Fuzzy almost pairwise semi-pre continuous mappings and fuzzy almost semi-pre open (semi-pre closed) mappings

Mohammed Jassim Mohammed Department of Mathematics, College of Education University of Thi-Qar, thiqaruni.org

Abstract

The purpose of this paper to introduce and study the concepts of fuzzy semi-pre open sets in fuzzy bitoplogical spaces also we introduce and study the concepts of fuzzy almost pairwise semi-pre continuous mappings and fuzzy almost pairwise semi-pre open (semi-pre closed) mappings. Their properties have been investigated.

Introduction:

The notion of bitoplogical spaces was initially studied by Kelly [3], the concepts of fuzzy sets was introduced by Zadchin [12]/ chang [2] first introduced the fuzzy topological spaces. Kandil [4] introduced and studied the notion of fuzzy bitopological spaces as a natural generalization of fuzzy topological space. Thakar [11] introduced and studied fuzzy semi-pre open sets and fuzzy semi-continuity in fuzzy topology.

Kumar [7,8] defined the (T_i,T_j) -fuzzy semiopen (semiclosed) sets, (T_i,T_j) -fuzzy preopen (preclosed) sets, also Kamar [7,8] defined the fuzzy semi-continuous mapping, fuzzy pairwise pre-continuous mappings.

Krsteska [6] introduce and studied (T_i, T_j) -strongly semiopen sets and almost pairwise strongly semi-continuous mappings.

In this paper we introduced and studied semi-pre open sets of fuzzy bitopological space and also we introduce the fuzzy almost pairwise semi-pre continuous mappings, fuzzy almost pairwise semi-pre open (semi-pre closed) mappings. 1. Preliminaries

Through this paper, fbts X denotes a fuzzy bitopological space (X,τ_1,τ_2) and the indices i,j takes value {1,2} and $i \neq j$, For a fuzzy set A of a fbts (X,τ_1,τ_2) , τ_i -intA and τ_j -clA means, respectively, the interior and closure of A with respect to fuzzy topologies τ_i and τ_j .

Definition (1-1)[6,7,8]:

Let A be a fuzzy set of fbts X. Then A is called:

1) a (τ_i, τ_j) -fuzzy semiopen set if and only if $A \leq \tau_i$ -cl $(\tau_j$ -intA).

2) a (τ_i, τ_i) -fuzzy pre-open set if and only if $A \leq \tau_i$ -int $(\tau_i$ -clA).

3) a (τ_i, τ_j) -fuzzy α -open set if and only if $A \leq \tau_i$ -int $(\tau_j$ -cl $(\tau_i$ -intA)).

4) a (τ_i, τ_j) -fuzzy semi-pre open set if and only if $A \le \tau_i$ -cl $(\tau_j$ -int $(\tau_i$ -clA)).

5) a (τ_i, τ_j) -fuzzy regular open set if and only if A= τ_i -int $(\tau_j$ -clA).

The family of all (τ_i, τ_j) -fuzzy semiopen sets, (τ_i, τ_j) -fuzzy pre-open sets, (τ_i, τ_j) -fuzzy α -open sets, (τ_i, τ_j) -fuzzy semi-pre open sets and (τ_i, τ_j) -fuzzy regular open sets of a fbts (X,τ_1,τ_2) will be denoted by (τ_i, τ_j) -FSO(X), (τ_i, τ_j) -FPO(X), (τ_i, τ_j) -F α O(X), (τ_i, τ_j) -FSPO(X) and (τ_i, τ_j) -FRO(X) respectively.

Definition (1-2) [7,12]:

Let A be a fuzzy set of a fbts X. Then A is called:

1) a (τ_i, τ_j) -fuzzy semiclosed set if and only if A^c is a (τ_i, τ_j) -fuzzy semiopen set.

2) a (τ_i, τ_j) -fuzzy preclosed set if and only if A^c is a (τ_i, τ_j) -fuzzy preopen set.

3) a (τ_i, τ_j) -fuzzy α -closed set if and only if A^c is a (τ_i, τ_j) -fuzzy α -open set.

4) a (τ_i, τ_j) -fuzzy semi-pre closed set if and only if A^c is a (τ_i, τ_j) -fuzzy semi-pre open set.

