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Abstract  

A modified Leslie-Gower predator-prey model with fear effect and nonlinear 

harvesting is developed and investigated in this study. The predator is supposed to 

feed on the prey using Holling type-II functional response. The goal is to see how 

fear of predation and presence of harvesting affect the model's dynamics. The 

system's positivity and boundlessness are demonstrated. All conceivable equilibria's 

existence and stability requirements are established. All sorts of local bifurcation 

occurrence conditions are presented. Extensive numerical simulations of the 

proposed model are shown in form of Phase portraits and direction fields. That is to 

guarantee the correctness of the theoretical results of the dynamic behavior of the 

system and to confirm the existence of various forms of bifurcations. The fear rate is 

observed to have a stabilizing effect up to a threshold value, after which it leads to 

prey extinction. The harvesting coefficients, on the other hand, serve as control 

parameters that, when exceeded, trigger the system to extinction. 

 

Keywords: predator-prey, Modified Leslie-Gower, local stability, fear effect, 

nonlinear harvesting, bifurcation analysis.  

 

 تحت تأثير الحصاد غير الخطي وتأثير الخوف الفريدة - رالمعدل للمفترسجاو  -ليز لي ديناميكية نموذج
 

 ناجي كامل رائد ،*المؤمن علي محمد سعد 
 العراق بغداد، بغداد، جامعة العلوم، كلية الرياضيات، قسم

 الخلاصة
جاور السعدل لمسفترس والفريدة مع تأثير الخؽف والحراد غير الخطي في ىذه  –نسؽذج ليزلي  نؽقشو ر طؽ  

الدراسة. افترضشا أن يتغذى السفترس عمى الفريدة استشادا الى الاستجابة الؽظيفية مؼ الشؽع الثاني ليؽليشج. 
إيجابية الشعام  تاثبت ؽذج.الخؽف مؼ الافتراس ووجؽد الحراد عمى ديشاميكيات الشس تأثيراليدف ىؽ معرفة 

أنؽاع شروط حدوث جسيع  قدمتكسا . ةالتؽازن السسكشنقاط وضع جسيع متطمبات وجؽد واستقرار و  وعدم حدوده
صحة الشتائج الشعرية لمدمؽك الديشاميكي لمشعام وتأكيد وجؽد أشكال التحقق مؼ التذعب السحمي. لزسان 

وحقؽل  الطؽرذكل صؽر ب تومثمسعة الشطاق لمشسؽذج السقترح محاكاة عددية وا اجريشامختمفة مؼ التذعبات 
الاتجاه. لؽحظ أن معدل الخؽف لو تأثير استقرار يرل إلى قيسة عتبة ، وبعد ذلغ يؤدي إلى انقراض الفريدة. 

 ، إلى انقراض الشعام.حدا معيؼ مؼ ناحية أخرى ، تعسل معاملات الحراد كسعايير تحكػ تؤدي، عشد تجاوزىا
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1. Introduction 

One of the most popular subjects in biomathematics is population dynamics. The study of the 

evolution of diverse populations has always been of special interest, beginning with 

populations of a single species and progressing to more realistic models in which several 

species exist and interact in the same ecosystem. Models that explore competitive 

interactions, symbiosis, commensalism, or predator-prey dynamics are some of them. The 

predator-prey model has been extensively studied by mathematical and biological researchers 

since its introduction made by Alfred J. Lotka  in 1925 and Vito Volterra [1] in 1926. They 

described the interaction between two species combined with the predator-prey relationship, 

where they define the problem with a system of polynomial differential equations of degree 

two.  The importance of this problem lies in understanding the dynamics between two species 

(a predator and prey) that live together in the same environment and looking for suitable 

conditions that allow both species to survive in equilibria. 

Later, applications of these systems began to increase. New applications on population 

dynamics had been developed, and these systems have also been utilized to represent a variety 

of other natural phenomena.  

Besides the basic relationship given by the Lotka-Volterra model; many factors may affect 

species growth. So, this model was developed by many researchers taking into consideration 

various environmental factors that affect the existence and stability of this system, such as 

prey refuge [2-4], disease [5, 6], delay [7], harvesting [7-9], Allee effect [4, 10, 11], age 

structure [12], sex structure and sexual favoritism [13], seasonal variation [14], and many 

other factors. 

The functional response is an essential part of the predator-prey model, which describes the 

change in prey number killed per individual predator per unit of time as a consequence of 

changes in prey density. The most commonly used functional response in the existing 

literature is a function of prey's density only (Holling I-III) [2, 4, 15, 16],  in which interfering 

among predators is not utilized whereas this will be common when predators contest for food. 

