1 to +1 and the element stiffness matrix can be expressed as:

[kl =["["["[8T [D][B] 3 |dr ds.ct ...(10)

2.2 Numerical Integration

In the present study, the Gaussian-Legender quadratic numerical integration technique
has been used to evaluate the stiffness matrix [Zienkiweixz, 1977]. In this technique the
element stiffness matrix for the brick element may be written as:

[k]. —rlrlrl r,s,t)dr.ds. dt~ZZZW W, W,. f(r,,s“,t ) .(11)

i=1 j=1 k=1
where P are the number of Gaussian points in the r,s and t direction, and the expression
f(r,s,t) represents the matrix multiplication ([B]T [D][B] det | J |).
For brick element representing steel, the (3x3x3) Gauss quadratic integration rule has
been used in this study.

3. Modeling of Steel Material

3.1 Elastic-plastic stress-strain relation for steel

The elastic — perfect plastic relationship based on von-Mises criterion is used for in-plane
curved I-steel beams, study as shown in Figure (2)
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Figure (2): Idealization of Stress-Strain Curve for Steel Beams

3.2 Yield Criterion Used for Steel

The von-Mises criterion is used as a yield criterion in this research, where it is monitor
the stress level at the onset plastic deformation for steel material. It can be expressed as

(Chen, 1982), (see Figure (3)):
f (cs) =,/3J, =c,
Where J, is equal to:

J,= %[(cf +05+ cg)— (6,0,+0,0,+ 03.01)]

Space diagonal
G1= 0r= Oz

7 Plane
o1t ot o3=0

Figure (3): Three — Dimensional Representation of von-Mises
Yield Surfaces in Principal Stress Space.

4. Nonlinear Solution Technique

.(12)

..(13)

In the present study, the incremental-iterative method is adopted to consider the material
nonlinearity problem, where the load applied as a series of increments and at each

increment iterative solution is carried out to find the true response, see Figure(4).
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Figure (4): Incremental-Iterative Technique for the Solution of Nonlinear Equations

5. Convergence Criterion

A termination criterion for any iterative process should be used to stop iteration. At
certain iteration within the increment of loading, if the difference between the external
and the internal forces becomes negligibly small, the convergence is assumed to be
occurred. The force convergence criterion which considered in this study, can be
expressed in the form:

r@)} {r@)
NUEL

6. Application and Discussions
6.1 Comparison with other studies
In order to evacuate the program, the curve beam which tested by Shanmugam in 1995, is

analyzed. Figure (5) shows the geometry, properties and loadmg for curved beam.
v=222.GPa p 1243 ——

Oyweb=395 MPa . T =

Ef|ange:205.1 GPa 1 e
Gy)f|ange:337 MPa

< Specified tolerance ...(14)

Figure (5): Geometr o w0 Al Curved Beam
The curve beam is sol _ Lot re (6). It is clear
from Figure (7) that T 1 mental and the

predicted load deflec P, ot che | g specimen. The
computer ultimate lo SNy o perimental one
(192 kN), hence, the difference between them is equal 1_ _

(le3)*

Figure (6): Finite Element Mesh of 360 Brick Elements of Curve Beam
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Figure (7): Load Deflection Curve for Shanmugam Curve Beam

6.2 Parametric Study

In order to study the effect of (bg/d) ratio on the behavior of steel curve beam, thirty
beams with constant length, cross-sectional area and boundary condition are studied. The
values of (b¢d) ratio (0.5, 1.0, 1.5, 2.0, and 2.5) are studied for (6=180°, 135°, 90°, 45°
and zero degree), as shown in Figure(8), then studying the above values with the other
curvatures (0=135°90°,45° and straight beam). The constant area of the section is taken
equal to 2640 mm? and the length of the member is 3000 mm, also the thickness of web is
assumed 8 mm and the one of top and bottom flange is 10 mm. The cases studied
information, can be summarized in the Table (1) and Table (2). The boundary conditions
of the beam are assumed to be fixed at both ends.

bf

| | >

A=2640 mm? , E=210 MPa, 6,=350 MPa, t,=8 mm, t=10 mm , L=3000 mm
_ @ ®) _
Figure (8): Configuration of in-plane curve beam (a) Section in beam; (b) Top view
of beam

Table (1): Values of (b#/d)
considered in the present study

Table (2): Values of (8)
and R in the present study

0(® R (mm)
180 954.9
135 1273.26
90 1909.86
45 3819.72
0 (Straight Beam) o

bs/d b (mm) d (mm)
2.5 175 70
2.0 155.55 77.77
1.5 175 87.5
1.0 100 100
0.75 80.77 107.70
0.50 58.33 116.66
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The present in-plane curved beam was modeled by (240) elements mesh with 20-
node isoperimetric element, as shown in Figure (9). Finally, the program NFHCBSL is
adopted to analyze the above curve beams [Al-Mutairee, 2008].