5) a (τ_i, τ_j) -fuzzy regular closed set if and only if A^c is a (τ_i, τ_j) -fuzzy regular open set. The family of all (τ_i, τ_j) -fuzzy semiclosed sets, (τ_i, τ_j) -fuzzy pre-closed sets, (τ_i, τ_j) -fuzzy α -closed sets, (τ_i, τ_j) -fuzzy semi-pre closed sets and (τ_i, τ_j) -fuzzy regular closed sets will be denoted by (τ_i, τ_j) -FSC(X), (τ_i, τ_j) -FPC(X), (τ_i, τ_j) -F α C(X), (τ_i, τ_j) -FRC(X) respectively.

Definition (1-3) [6,7,8]:

A mapping f: $(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ from a fbts X into a fbts Y is called:

1) a fuzzy pairwise semicontinuous if $f^{-1}(A)$ is a (T_i, T_j) -fuzzy semiopen set of X for each δ_i -fuzzy open set A of Y.

2) a fuzzy pairwise precontinuous if $f^{-1}(A)$ is a (T_i, T_j) -fuzzy preopen set of X for each δ_i -fuzzy open set A of Y.

3) a fuzzy pairwise α -continuous if $f^{1}(A)$ is a (T_{i},T_{j}) -fuzzy α -open set of X for each δ_{i} -fuzzy open set A of Y.

4) a fuzzy pairwise semi-pre continuous if $f^{-1}(A)$ is a (T_i,T_j) -fuzzy semi-pre open set of X for each δ_i -fuzzy open set A of Y.

5) a fuzzy pairwise regular continuous if $f^{-1}(A)$ is a (T_i, T_j) -fuzzy regular open set of X for each δ_i -fuzzy open set A of Y.

2. Fuzzy almost pairwise semi-pre continuous mappings Definition 2-1:

A mapping $f:(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ from a fbts X into a fbts Y is called fuzzy almost pairwise semi-pre continuous if $f^{-1}(A)$ is a (τ_i, τ_j) -fuzzy semi-pre open set of X for each (δ_i,δ_j) -fuzzy regular open set A of Y. Remark 2-2:

Let $f:X \rightarrow Y$ be a mapping from a fbts X into fbts Y. If f is fuzzy pairwise semi-pre continuous, then f is a fuzzy almost pairwise continuous, the converse of the statements need not to be true, as in the following example. Example 2-3:

Let X={2,3,6} and μ , η , λ be fuzzy sets of X defined as follows: $\mu(2)=0.3$ $\mu(3)=0.2$ $\mu(6)=0.4$

η(2)=0.2	η(3)=0.4	η(6)=0.2
λ(2)=0.4	λ(3)=0.6	λ(6)=0.5

If we put $\tau_1 = \tau_2\{0, \mu, \mu \lor \lambda, 1\}$, $\delta_1 = \delta_2 = \{0, \mu, \lambda, \mu \land \lambda, \mu \lor \lambda, 1\}$, let $f:(X, \tau_1, \tau_2) \rightarrow (Y, \delta_1, \delta_2)$ identity mapping f is fuzzy almost pairwise semi-pre continuous but f is not fuzzy pairwise semi-pre continuous mapping.

Theorem 2-3:

Let $f:(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ be a mapping from a fbts X into a fbts Y. Then the following statements are equivalent:

- i. f is a fuzzy almost pairwise semi-pre continuous mapping.
- ii. $f^{1}(A)$ is a (τ_{i}, τ_{j}) -fuzzy semi-pre closed set of X for each (δ_{i}, δ_{j}) -fuzzy regular closed set A of Y.
- iii. (τ_i, τ_j) -spcl f¹(δ_i -cl(δ_j -intA)) \leq f¹(A) for each δ_i -fuzzy closed set A of Y.
- iv. $f^{-1}(A) \leq (\tau_i, \tau_i)$ -spint $f^{-1}(\delta_i int(\delta_i clA))$, for each (δ_i, δ_i) -fuzzy open set A of Y.
- v. $f^{-1}(A) \leq (\tau_i, \tau_j)$ -spint $f^{-1}(\delta_i int(\delta_j clA))$, for each (δ_i, δ_j) -fuzzy pre open set A of Y.
- vi. (τ_i, τ_j) -spcl $f^{-1}(\delta_i$ -cl $(\delta_j$ -intA)) $\leq f^{-1}(A)$, foe each (δ_i, δ_j) -fuzzy pre closed set A of Y.
- vii. (τ_i, τ_j) -spcl $f^{-1}(\delta_i$ -cl $(\delta_j$ -int $(\delta_i$ -clA))) \le f^{-1}(A), foe each (δ_i, δ_j) -fuzzy α -closed set A of Y.