To address this important factor, functional responses (ratio-dependent [17], Beddington-

DeAngelis [18], and Crowley-Martin [7] have been developed which do not rely just on the 

density of the prey but rather on the density of both prey and predator. 

While many predator-prey models considered a logistic growth of predators, Leslie and 

Gower [19] assumed that the predator grows logistically, where its carrying capacity is 

proportional to the density of prey   (  
 

  
) where   and   are the populations of prey and 

predator respectively. The term 
 

  
 is called Leslie-Gower term. 

On the other hand, predators can devour other populations when food is scarce, but their 

growth will be limited since their primary prey is scarce. To consider this issue, Aziz-Alaoui 

and Okiye [20] suggested a modified Leslie–Gower model by introducing a constant   in the 

denominator of Leslie-Gower term that measures environmental protection for the predator 
 

    
 to avoid singularities when    . Since then, many researchers have examined the 

modified Leslie–Gower models with a variety of functional responses [2, 21-23], harvesting 

[7, 22] Allee effect [24], etc. 

Moreover, from a financial income point of view, it is significant to consider the harvesting of 

species in predator-prey models. In the literature, several types of harvesting strategies have 

been utilized. Some of them used constant harvesting,        [25], proportional harvesting 

        [26] where   is the population that presents the harvesting (prey or predator), age-

selective harvesting [27], while others considered nonlinear harvesting [7]. Nonlinear 

harvesting is more relevant than other approaches from both a financial and biological point 

of view [23, 28]. Many researchers consider Holling type II harvesting      
   

       
. For 
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example, Gupta et al worked with a model with Holling type II harvesting in prey [23] and 

Holling type II harvesting in predator in [29]. 

Another factor to consider is that in some environments, prey may be afraid of predators and 

respond appropriately, making predator hunting more difficult. Due to fear of predation risk, 

the prey population can change its feeding area to a safer place and sacrifice their highest 

intake rate areas, increase their vigilance, regulate their strategies for reproduction, etc. In 

recent years, many experts began to study the predator-prey model with fear effect; see [3, 6] 

The dynamics and bifurcations of a modified Leslie-Gower predator-prey model with 

Holling-II functional response and nonlinear harvesting in both the prey and predator 

communities are investigated in this paper, as well as the influence of the fear factor. 

2. Mathematical Model Formulation 

The study considers a predator-prey problem, with      and     , respectively, representing 

prey and predator population densities at time T. Resource-consumer, plant-herbivore, 

parasite-host, tumor cells (virus)-immune system, susceptible-infectious interactions, and so 

on are examples. 

In the proposed model, prey population      is considered logistically growing in absence of 

predator      with a birth rate    and level of fear induced by predator population   such 

that: 
  

  
 

   

    
       

 .              (1) 

The morality density is represented by the term   , where   is the natural death rate of prey. 

Also, the term    
  is added to consider competition between prey community members, 

where    is the intraspecific competition.  

Moreover, the interaction between prey and predator is assumed to follow Holling-II 

functional response. According to these considerations, the change in the density of prey takes 

the following form in the presence of the predator:  
  

  
 

   

    
       

  
    

     
,             (2) 

where   represents the maximum attack rate,    represents the half-saturation constant of 

predation and the parameter         represents the availability constant rate of prey for 

predation due to the assumption of the existence of a       constant rate of prey's refuge in 

the environment. 

The density of predator population is assumed to follow the modified Leslie–Gower predation 

as follows: 
  

  
    *  

   

     
+               (3) 

where the parameter    represents the intrinsic growth rates of the predator,    is the 

maximum value which per capita reduction rate of   can attend, and    is the carrying 

capacity of the predator in the absence of the prey. 

In the proposed model, prey and predator are assumed to follow nonlinear harvesting with the 

harvesting function of Holling-II. The harvesting of prey is presented by the term 
     

        
, 

while that of predator is represented by the term 
    

       
, where              are the 

catchability coefficient of prey and predator respectively,    is the effort made to harvest 

individuals and                : suitable constants. It's worth noting that the effort 

represented by   in both equations is considered to be the same for both species, making this 

model more appropriate for aquatic environments. 

Combining all the above assumptions give the following set of dynamical differential 

equations: 
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    [  

   

     
]  

    

       
   

(4) 

where all of the parameters are assumed to be positive and described as above. 

