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Abstract 

 There are a lot of scheduling problems that have a combinatorial 

aspect and these problems are difficult to be solved. Therefore we can 

use the local search methods to find the optimal solution or near optimal 

solution. 

 In this paper we consider the scheduling problem on two machine 

flow shop to find the minimum value of the objective function 

(maximum completion time and maximum of tardiness).The main 

contribution in this work is a branch and bound(BAB) algorithm with 

optimal solution and some of the local search methods namely descent 

method (DM), adjacent pairwise interchange method (APIM). Also, 

prove some of special cases of which leads to optimal solution. Since the 

problem is  NP-hard, descent method (DM)and adjacent pairwise 

interchange method (APIM) are proposed to solve the problem 

efficiency.  
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1-Introduction 

 We shall introduce a number of basic definitions which explain the structure 

of scheduling problems. The machine scheduling problem that forms the object of 

this paper can be defined as follows: 

 Sequencing number of jobs on one or more machines for a given period of 

time to minimize, a given objective function, which can be either single or multi  

objective function, subject to some constraints. A schedule specifies, for each 

machine i and j, one or more time intervals through which processing is performed 

on j by i. Sequencing, generally speaking, means to assign machines to jobs in some 

order to complete all these jobs under the imposed constraints. The problem is to 

find the optimal processing order for these jobs on each machine such that 

minimizes the given objective function. There are two general constraints in 

classical scheduling theory [2]. Each job is to be processed by; at most, one machine 

at a time and each machine is capable of processing at most one job at time. A 

schedule is feasible if it satisfies the two general constraints, and also if it satisfies 

the various requirements relating to the specific problem. The problem type is 

specified by the machine environment, the characteristics and an optimality 

criterion. 

2-Two machine flow shop problem 

 The general flow shop problem, in general would be  indicated by Fm / / Cmax , 

can be stated as follows. There are n jobs numbered 1, …,n, each of which is to be 

processed on machines 1, …, m in some order. Each job i (i= 1, …, n) has a 

processing time Pik  on machine k (k= 1, …, m). Each machine can be processed not 

more than one job at a time and each job can be processed by not more than one 

machine at a time. The order in which jobs are processed need not be the same on 

all machines. The objective is to find a processing sequence order on each machine 

which minimizes Cmax ( the maximum completion time of all the jobs). 

 For Fm / / Cmax problem, Conway, Maxwell and Miller [4] observed that there 

exists an optimal schedule with the same processing order of jobs on the first pair of 

machines and the same order on the last pair of machines.  
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 It is also well known that for m=2, the resulting flow shop problem (i.e. F2 / / 

Cmax), can be solved using Johnson’s algorithm [6] in which job i is sequenced before 

job j if 

min {Pi1, Pj2} ≤  min{Pi2, Pj1}. 

 Note that using other criteria usually leads to NP- hard problems for 

example F2 / / Lmax  (Lenstra et al, [8]). 

3- Problem Formulation 

 To state our scheduling problem more precisely, we are given n jobs which 

are numbered          1, …, n. All jobs are available for processing at time zero and 

are to be processed on machines 1 and 2 in that order during uninterrupted times ai 

and bi respectively. The objective is to find a processing order of the jobs that 

minimizes the composition objective function (maximum of completion time and 

maximum of tardiness on the second machine), this objective function is denoted by                         

(Cmax + Tmax).Using the three field classification suggested by Graham et al. [5], This 

problem denoted as F2 / / Cmax+ Lmax. The problem under investigation is known to 

be NP-complete, since F2 / / Tmax is NP-complete (Lenstra et al. [8]). Given any 

sequence π = (π (1), …, π(n)), the minimum completion times 
AC )1(  and )1(C   of the 

first job π(1), in the sequence on the first and second machine are equal to )1(a  and 

)1(a + )1(b respectively. The minimum complation times of any other job  π(i), 

(i=2, …, n) on the first and second machines are given by  

A

iC )( = 
A

iC )1(  + )(ia  and )(iC = max {
A

iC )( , 
A

iC )1(  } + )(ib  respectively, hence 

the tardiness for each job π(i), i=1, …, n on the second machine is given by  

)(iT = max { )(iC – )(id , 0}, where )(id  is the due date of job  π(i). 

 The objective is to find a schedule σ (σ(1), …, σ(n)) of the jobs that minimizes 

the total cost Z(σ). Our problem (p) can formally be stated as : 
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S
min {Z (σ)} = Min {Cmax+ Tmax} 

s.t. 