viii. $f(A) \leq (\tau_i, \tau_j)$ -spint $f^1(\delta_i$ -int $(\delta_j$ -clA)), for each (δ_i, δ_j) -fuzzy α -open set A of Y. Proof:

 $(\mathbf{i}) \rightarrow (\mathbf{i}\mathbf{i})$

Let A be any (δ_i, δ_j) -fuzzy regular closed set of fbts Y so A^c is a (δ_i, δ_j) -fuzzy regular open set of fbts Y.

Since s is a fuzzy almost pairwise semi-pre continuous then $f^{-1}(A^c)$ is a (τ_i, τ_j) -fuzzy semi-pre open set in fbts X.

Since $f^{-1}(A^c) = (f^{-1}(A))^c$

Therefore $f^{-1}(A)$ is a (τ_i, τ_j) -fuzzy semi-pre closed set in fbts X.

(ii) \rightarrow (iii)

Let A be δ_i -fuzzy closed set of Y.

 $\Rightarrow \delta_i$ -cl(δ_j -intA) \leq A

 \Rightarrow **f**¹(δ_i -**cl**(δ_j -**intA**)) \leq **f**¹(**A**)

Since δ_i -cl(δ_j -intA) is a (δ_i , δ_j)-fuzzy regular closed set then f⁻¹(δ_i -cl(δ_j -intA)) is a (τ_i , τ_j)-fuzzy semi-pre closed set in fbts X.

 $\Rightarrow \mathbf{f}^{1}(\boldsymbol{\delta}_{i} - \mathbf{cl}(\boldsymbol{\delta}_{j} - \mathbf{intA})) = (\tau_{i}, \tau_{j}) - \mathbf{spclf}^{-1}(\boldsymbol{\delta}_{i} - \mathbf{cl}(\boldsymbol{\delta}_{j} - \mathbf{intA}))$

Therefore (τ_i, τ_i) -spclf⁻¹ $(\delta_i$ -cl $(\delta_i$ -intA)) \leq f⁻¹(A)

(iii) \rightarrow (iv)

It can be prove by using complement.

 $(iv) \rightarrow (v)$

Let A is (δ_i, δ_i) -fuzzy pre-open set of fbts Y

 $\Rightarrow A \leq \delta_i \text{-int}(\delta_i \text{-clA})$

 \Rightarrow **f**⁻¹(**A**) \leq **f**⁻¹(δ_i -int(δ_i -cl**A**))

Since δ_i -int(δ_i -clA) is δ_i -fuzzy open set.

Then $f^{1}(\delta_{i}\text{-int}(\delta_{j}\text{-clA})) \leq (\tau_{i}, \tau_{j})$ -soint $f^{1}(\delta_{i}\text{-int}(\delta_{j}\text{-cl}(\delta_{i}\text{-cl}(\delta_{j}\text{-clA}))) = (\tau_{i}, \tau_{j})$ -soint $f^{1}(\delta_{i}\text{-int}(\delta_{j}\text{-clA}))$ Therefore $f^{1}(\Lambda) \leq (\tau, \tau_{j})$ soint $f^{1}(\delta_{j}\text{-clA})$

Therefore $f^{-1}(A) \leq (\tau_i, \tau_j)$ -soint $f^{-1}(\delta_i \text{-int}(\delta_j \text{-cl}A))$

 $(\mathbf{v}) \rightarrow (\mathbf{vi})$

It can be prove by using complement.