Note that, using the scaling variables      ,   
  

  
 , and   

   

  
   in the system (4) 

reduces the number of parameters from 17 to 12 parameters and the system (4) takes the 

following dimensionless form: 
  

  
  [

 

     
      

  

     
 

    

      
]             

  

  
  [  (  

   

     
)  

   

      
]              

 (5) 

with the initial conditions: 

         ,           ,             (6) 

and the dimensionless parameters are given by: 

   
   

 

   
,     

 

  
,     

    

  
,     

    

  
   

,     
    

    
, 

   
  

  
,     

    

 
,     

    

  
,     

     

 
   

 
,      

     

    
  . 

Note that, since the right-hand side of the interaction functions of the system (5) are 

continuous and have continuous partial derivatives, then system (5) has a unique solution that 

belongs to the positive quadrant   
 . 

3. Positivity and Boundedness 

Theorem (1) and theorem (2) below prove that the model formulation is ecologically relevant 

by showing that solutions of system (5) together with the initial condition (6) are positive and 

uniformly bounded. 

Theorem 1: All solutions of system  (5) with initial conditions (6) remain positive forever. 

Proof: The proof is direct and hence it is omitted. 

Theorem 2: All the solutions of system (5) with initial conditions (6) are uniformly bounded. 

Proof: From the system (5), 
  

  
 

 

     
        

               

     = [        ], 
and this shows that the solution of the system              as    , by lemma 2 in 

(23). Clearly, due to the survival condition of the prey in the absence of a predator, we have 

always that       .  

Now substituting the maximum value    in the second equation of system (5) gives that: 
  

  
    (  

   

      
). 

Then, by solving the above differential inequality, it is observed that: 

     
      

  
    as    . 

which proves the boundedness of all the solutions.    □                                                                          

4. Existence and the Stability of Equilibria 

The presence of equilibrium points of the dimensionless system, as well as a qualitative 

analysis of their stability, are investigated in this section. 

The number of equilibrium points of system (5) depends on the parameter values. For 

example, Figure 1 shows that for the set of parameter values given in Table 1, the system has 

one trivial, one predator-free, one prey-free, and one interior equilibrium point. While, for set 
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of parameter values given in Table 2, the system has one trivial, one predator-free, two prey 

free and two interior equilibrium points. 

  
(a) (b) 

Figure 1- The number of equilibrium points of the system (5) (a) there are 4  

equilibrium points for set #1 of parameter values given in Table 1  (b) there are 6  

equilibrium points for set #2 of parameter values given in Table 2. 
 

4.1 Trivial Equilibrium Point  

It is clear that the trivial equilibrium point         at the origin is always exists. 

4.2 Predator Free Equilibrium Points  

The boundary equilibria on   axis are calculated by solving the following quadratic 

equation: 

 (            )  (           )       .            (7) 

The roots of Eq. (7) depend on the parameters            and  , so according to Descartes's 

rule there are the following cases: 

Case 1. There is no equilibrium point with     , since the prey survives if the natural 

mortality rate is lower than the birth rate. 

Case 2. When      

a. If  both              and              , then there is no equilibrium point. 

b. If               and              , then either there is no equilibrium 

point or there are two equilibrium points          and          where    and    are the 

positive roots of Eq. (7) with       and are given by 

   
 (           ) √(           )

 
    (            )

  
. 

 

   
 (           ) √(           )

 
    (            )

  
. 

c. If                , then only          exits.   

4.3 Prey Free Equilibrium Points  

The boundary equilibria on   axis are calculated by solving the following quadratic 

equation: 

                                  
   .                     (8) 
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The roots of Eq. (8) depend on the parameters                 and  , so according to 

Descartes's rule there are the following cases: 

Case 1. If both          and           there is no equilibrium point. 

Case 2. If both          and          , then either there is no equilibrium point or 

there are two equilibrium points          and          where    and    are the positive 

roots of Eq. (8) with       and are given by 

   
              √  

                                

     
. 

 

   
              √  

                                

     
. 

Case 3. If          , then only          exits.   

4.4 Interior Equilibrium Points  

The positive interior points are found by solving system (5) for     and    . It is 

obtained that: 

   
                

      

           
 ,                           (9) 

where         ,            ,            ,        ,       ,    
       ,         and      . It is clear that each one of them has a positive value. 