)1(C =
AC )1( + )1(b  

)(iC = max {
A

iC )( , 
A

iC )1(  } + )(ib         i= 2,…, n                                  (P) 

Cmax = )(nC  

)(iT ≥ )(iC – )(id              i= 1,…, n 

Tmax = max { )(iT } 

 

 where σ (i) denoted the position of job i in the ordering σ and S denotes the 

set of all sequences.  

3-1 Special cases( yields optimal solutions): 

 Finding a special case for scheduling problem means finding an optimal 

schedule directly without using BAB algorithm. A special case (if it exists) depends 

on satisfying some conditions in order to make the problem easily solvable. These 

conditions depend on the objective function as well as on the jobs. Now we shall give 

the following special cases: 

Case (1): The sequence which is obtained by Johnson’s rule is optimal for F2 / / 

Cmax+ Tmax problem if Ti = 0 for each job i (i=1, …, n). 

Proof: 

 Since all jobs are early or completed on time this mean that there are no 

tardiness (i.e. Ti = 0 for each i) and hence Tmax = 0, and our problem F2 / / Cmax+ 

Tmax is reduced to F2 / / Cmax which can be solved by Johnson’s rule (J. R). 

Case (2): The sequence which is obtained by Johnson’s rule is optimal for F2 / / 

Cmax+ Tmax problem if di = d for each i (i=1, …, n). 

Proof: 

 Let σ = (1, …, n) be the sequence obtained by Johnson’s rule ( J. R) and the 

minimum  Cmax is given by Cmax = max { 1nC , 
A

nC }+ nb  
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where 1nC  is the completion time of job n-1 on machine B, 
A

nC   is the completion 

time of job n on machine A, nb is the processing time of the last job n on machine B. 

 For each job i  σ, Ti = iC - d and hence the maximum tardiness   Tmax= 

Cmax– d , which is less than or equal to the maximum tardiness given by any other 

sequence π σ . Hence σ is optimal for       F2 / / Cmax+ Tmax. 

3-2 Derivation the Upper and Lower bounds for the problem (P): 

 Consider the two machine flow-shop problem to be minimized the 

composition objective function, the maximum of completion time and maximum of 

tardiness (Cmax+ Tmax). This problem is clearly   NP-hard since the simpler version 

F2 / /Tmax is already NP-hard [7]. It is well known that computation can be reduced 

by using a heuristic approach to find a good solution to act as an upper bound (UB). 

Also a simple technique is used to obtain a lower bound (LB) for our problem (P). 

3-3 Upper bound (UB): 

 We can find upper bound (UB) for our problem (P) by using Johnson’s rule 

(J.R), since Johnson’s rule gives the optimal solution to the important part Cmax of 

this problem. 

3-4 Lower bound (LB): 

 Decomposition of the problem and derivation of lower bound (LB). Now 

consider again the formulation of the problem (P), we decompose the problem into 

two subproblems with a simpler structures. Then the lower bound (LB) of the 

problem (P) is the sum of the minimum value of the problem (P1) and the lower 

bound of the sub problem (P2). 

Z1= 
S

min {Cmax} 

s.t. 

)1(C =
AC )1( + )1(b                                                                     (P1)           

)(iC = max {
A

iC )( , 
A

iC )1(  } + )(ib         i= 2,…, n 

Cmax = )(nC  
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And 

Z2= min Tmax 

s.t. 

)(iT ≥ )(iC − )(id                                                                     (P2) 

Tmax = Max { )(iT } 

)(iT ≥ 0 

It is clear from the decomposition that (P1) and (P2) have simple structures 

then (P), and thus appear easily to solve optimality for (P1) (i. e.(P1) is solved by 

Johnson’s rule), and a lower bound can be obtained for (P2) by using the relaxation 

theqniquies. The lower bound for (P2) is obtained as follows. Let ai = 0 for each job i 

and the resulting problem is 1/  / Tmax  which is solved by EDD rule (the job i is 

sequenced before job j if di ≤  dj (i, j=1, …, n) let LBT= min{ Tmax} for (P2). Hence 

LB=Z1+LBT. 

4-The Branch and Bound Method (BAB) 

 The BAB method starts by applying the special cases given in section (3-1). If 

the data for the (P) satisfy the conditions of one of the special cases ((1) or (2)) then 

the (P) is considered to be solved. If not, at this stage a BAB method should be used. 