(a) (b)
Figure (9): Mesh Configuration of in-plane Curved Beam Under Concentrated
Load,
a) Mesh of End Section of Brick Element and load distribution, b) Mesh Along the
Beam

7. Finite Element Results

7.1 Effect of (bs/d) ratio

It is clear from Figure (10), the changing of (b¢/d) ratio has important role in the response
of the steel horizontally curve beam and on the load-carrying capacity. It can be seen that,
the load-carrying capacity of the beam will increase as soon as the (bgd) ratio is
increased. For a range of (b¢/d) ratio (0.5-2.0, the load carrying capacity will increase
about 50% to 105%, also, the (b¢/d) equal to 2 gives increasing of load-carrying capacity
of about 30% from the ratio 1, which are widely used in practice.

7.2 Effect of curvature

Figure(10), show that for the same (b¢/d) ratio, beam capacity is different according to the
curvature, where the capacity of straight beam is increased about 30%-50% for (6=180°),
i.e. half circle. This is due to the ability of straight beam to support additional load after
plastic zone appear, i.e. if the plastic zone appear at support the beam will be work as
simply supported beam, or when the plastic zone appear at midspan, support can resisting

additional stress as cantilever.
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(a) Angle of curvature , 6=180°
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(e) Angle of curvature , 0=0° [Straight beam]
Figure (10): Load - Deflection curve at midspan of beam
a) 6=180° b) 0=135°, a) 6=90°, a) 0=45°, e) Straight
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Figure (11): Collapse Load with bs/d
However, it can be seen from Figure (11) that the optimum value of (bgd)
approximately lying between (1.5 to 2). Also, it can be noted that this ratio depend on
curvature of in-plane curved steel beam, where if the curvature of beam is high, the (bs/d)
ratio will be changed more effectively change noticed.

8. Conclusions
From the obtained results, it can be concluded that:

1- The selection of b¢/d ratio in the analysis of steel curve beam is so important, where it
is improve the performance of section for the same area. The load-carrying
capacity increase about 30-50% when the (bg¢/d) ratio changed from (1) to (2) for the
same area.

2- Selection of (b¢/d) ratio depends on the curvature of in-plane curvature, where (bg/d)
ratio is more effective if the curved beams be straight. The load — carrying capacity of
straight beam is increased about 30%-50% from for (6=180°), i.e. half circle.

3- It is found from results that the optimal value of (b¢/d) ratio lying between (1.5) to
(2.0), where the benefit reached to about 121%.

819



2009 . 17 bd 7 (2) sl / agisilg a6yl agldl / Ly deds aho

9. References

Al-Mutairee, H.M.K., “Nonlinear Static and Dynamic Analysis of Horizontally Curved
Beams”, Ph.D Thesis, University of Babylon, 2008.

Al-Sherrawi, M.H.M. “Shear and Moment Behavior of Composite Concrete Beams”,
Ph.D Thesis, University of Baghdad, Iraq, 2001.

Cervera, M., Hinton, E., Bonet, J., and Bicanic, N., “Nonlinear Transient Dynamic
Analysis of Three Dimensional Structure. A finite Element Program for Steel and
Reinforced Concrete Materials”, pp.320-550. In Hinton E. Book’s “Numerical
Methods and Software for Dynamic Analysis of Plates and Shell”, Pinerdge Press,
550 pages, 1988, ISBN, 0-906674-48-4.

Chen, W.F., “Plasticity in Reinforced Concrete”, Third Edition, McGraw-Hill Book
Company, 1982.

Cook, R.D., “Concept and Application of Finite Element Analysis”, John Wiley and
Sons, Inc., New York, 1974.

Dawe, D.J., “Matrix and Finite Element Displacement Analysis of Structures”, Clarendon
Press, Oxford, U.K., 1984.

Hsu, Y. T., Fu,C.C., and Schelling, D.R., “An Improved Horizontally Curved Beam
Element”, Journal of Computer and Structure, Vol.34, No.2, pp.313-318.

Jordaan, 1.J., Khalifa, M.M.A., and McMullen, A.E., “Collapse of Curved Reinforced
Concrete Beams”, Journal of ASCE, Vol.100, No.ST11, Nov.,1974.

Kaoru, H., Seizo, U., and Yasushi, H., “Shear Lag Analysis and Effective Width of
Curved Girder Bridges”, Journal of Engineering Mechanics, Vol.111, No.1, pp.87-
92, January, 1985.

Khalid, S., and John, B.K. “Simply Supported Curved Cellular Bridges: Simplified
Design Method”, Journal of Bridge Engineering, Vol.4, No.2, pp.85-94, May, 1999.

Shanmugam, N.E., Thevendran, V., Richard Liew, J.Y., and Tan, L.O., “Experimental
Study on Steel Beams Curved in Plan”, Journal of Structural Engineering, Vol.121,
No.2, pp.249-259, February, 1995.

Yong-Lin, P., and Bradford, M.A., “Strength Design of Steel I-Section Beams Curved in
Plan”, Journal of Structural Engineering, Vol.127, No.6, pp.639-646, June, 2001.
Zienkiweixz, O.C., “The Finite Element Method”, Third Edition, McGraw Hill, London,

1977.

820