However,    is the positive root of the polynomial (10) below: 

      
     

      
      

      
      

      
    ,             (10) 

where the polynomial coefficients              are depending on the system parameters 

with            is negative, while all other coefficients of Eq. (10) could be positive or 

negative. Therefore, if      then there exists at least one positive equilibrium point 

             
5. Stability Analysis of Equilibria 

In this section, the nonlinear system (5) is linearized around each equilibrium point using the 

Jacobian matrix to investigate the local stability of various equilibrium points. 

The Jacobian matrix of system  (5) about an arbitrary point       is determined by: 

       [
 

   

  
    

   

  

 
   

  
 

   

  
   

], (11) 

where 
   

  
 

    
 

         
 

   

        
  , 

   

  
  (

 

     
 

  

        
), 

   

  
 

      

        
, 

   

  
 

   

         
 

    

     
. 

Recall that, if all eigenvalues of the Jacobian matrix at an equilibrium point have negative real 

parts then this point is locally asymptotically stable. Accordingly, the following theorems 

present the local stability conditions for each of the above equilibria. 

Theorem 3: The trivial equilibrium point    is: 

i. Local asymptotically  stable node if              and         . 

ii. Saddle point if either              and          or              and 

        . 

iii. Unstable node if              and         . 
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Proof: Depending on the general Jacobian matrix that given by (11), the Jacobian matrix at 

        is given by: 

       [
     

   

  
 

    
  

   

]. 

The eigenvalues of        are    
            

  
, and    

        

   
. So, if (i) holds the two 

eigenvalues are negative, and then    is local asymptotically stable. If the condition in (ii) 

holds, then    and    have opposite signs, hence    is saddle-node. Finally, if the condition in 

(iii) holds, then both eigenvalues are positive, hence the point    is unstable node.   □   

Theorem 4: If any of the predator-free equilibrium points         ,         exists, then it 

is: 

i. Local asymptotically stable node if     
           

  and         . 

ii. Saddle point if either     
           

  and          or     
  

         
  and         . 

iii. Unstable node if     
           

  and         . 

Proof: At                 , the Jacobian matrix can be written as 

        [
  (

    
 

         
   )    (   

 

      
)

    
  

   

],     

Therefore, the eigenvalues of                 are given by: 

   
(    

           
 )  

         
  and    

        

   
 

Hence, if the condition (i) holds, the two eigenvalues are negative and            is local 

asymptotically stable. If the condition (ii) holds, then    and    have opposite signs, hence 

           is saddle-node. Finally, if condition (iii) holds, then both eigenvalues are 

positive, hence the point is an unstable node.    □   

Theorem 5: If any of the prey free equilibrium points         ,         exists, then it is: 

i. Local asymptotically  stable node if         and         . 

ii. Saddle point if either          and          or          and         . 

iii. Unstable node if          and         . 

where    (                   )        ,               
 . 

Proof: At         ,        , the Jacobian matrix is given by  

        

[
 
 
 
 

 

      
    

   

  
 

   

  
 

       
 

  
   (

   

          
 

    

  
)
]
 
 
 
 

 

Clearly, the eigenvalues of        ,         are: 

   
     (                   )        

            
 and    

(                   
 )  

           
   

Hence, if the condition (i) holds, the two eigenvalues are negative and         ,         is 

local asymptotically stable. If the condition (ii) holds, then    and    have opposite signs, 

hence         ,         is saddle-node. Finally, if condition (iii) holds, then both 

eigenvalues are positive, hence the point is an unstable node.    □ 

Theorem 6: If any interior equilibrium point           exists, then this point is: 

i. Saddle point if 
    

 

          
 

    

         
   and 

   

          
–

    

       have opposite signs, 

and              . 
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ii. Unstable node if 
    

 

          
 

    

         
    and  

   

          
–

    

      
 have the same 

signs and        . 

iii. Stable node if 
    

 

          
 

    

         
    and  

   

          
–

    

       have the same 

signs and        . 

where       is trace of the Jacobian matrix at this point          . 
Proof: At          , the Jacobian matrix is given by: 

         [
  (

    
 

          
 

    

         
  )    (

  

         
 

 

      )

        

         
  (

   

          
 

    

      
)
]  [   ]. 

If the condition (i) holds, then          and it is clear that           |        |    

    is a saddle point. If the condition (ii) holds, then            |        |       is 

unstable node when        . Similarly,    is stable node when        .    □ 

6. Bifurcation Analysis 

This section is dedicated to study some potential bifurcation scenarios at the stable 

equilibrium points of the system (5) when the parameter values are varied. 

System (5) can be rewritten in the following vector forms to simplify the notations: 

  

  
     , with   *

 
 +, and   [

        

        
]. 