 $(vi) \rightarrow (vii)$ Let A be (δ_i, δ_i) -fuzzy α -closed set of fbts Y So δ_i -cl(δ_i -int(δ_i -cl(δ_i -clA))) $\leq A$ \Rightarrow **f**¹(δ **i**-cl(δ _i-cl(δ _i-cl(A))))) \leq **f**¹(A) Since δ_i -cl(δ_i -int(δ_i -cl(δ_i -clA))) is a (δ_i , δ_i)-fuzzy pre closed set $\Rightarrow (\tau_i, \tau_i) \operatorname{spcl} f^1(\delta_i \operatorname{cl}(\delta_i \operatorname{cl}$ Therefore (τ_i, τ_i) -spcl $f^{-1}(\delta_i$ -cl $(\delta_i$ -int $(\delta_i$ -clA))) \le f^{-1}(A) $(vii) \rightarrow (viii)$ It can be prove by using complement. $(viii) \rightarrow (i)$ Let A be (τ_i, τ_i) -regular open set of fbts Y \Rightarrow A= δ_i -int(δ_i -clA)) So A is a (δ_i, δ_i) - α -open set Then $f^{1}(A) \leq (\tau_{i}, \tau_{i})$ -spint $f^{1}(\delta_{i}$ -int $(\delta_{i}$ -cl $(\delta_{i}$ -intA))) \leq (\tau_{i}, \tau_{i})-spint $f^{1}(\delta_{i}$ -int $(\delta_{i}$ -clA))= (τ_{i} , τ_i)-spint f⁻¹(A) \Rightarrow f⁻¹(A) \leq (τ_i, τ_i)-spint f⁻¹(A) So A is a (τ_i, τ_i) -semi-pre open set Therefore f is a fuzzy almost pairwise semi-pre convinuous. Theorem 2-4: Let $f:(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ be a mapping from a fbts X into a fbts Y. Then the following statements are equivalent: i. f is a fuzzy almost pairwise semi-pre continuous mapping. ii. (τ_i, τ_i) -spcl f⁻¹(A) \leq f⁻¹(δ_i -clA) for each (δ_i, δ_i)-fuzzy semi-pre open set A of Y. iii. $f^{-1}(\delta_i - clA) \le (\tau_i, \tau_i)$ -spint $f^{-1}(A)$ for each (δ_i, δ_i) -fuzzy semi-pre closed set A of Y. iv. $f^{-1}(\delta_i - clA) \le (\tau_i, \tau_i)$ -spint $f^{-1}(A)$ for each (δ_i, δ_i) -fuzzy semi closed set A of Y. v. (τ_i, τ_i) -spcl $f^{-1}(A) \leq f^{-1}(\delta_i$ -clA) for each (δ_i, δ_i) -fuzzy semi open set A of Y. **Proof:** $(i) \rightarrow (ii)$ Let A be any (δ_i, δ_j) -semi-pre open set of fbts Y $\Rightarrow A \leq \delta_i \text{-cl}(\delta_i \text{-int}(\delta_i \text{-cl}A))$ So $f^{-1}(A) \leq f^{-1}(\delta_i - cl(\delta_i - int(\delta_i - clA)))$

Since δ_i -cl(δ_j -int(δ_i -clA)) is (δ_i , δ_j)-fuzzy regular closed So f¹(δ_i -cl(δ_j -int(δ_i -clA))) is (τ_i , τ_j)-fuzzy semi-pre closed set in X Then (τ_i , τ_j)-spcl f¹(δ_i -int(δ_j -clA))) = f¹(δ_i -int(δ_j -clA)) Therefore (τ_i , τ_j)-spcl f¹(A) \leq f¹(δ_i -cl(δ_j -int(δ_i -clA)))) \leq f¹(δ_i -clA) (ii) \rightarrow (iii) It can be prove by using complement. (iii) \rightarrow (iv) Let A a (δ_i , δ_j)-fuzzy semi-closed set of fbts Y $\Rightarrow \delta_i$ -int(δ_j -cl(int-A)) \leq A $\Rightarrow \delta_i$ -int(δ_j -cl(int-A))) \leq A Since A is a (τ_i , τ_j)-fuzzy semi-pre closed set in fbts Y f¹(int-A) \leq (τ_i , τ_j)-spint f¹(A) (iv) \rightarrow (v) It can be prove by using complement. (v) \rightarrow (i) Let A be a (δ_i, δ_j) -fuzzy regular closed set of fbts Y $\Rightarrow A = \delta_i \text{-cl}(\delta_j \text{-intA}))$ So A is semi-open set Then (τ_i, τ_j) -spcl $f^1(A) \leq f^1(\delta_i \text{-clA})$ $\Rightarrow (\tau_i, \tau_j)$ -spcl $f^1(A) \leq f^1(A)$ Therefore $f^1(A)$ is a (τ_i, τ_j) -semi-pre closed set $\Rightarrow f$ is almost pairwise semi-pre closed set

Corollary 2-5:

Let $f:(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ be a fuzzy almost pairwise semi-pre continuous mapping. Then the following statements holds:

1. (τ_i, τ_j) -spcl $f^{-1}(A) \leq f^{-1}(\delta_i$ -clA), for each δ_i -fuzzy open set A of Y.