Then the second derivate of   with respect to   can be expressed as: 

                                                                                                                               

[

   
   

  

        
 

        

        
 

       

        
    

 (  (
      

         
 

   

        
)   )

          
 

         
 

                      

        

]  
      (12a) 

where          
  is a general vector. Furthermore, we have  

                                                                                                                        

[
 (

  
     

   

        
 

       
   

 

         
 

   
   

          

        
 

  
   

                 

        
)

                         

        
 

          
 

         

]  
          (12b) 

Theorem 7: If the parameter    passes through the value   
  

  

   
 and             , 

then system (5) at the trivial equilibrium point    has 

i. No saddle-node bifurcation. 

ii. Transcritical bifurcation provided that 

         .                          (13) 

iii. A pitchfork bifurcation otherwise. 

Proof: At   , the Jacobian matrix of system (5) with      
  becomes: 

           
   [

     
   

  
 

  
]. 

Clearly,    has a zero eigenvalue with another negative eigenvalue, and the corresponding 

eigenvector for the zero eigenvalue can be written as:   

   *
 
 
+. 

While the eigenvector corresponding to the zero eigenvalue of   
  is determined as: 

   *
 
 
+.  

Differentiating   with respect to    gives:   
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 [

 

 (  
   

     
)]. 

Therefore, straightforward computation shows that: 

  
    

      
    . 

Consequently, by Sotomayor’s theorem, system (5) has no saddle-node bifurcation near    

and       
   Moreover, direct computation gives that: 

  
 [    

      
    ]     . 

Also, using the form of     given by equation (12a), and the eigenvectors    with    gives 

that: 

  
 [         

         ]  
              

      
 . 

Therefore, condition (13) guarantees that   
 [         

         ]   . Hence, by 

Sotomayor’s theorem, a transcritical bifurcation takes place. 

Otherwise,   
 [         

         ]   . In addition, using the form of     given by 

equation (12b), and the eigenvectors    with    gives that: 

  
 [         

            ]   
   

     
   . 

Hence, a pitchfork bifurcation takes place, and the proof is complete.    □  

Theorem 8: Assume that     
           

  near any of the predator-free equilibrium 

points         ,        , then if the parameter    passes through the value   
  

  

   
, then 

the system (5) at this equilibrium point has 

i. No saddle-node bifurcation. 

ii. Transcritical bifurcation provided that 
 

 
 

     

      
.                                (14) 

iii. A pitchfork bifurcation otherwise. 

Proof: At         ,        , the Jacobian matrix of system (5) with      
  becomes: 

           
   [

  (
    

 

         
   )    (   

 

      
)

  
]. 

Clearly,    has a zero eigenvalue with another negative eigenvalue, and the corresponding 

eigenvector for the zero eigenvalue can be written as:   

   *
  

 
+. 

where 

   
         

 [            ]

        [               
 ]

. 

Clearly     , due to given condition.  

While the eigenvector corresponding to the zero eigenvalue of   
  is determined as: 

   *
 
 
+.  

And,  

  
    

      
    . 

Consequently, by Sotomayor’s theorem, system (5) has no saddle-node bifurcation near    

and       
   Moreover, direct computation gives that: 

  
 [    

      
    ]     . 

Also, using the form of     given by equation (12a), and the eigenvectors    with    gives 

that: 

  
 [         

         ]  
   

   
 (

 

 
 

     

      
). 
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Therefore, condition (14) guarantees that   
 [         

         ]   . Hence, by 

Sotomayor’s theorem, a transcritical bifurcation takes place. 

Moreover, if condition (14) does not satisfy, then we have   
 [         

         ]   . In 

addition, using the form of     given by equation (12b), and the eigenvectors    with    

gives that: 

  
 [         

            ]  
   

   
[

       

          
  

 

     
 ]   .  

Hence, a pitchfork bifurcation takes place, and the proof is complete.    □ 

Theorem 9: Assume that                   
  near any of the prey free equilibrium 

points         ,        , then if the parameter    passes through the value   
  

 

      
 

   

  
–

   

  
, then system (5) at this equilibrium point has 

i. No saddle-node bifurcation. 

ii. Transcritical bifurcation provided that 

                              (15) 

where 

        
           

                  
 (  (  

       
   )     

   

 
). 

iii. A pitchfork bifurcation if condition (15) does not satisfy and  
    

 

  
  

   
   

 

    
  

    
   

  
  

  
   

        
   .                    (16) 

Proof: At         ,        , the Jacobian matrix of system (5) with      
  becomes: 

           
   [

  
       

 

  
   (

   

         
  

    

  
)]. 