2. $f^{-1}(\delta_i - intA) \le (\tau_i, \tau_j)$ -spint $f^{-1}(A)$, for each δ_i -fuzzy open set A of Y. Theorem 2-6:

Let $f:(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ be a mapping from a fbts X into a fbts Y. Then the following statements are equivalent:

- i. f is a fuzzy almost pairwise semi-pre continuous.
- ii. for each fuzzy singleton x_t of X and δ_i -fuzzy open set A contain $f(x_t)$. there exists fuzzy semi-pre open set B of X containing x_t such that $f(B) \leq \delta_i$ -int $(\delta_j$ -clA).
- iii. for each fuzzy singleton x_t of X and (δ_i, δ_j) -fuzzy regular open set A containing $f(x_t)$. there exists (τ_i, τ_j) -fuzzy semi-pre open set B of X containing x_t such that $f(B) \leq B$.

Proof:

(i) \rightarrow (ii) Let x_t be fuzzy singleton and A is δ_i -fuzzy open set of a fbts Y containing $f(x_t)$ $\mathbf{f}(\mathbf{x}_t) \leq \mathbf{A} \Longrightarrow \mathbf{x}_t \leq \mathbf{f}^{-1}(\mathbf{A})$ Since A is δ_i -fuzzy open set So $A \leq \delta_i$ -int(δ_i -clA) $\Rightarrow \mathbf{x}_t \leq \mathbf{f}^1(\mathbf{A}) \leq \mathbf{f}^1(\delta_i - int(\delta_i - cl\mathbf{A}))$ Since δ_i -int(δ_i -clA) is a (δ_i , δ_i)-fuzzy regular open and f is a fuzzy almost pairwise semi-pre continuous. Then $f^{-1}(\delta_i - int(\delta_i - clA))$ is a (τ_i, τ_i) -fuzzy semi-pre open \Rightarrow f⁻¹(δ_i -int(δ_i -clA))= (τ_i, τ_i)-spint f⁻¹(δ_i -int(δ_i -clA)) $x_t \leq f^{-1}(A) \leq (\tau_i, \tau_j)$ -spint $f^{-1}(\delta_i - int(\delta_j - clA))$ Let B= (τ_i, τ_i) -spint f⁻¹ $(\delta_i$ -int $(\delta_i$ -clA)) \Rightarrow B is (τ_i, τ_i) -fuzzy semi-pre open and $x_t \leq B$ $f(B)=f((\tau_i,\tau_i)-spint f^{-1}(\delta_i-int(\delta_i-clA))) \le f(f^{-1}(\delta_i-int(\delta_i-clA))) \le \delta_i-int(\delta_i-clA)$ Therefore $f(B) \leq \delta_i - int(\delta_i - clA)$. $(ii) \rightarrow (iii)$ Let x_t be a fuzzy singleton in X and A is a (δ_i, δ_i) -fuzzy regular open set of Y containing $f(x_t)$ Since $A = \delta_i - int(\delta_i - clA)$ \Rightarrow A is δ_i -fuzzy open set

be (ii) we get that there exists (τ_i,τ_j) -fuzzy semi-pre open set B of a fbts X containing x_t such that

 $f(B) \leq \delta_i - int(\delta_j - clA)$

Since A is (δ_i, δ_i) -fuzzy regular open set \Rightarrow A= δ_i -int(δ_i -clA) Therefore $f(B) \leq A$ $(iii) \rightarrow (i)$ Let A be (δ_i, δ_i) -fuzzy regular open set and x_t be a fuzzy singleton such that $x_t \leq f^{-1}(A)$ \Rightarrow **f**(**x**_t) \leq **A** by (iii) we get that there exists (τ_i, τ_i) -fuzzy semi-pre open set B of a fbts X containing \mathbf{x}_t and $\mathbf{f}(\mathbf{B}) \leq \mathbf{A}$ \Rightarrow **B** \leq **f**¹(**A**) So $x_t \leq B \leq f^{-1}(A)$ Since B is (τ_i, τ_i) -fuzzy semi-pre open set \Rightarrow B=(τ_i, τ_i)-spint B \leq (τ_i, τ_i)-spint f⁻¹(A) Since x_t arbitrary and $f^{-1}(A)$ is the union of all fuzzy singleton of $f^{-1}(A)$ $f^{-1}(A) \leq (\tau_i, \tau_i)$ -spint $f^{-1}(A)$ \Rightarrow **f**¹(A) is (τ_i, τ_i)-fuzzy semi-pre open set Therefor f is a fuzzy semi-pre continuous. 3. Fuzzy almost pairwise semi-pre open (closed) mapping: **Definition 3-1:** A mapping f: $(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ from a fbts X into a fbts Y is called: **1.** Fuzzy pairwise semi-pre open mapping if f(A) is (δ_i, δ_i) -fuzzy semi-pre open set of Y for any τ_i -fuzzy open set A of X. 2. Fuzzy pairwise semi-pre closed mapping if f(A) is (δ_i, δ_i) -fuzzy semi-pre

- 2. Fuzzy pairwise semi-pre closed mapping if f(A) is (δ_i, δ_j)-fuzzy semi-pre closed set of Y for any τ_i-fuzzy closed set A of X.
 3. Euzzy almost pairwise semi-pre open mapping if f(A) is a (δ δ) fuzzy semi-pre closed set A of X.
- 3. Fuzzy almost pairwise semi-pre open mapping if f(A) is a (δ_i, δ_j) -fuzzy semipre open set of Y for any (τ_i, τ_j) -fuzzy regular open set A of X.
- 4. Fuzzy almost pairwise semi-pre closed mapping if f(A) is a (δ_i, δ_j) -fuzzy semipre closed set of Y for any (τ_i, τ_j) -fuzzy regular closed set A of X.

Remark 3-2:

Every fuzzy pairwise semi-pre open (resp. fuzzy pairwise semi-pre closed) mapping is fuzzy almost pairwise semi-pre open (resp. fuzzy almost pairwise semi-pre closed) mapping. But the converse may not be true as in the following example. Example 3-3:

Let $X=\{a,b\}$ and μ, λ be fuzzy sets defined as follows:

μ(a)=0.4	μ(b)=0.5
$\lambda(a) = 0$	$\lambda(\mathbf{h}) = 0$

 $\lambda(a) = 0.6$ $\lambda(b) = 0.6$

If we put $\tau_1 = \tau_2 = \{0, 1, \mu, \lambda, \mu \lor \lambda\}$, $\delta_1 = \delta_2 = \{0, 1, \mu\}$, and let $f:(X, \tau_1, \tau_2) \to (Y, \delta_1, \delta_2)$ be an identity mapping, f is fuzzy almost pairwise semi-pre open but not fuzzy pairwise semi-pre open.

Theorem 3-4:

- 1. Let $f:(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ be a fuzzy almost pairwise semi-pre open mapping. If λ is a fuzzy set in Y and μ is a fuzzy (τ_i,τ_j) -regular closed set in X containing $f^{-1}(\lambda)$. Then there exists (τ_i,τ_j) -fuzzy semi-pre closed set Y in Y such that $\lambda \leq Y$ and $f^{-1}(Y) \leq \mu$.
- 2. Let $f:(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ be a fuzzy almost pairwise semi-pre closed mapping. If λ is a fuzzy set in Y and μ is (τ_i,τ_j) -fuzzy regular open set in X

containing $f^{1}(\lambda)$. Then there exists (τ_{i}, τ_{j}) -fuzzy semi-pre open set Ψ in Y such that $\lambda \leq \Psi$ and $f^{1}(\Psi) \leq \mu$.