Clearly    has a zero eigenvalue with another negative eigenvalue, and the corresponding 

eigenvector for the zero eigenvalue can be written as:   

   *
  

 
+. 

where  

     
             

       

                
 . 

Clearly     , due to given condition.  

While the eigenvector corresponding to the zero eigenvalue of   
  is determined as: 

   *
 
 
+.  

And,  

  
    

      
    . 

Consequently, by Sotomayor’s theorem, system (5) has no saddle-node bifurcation near    

and       
   Moreover, direct computation gives that: 

  
 [    

      
    ]       . 

Also, using the form of     given by equation (12a), and the eigenvectors    with    gives 

that: 

  
 [         

         ]  
      

   
   

 
        

 
. 

Therefore, condition (15) guarantees that   
 [         

         ]   . Hence, by 

Sotomayor’s theorem, a transcritical bifurcation takes place. 

Moreover, if condition (15) does not satisfy, then we have   
 [         

         ]   . In 

addition, using the form of     given by equation (12b), and the eigenvectors    with    

gives that: 

  
 [         

            ]   (
    

 

  
  

   
   

 

    
  

    
   

  
  

  
   

        
 
). 
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Note that, condition (16) guarantees that   
 [         

            ]   . Hence, a 

pitchfork bifurcation takes place, and the proof is complete.    □    

  

Theorem 10: Assume that 
    

 

          
 

    

         
   and  

   

          
 

    

      
 near the any 

of the interior equilibrium points          , then if the parameter    passes through the 

value:  

  
   

               

                                 
, 

Then system (5) at this equilibrium point has saddle-node bifurcation provided that: 
    

  

         
     

    
 

        ,                                       (17) 

           ,                           (18) 

where all new symbols are given in the proof. 
Proof: Consider the Jacobian matrix of system (5) at    with      

  
 that can be written as: 

    
    

    [
      
   

    
 ]. 

where 

      (
    

 

          
 

    

         
  ),          (

  

         
 

 

      ), 

   
  

  
        

         
,       

    (
   

          
 

  
    

      ). 

Straightforward computation shows that |  |        
        

   , and hence    has a zero 

eigenvalue, and the corresponding eigenvector for this eigenvalue can be written as:   

   *
  

 
+. 

where 
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While the eigenvector corresponding to the zero eigenvalue of   
  is determined as: 
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Consequently, by Sotomayor’s theorem, system (5) satisfies the first condition of saddle-node 

bifurcation near    and    
    Moreover, direct computation with the use of conditions (17) 

and (18) gives that: 
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represent the elements of          
          . Hence, a saddle node bifurcation takes 

place, and the proof is complete.  □ 
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7. Numerical Analysis  

The overall dynamics of system (5) are numerically investigated in this section for various 

sets of initial values and parameter values. This study aims to demonstrate the impacts of 

changing parameter values on the system's dynamical behavior and to validate the theoretical 

results achieved. The numerical simulations are carried out using a combination of parameter 

values given in Table (1) and Table (2). 

 

Table 1- Set #1 of parameter values 

Parameter:                                    

Value: 2.35 0.13 0.47 0.3 0.61 0.87 0.79 0.06 0.1 0.4 0.92 0.12 

 

Table 2- Set #2 of parameter values 

Parameter:                                    

Value: 2.37 0.24 0.13 0.08 0.1 0.1 0.17 0.13 0.1 0.15 0.11 0.75 

 

As previously mentioned in section 4, there is a various number of equilibrium points for 

different values of parameters. Figure 1 shows two examples of that. 

Now, using the parameters given in Table 1 with various sets of initial points, system (5) is 

solved numerically, and then the trajectories that have been obtained are drawn in form of 

direction field and phase portrait as shown in Figure 2. It is clear from this figure that there 

are 4 equilibrium points: one trivial, one predator-free, one prey-free, and one interior 

equilibrium point.  The interior equilibrium point is stable (spiral sink), while the others are 

unstable. 

 

 

  
(a) (b) 

 

    
(c) 

Trivial equilibrium 

point (0,0) nodal 

(d) 

Prey free equilibrium 

point (0,0.057543) 

(e) 

Predator free 

equilibrium point 

(f) 

Interior equilibrium 

point 
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source saddle point (0.81979,0) saddle 

point 

(0.559785,0.126559) 

spiral sink 

 

Figure 2- For the parameters given in Table (1) with different initial points (a) 

The direction field of the system (5) (b) The phase portrait of the trajectories of 

the system (5) (c)-(f) The dynamic behavior near the 4 equilibrium points.   