Proof:

1) Since μ is (τ_i, τ_j) - fuzzy regular closed $\Rightarrow \mu^c$ is (τ_i, τ_j) - fuzzy regular open Since f is a fuzzy almost pairwise semi-pre open $\Rightarrow f(\mu^c)$ is (δ_i, δ_j) -semi-pre open in Y Let $\Psi = (f(\mu^c))^c$ So Ψ is (δ_i, δ_j) -fuzzy semi-pre closed in Y Since $f^1(\lambda) \le \mu$ $\Rightarrow \mu^c \le f^1(\lambda^c)$ $\Rightarrow f(\mu^c) \le f(f^1(\lambda^c)) \le \lambda^c$ $\lambda \le (f(\mu^c))^c = \Psi \Rightarrow \lambda \le \Psi$ $f^1(\Psi) = f^1((f(\mu^c))^c) = (f^1(f(\mu^c)))^c \le (\mu^c)^c = \mu$ $\Rightarrow f^1(\Psi) \le \mu$ 2) Similarly proved. Theorem 3.5:

Theorem 3-5:

Let $f:(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ be a fuzzy almost pairwise semi-pre mapping then $f^1(\operatorname{spcl} \mu) \leq \operatorname{cl} f^1(\mu)$, for every fuzzy set μ of Y.

Theorem 3-6:

- 1. A mapping $f:(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ is a fuzzy almost semi-pre open if and only if $f(\tau_i\text{-int}\lambda) \leq \text{spint } f(\lambda)$, for every fuzzy set λ of X.
- 2. A mapping $f:(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ is a fuzzy almost semi-pre closed if and only if spcl $f(\lambda) \leq f(\tau_i\text{-cl}\lambda)$, for every fuzzy set λ of X.

Proof:

1) Suppose that f is a fuzzy almost semi-pre open and λ is a fuzzy set of X.

 $\Rightarrow \tau_i\text{-int}\lambda$ is a fuzzy $\tau_i\text{-fuzzy}$ open.

Since f is a fuzzy almost pairwise semi-pre open

 \Rightarrow f(τ_i -int λ) is (τ_i , τ_j)- fuzzy pairwise semi-pre open

 \Rightarrow f(τ_i -int λ)=spint f(τ_i -int λ)

Since τ_i -int $\lambda \leq \lambda$

 \Rightarrow spint f(τ_i -int λ) \leq spint f(λ)

Therefore $f(\tau_i - int\lambda) \le spint f(\lambda)$

2) Similarly proved.

Definition 3-7:

- 1. A mapping $f:(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ is said to be fuzzy irresolute semi-pre continuous if $f^{-1}(\lambda)$ is a fuzzy semi-pre open set for any (δ_i, δ_j) -fuzzy semi-pre open set λ in Y.
- 2. A mapping $f:(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ is said to be fuzzy irresolute semi-pre open (semi-pre closed) in Y for any (τ_i,τ_j) fuzzy semi-pre open (semi-pre closed) set μ in X.

Theorem 3-8:

Let $f:(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ and $g(Y,\delta_1,\delta_2) \rightarrow (Z,Y_1,Y_2)$ be two fuzzy mapping then:

1. If f is a fuzzy almost pairwise semi-pre open (semi-pre closed) and g is a fuzzy pairwise open (semi-pre closed), then gof is almost pairwise semi-pre open (semi-pre closed).

- 2. If f is a fuzzy pairwise irresolute semi-pre continuous and g is almost pairwise semi-pre continuous then gof is almost pairwise semi-pre continuous mapping.
- **3.** If f is a fuzzy almost pairwise semi-pre continuous and onto and gof is a fuzzy pairwise irresolute semi-pre open (semi-pre closed) then g is almost pairwise semi-pre open (semi-pre closed).

Proof:

1) Let μ is a fuzzy (τ_i, τ_i)- fuzzy regular open set in X Since f is almost pairwise semi-pre open mapping \Rightarrow f(μ) is (δ_i , δ_j)-fuzzy semi-pre open set in Y. Since g is a fuzzy irresolute semi-pre open mapping \Rightarrow g(f(µ)) is (τ_i, τ_i)- fuzzy regular open set in Z So $(gof)(\mu)$ is (τ_i, τ_i) - fuzzy regular open set in Z Therefore gof is almost pairwise semi-pre open set. 2) Let μ be $(\mathbf{H}_{i},\mathbf{H}_{i})$ -fuzzy regular open set in Z Since g is a fuzzy almost pairwise semi-pre continuous mapping \Rightarrow g⁻¹(µ) is (δ_i, δ_i)-fuzzy semi-pre set in Y Since f is a fuzzy irresolute semi-pre continuous mapping \Rightarrow f⁻¹(g⁻¹(µ)) is (τ_i, τ_i)-fuzzy semi-pre open set in X So $(gof)^{-1}(\mu)$ is (τ_i, τ_i) -fuzzy semi-pre open set in X. Therefore gof is almost pairwise semi-pre continuous mapping. 2) Let μ be $(\mathbf{H}_{i},\mathbf{H}_{i})$ -fuzzy regular open set in Z Since g is a fuzzy almost pairwise semi-pre continuous mapping \Rightarrow g⁻¹(µ) is (δ_i, δ_i)-fuzzy semi-pre set in Y Since f is a fuzzy irresolute semi-pre continuous mapping \Rightarrow f⁻¹(g⁻¹(µ)) is (τ_i, τ_i)-fuzzy semi-pre open set in X So $(gof)^{-1}(\mu)$ is (τ_i, τ_i) -fuzzy semi-pre open set in X. Therefore gof is almost pairwise semi-pre continuous mapping. 3) Let μ is (δ_i, δ_i) -fuzzy regular open set in Y Since f is fuzzy almost pairwise semi-pre continuous \Rightarrow **f**¹(μ) is (τ_i , τ_i)-fuzzy semi-pre open set in X Since gof is a fuzzy pairwise irresolute semi-pre open \Rightarrow (gof)⁻¹(f⁻¹(μ)) is a (τ_i, τ_i)-fuzzy semi-pre open set in X Since f onto \Rightarrow So f⁻¹(f(μ))= μ \Rightarrow (gof)⁻¹(f⁻¹(μ))=g(μ) So $g(\mu)$ is (τ_i, τ_i) -fuzzy semi-pre open Therefore g is a fuzzy almost pairwise semi-pre open.

الدوال شبه – pre على الأكثر مستمره والدوال شبه – pre على الأكثر مفتوحه (مغلقه)

محمد جاسم محمد قسم الرياضيات / كلية ألتربيه جامعة ذي، قار

في هذا البحث تم دراسة المجموعات شبه – pre المفتوحه في التبولوجيا الثنائيه بالاضافه الى دراسة الدوال شبه – pre على الاكثر مستمره وكذلك في البحث تمت دراسة الدوال شبه – pre على الاكثر مفتوحه (مغلقه) كما تم برهان مجموعة من المبرهنات المتعلقه بهما .

الملخص:

References

- [1] K.K. Azad, on fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J.Math. Anan. Appl. 82 (1981) 14-32.
- [2] C. L. Chang, fuzzy topological spaces, J. Math. Anal. Appl. 24(1963) 182-190.
- [3] J. C. Kelly, bitopological spaces, prol. London Math. Soc. 13(1963) 71-89.
- [4] A. Knadil, biproximaties and fuzzy bitopological spaces, simon steven 63(1989).
- [5] B. Krsteska, Fuzzy strongly pre open sets and fuzzy strong pre continuity, Mat. Vesnikyso (1998), 111-123.
- [6] B. Kresteska, Fuzzy pairwise almost strong pre continuity, Kragujevac J. Math. 28(2005) 193-206.
- [7] S. Sampath Kumar, On fuzzy pairwise α-continuity and fuzzy pairwise pre continuity, Fuzzy sets and systems, 62(1994) 231-238.
- [8] S. Sampath Kumar, Semi open sets, semi-continuity and semi open mappings in bitopological spaces, Fuzzy sets and systems 64(1994) 421-426.
- [9] S. Sampath Kumar, θ -closure and δ -closure operators on fuzzy bitopological spaces, fuzzy sets and systems 87(1997) 235-242.
- [10] S. Sampath Kumar, Some near fuzzy pairwise continuous mappings between fuzzy bitopological spaces, Fuzzy sets and systems 109(2000) 251-262.
- [11] S. S. Thakur, and S. Singh, On fuzzy semi-pre open sets and fuzzy semi-pre continuity, Fuzzy sets and systems 98(1998) 383-391.
- [12] L. A. Zadeh, Fuzzy sets, Inform control 8(1965) 338-353.