 

Three different initial points near the interior equilibrium point are selected randomly and 

then the time series for the obtained trajectories of system (5) are drawn in Figures 3. The 

trajectories of system (5) approach to that point as shown in Figure 3. 

 

 

  
(a) (b) 

 

Figure 3- The solutions of system (5) approaches asymptotically to the interior 

point (0.559785,0.126559) using parameters in Table (1) (a) Prey trajectories (b) 

Predator trajectories as a function of time. 
 

Figure 4 shows that by putting   
  

  

   
 and keeping the values of other parameters in Table 

(1), then instead of four equilibrium points, system (5) will have just two: the trivial and the 

predator-free equilibrium points. Both of them are nonhyperbolic equilibrium points. This 

agrees with the results of both Theorem 7 and Theorem 8. 
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(a) (b) 

 

Figure 4-The dynamical behavior of system (5) with parameter values in Table 

(1) (a) when   
  

  

   
      (b) when   

  
  

   
     . 

 

 

 

Figure (5) shows that by putting   
  

 

      
 

   

  
–

   

  
      and keeping the value of 

other parameters in Table 1 then instead of four equilibrium points, system (5) will have three 

equilibrium points: the trivial, one predator-free, and one prey-free equilibrium point. 

Moreover, the prey-free equilibrium point will change its behavior from saddle-node to nodal 

sink. This agrees with the result of Theorem 9. 

 

 

  
(a) (b) 

 

Figure 5- The dynamical behavior of system (5) with parameter values in Table-

1 (a) when   
  

 

      
 

   

  
–

   

  
      (b) when   

  
 

      
 

   

  
–

   

  
     . 

 
 

As mentioned previously, system (5) has a rich dynamic behavior, for example, Figure (6) 

shows the behavior of the system under influence of set #2 of parameter values which are 

given in Table 2. In this case, there are six equilibrium points: (i) one trivial saddle 

equilibrium point (ii) one predator-free nodal sink (iii) two prey-free equilibrium points, one 

of them is saddle point and the other is a nodal sink (iv) two interior equilibrium points, one 

spiral source and the other is a saddle point. 
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(a) (b) 

 

    
(c) 

Trivial equilibrium 

point (0,0) saddle 

point 

(d) 

Predator free 

equilibrium point 

(0.74847,0) nodal sink 

(e) 

Prey free equilibrium 

point (0,010663) 

saddle point 

(f) 

Prey free equilibrium 

point (0,0.87687) 

nodal sink 

    
 

  

 

 (g) 

Interior equilibrium 

point 

(0.88011,0.10225) 

spiral source 

(h) 

Interior equilibrium 

point 

(0.36854,0.097753) 

saddle point 

 

 

Figure 6-For the parameters given in Table 2 with different initial points (a) The 

direction field of the system (5) (b) The phase portrait of the trajectories of 

system (5) (c)-(f) The dynamic behavior near the 4 boundary equilibrium points. 

(g)-(h) The dynamic behavior near the 2 interior equilibrium points.  
 

Figure 7 shows that for set #1, as the value of the level of fear induced by predator population 

(  ) increases, the unique interior equilibrium point converges to the prey-free equilibrium 

point and preserves its behavior as a spiral sink. While Figure 8 shows that for set #2 with an 

increase in the level of fear induced by predator population (  ), the two interior equilibrium 

points converge to each other and then unify and disappear. When these two points exist, they 
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preserve their behavior, the right one is always saddle-node while the left one is always a 

spiral source. 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 7- The interior equilibrium point of set #1 (the point in green) converges 

to the prey-free equilibrium point with the increase of the value of    (a)      

(b)       (c)       (d)      . 
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(a) (b) 

  
(c) (d) 

  

Figure 8-The two interior equilibrium points of set #2 (the points in green) 

converge to each other with the increase of the value of    (a)      (b)        

(c)        (d)       . 

 

 

Moreover, to explore the effect of harvesting, Figure 9 shows that for set #1, as the value of 

the catchability coefficient of prey (  ) increases, the unique interior equilibrium point 

converges to the prey-free equilibrium point and preserves its behavior as a spiral sink. While 

Figure 10 shows that for set #2, the two interior equilibrium points converge to each other and 

then unify and disappear. When these two points exist, they preserve their behavior, the right 

one is always saddle-node while the left one is always a spiral source. 

 



Al-Momen and Naji                            Iraqi Journal of Science, 2022, Vol. 63, No. 1, pp: 259-282 
 

276 

  
(a) (b) 

  
(c) (d) 

Figure 9-The interior equilibrium point of set #1 (the point in green) converges 

to the prey-free equilibrium point with the increase of the value of    (a)    
     (b)        (c)        (d)        . 
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(a) (b) 

  
(c) (d) 

  

Figure 10-The two interior equilibrium points of set #2 (the points in green) 

converge to each other with the increasing of the value of    (a)         (b)  

        (c)         (d)          . 
 

Also, Figure 11 shows that for set #1, as the value of the catchability coefficient of predator 

(  ) increases, the unique interior equilibrium point converges to predator-free equilibrium 

point and preserves its behavior as a spiral sink. At the same time, for set #2, the two interior 

equilibrium points follow a similar scenario to that appear in Figures 8 and 10, where the two 

points combine with each other and then disappear. On the other hand, decreasing the value of 

this parameter toward zero makes the right interior equilibrium point goes toward the 

predator-free equilibrium point, while the left interior equilibrium point goes toward the prey-

free equilibrium point and then toward the trivial equilibrium point as shown in Figure 12. 
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(a) (b) 

  
(c) (d) 

 

Figure 11- The interior equilibrium point of set #1 (the point in green) 

approaches the predator-free equilibrium point with the increase of the value of 

   (a)        (b)        (c)        (d)          . 
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(a) (b) 

  
(c) (d) 

  

Figure 12- The right and left interior equilibrium points of set #2 (the points in 

green) go toward the predator-free and prey-free equilibria respectively, when 

the value of    decreases toward zero, (a)        (b)         (c)         (d) 

         . 

 

8. Discussion and Conclusions 

     In this study, a modified Leslie-Gower predator-prey model is proposed and discussed. 

Fear of predation and harvesting are both factored into the model's design and studied. 

According to Holling type-II functional response, which is also used to characterize the 

harvesting process, the predator consumes food. The solution's positivity and boundlessness 

have been demonstrated. All of the system's probable equilibrium positions are identified. 

These equilibrium points' local stability is explored, and their requirements are provided. The 

system shows it has several boundaries and interior equilibrium points, which complicates the 

study. The effect of changing the parameters on the model's dynamics is investigated by 

looking at the possibilities of local bifurcation types such as saddle-node, transcritical, and 

pitchfork bifurcation. Two sets of hypothetical data parameters are used to analyze the 
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system's global dynamics numerically. The existing equilibrium locations and the solution 

behavior surrounding them are depicted using phase portraits and direction fields. The system 

has a single globally asymptotically stable interior equilibrium point with two axial saddle-

node equilibrium points and an unstable trivial equilibrium point for the data in set #1. The 

system has two unstable interior equilibrium points (one unstable spiral and the second is a 

saddle point) with three axial equilibrium points (two of which are locally asymptotically 

stable with their own basin of attraction for each of them and the third point is a saddle point) 

and a saddle-node trivial equilibrium point for data set #2. This ensures that the system's 

dynamics are rich, and the number of equilibrium points is determined by the data parameters. 

The impact of fear rate on the system's dynamics is also explored. For set # 1 data, increasing 

fear rate produces a gradual decrease in prey population until the system reaches prey 

extinction, and the interior equilibrium point coincides with the prey-free equilibrium point, 

which becomes globally asymptotically stable. In the set #2 data, however, raising the fear 

rate causes the two inner equilibrium points in the positive quadrant to be combined, resulting 

in a saddle-node point. According to the preceding discovery, fear rate acts as a bifurcation 

parameter, causing extinction in prey species when its value rises above a certain threshold. 

When the value of the catchability coefficient of the prey increases, similar observations are 

made as with the fear rate. Furthermore, when using set # 1 data, as the value of the predator's 

catchability coefficient increases, the system behaves similarly to that obtained when 

increasing the value of the prey's catchability coefficient, except that the interior equilibrium 

point combines with the predator-free equilibrium point, which then becomes globally 

asymptotically stable. The system behaves similarly when using set # 2 data. Finally, given 

set # 2 data, decreasing the predator species' catchability coefficient causes each of the 

interior equilibrium points to be combined with the nearest axial equilibrium point, and the 

system's solution approaches asymptotically to the prey-free equilibrium point. 
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