 To get an optimal solution for our (P), The (BAB) method is used. At the root 

node of the search tree J.R. is used to generate upper bound UB on the cost of the 

optimal schedule. 

 Also at the root node of the search tree an initial LB on the cost of an optimal 

schedule is obtained from LB given in section (3-4). For all nodes, we can use the 

bounding procedure to calculate LB. If LB for any node is greater than or equal to 

the current UB already computed, then this node is discarded, otherwise it may by 

selected for next branching. 

 The BAB method uses a forward sequencing branching rule for which nodes 

at level k of the search tree correspond to initial partial sequences in which jobs are 

sequenced in the first k position. An adjacent job interchange rule is applied at each 

node of the search tree, except those at the first level in which only one job is 

sequenced, in an attempt to eliminate nodes through the dominance theorem of 
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dynamic programming(DP). At the current node, the adjacent job interchange rule 

compares the cost of the last two jobs of the initial partial sequence with the 

corresponding cost when the jobs are interchanged; if the formed cost is larger, then 

the current node is eliminated, while if both costs are the same, some convention is 

used to decide whether the current node should be discarded. 

  The BAB method continues in a similar way by using forward branching 

procedure. Whenever a complete sequence is obtained, this sequence is evaluated 

and the UB is altered if the new objective value is less than the old one. The 

procedure is repeated until all nodes have been considered.  

5-General approach of local search method: 

 There are numerous combinatorial optimization problems for which 

computing exact optimal solution is computationally intractable those known as NP-

hard problems. As a consequence, much effort has been devoted to construct 

algorithms that can find high quality approximate solutions, in reasonable running 

times, such as local search called also neighborhood search methods. These methods 

can be viewed as tools for searching a space of legal alternatives in order to find the 

best solution within reasonable time limitation. This section describes the local 

search method to solve the two flow-shop machine scheduling problem to minimize 

the maximum of completion time and the maximum of tardiness. It is well know 

that many flow shop scheduling problems have been shown to be NP-hard, the 

computational requirements are enormous for large sized problem to avoid this 

draw back we can appeal to local search method.   

The use of search technique presupposes definitions of the problem and a 

neighboring in scheduling problems, as follows: 

Definition (5-1) [9]: 

 A neighborhood function N is a mapping N  : S   S with specifies for 

each ((sS) a subset N(s) of S of neighbors of s. 

We can introduce four cases of N(s) as follows: 

1) Inser Neighborhood 

 Nins(S) ={Si  j/i j}. Here (Si  j) is the sequence obtained from S by 

moving the j-th job to the location before the i-th job. 
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2) Swap Neighborhood 

 Nins(S) ={Si    j/i j}. Here (Si   j) is the sequence obtained by 

interchanging the i-th job and j-th job of s. 

 A special case is transposing Ntra where the two jobs are adjacent. 

5-2 Adjacent pairwise interchange method (APIM). 

 This (APIM) depends on interchange elements (jobs) at positions (i) and (i+1) 

of a given sequence, (i=1, …, n-1) [3]. The following steps describe this method: 

 (1) Initialization: 

 To obtain an initial current solution jobs are ordered according to Johnson 

rule (J. R.), by sequencing job i with (ai ≤ bi) first in non-decreasing other of ai 

followed by the remaining jobs i with  (ai>bi) sequencing in non-decreasing order of 

bi (i=1, …, n) to obtain the current sequence                      σ (σ(1), …, σ(n)), with its 

objective function value (UB), where UB=Cmax+Tmax. 

 (2)- Neighbor Generation: 

 In order to improve the sequence σ, the position of two adjacent jobs σ(i), 

σ(i+1) , (1≤i≤n-1) are transposed. Hence a new sequence σ* is obtained with its 

objective function value UB*= Cmax+Tmax. 

 (3)-Evaluation: 

 If the improvement is made (i. e UB*<UB) then, the two jobs are left in their 

new positions. On the other hand, the two jobs are replaced in their original 

positions. The procedure is then repeated from step (2) and other possibilities are 

considered in a similar way. 

 (4)- Termination Step: 

 The method is terminated when all possibilities are considered for adjacent 

jobs σ(i), σ(i+1) , (1≤i≤n-1), without making any improvement. 

5-3 Descent Method (DM) 

 This method is a simple form of local search methods. It can be executed as 

follows: 
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(1) Initialization: 

In this step, the feasible solution σ=σ (σ(1), …, σ(n)) obtained from Johnson 

rule (J. R.), is chosen to be the initial current solution for descent method, with its 

objective function value(IUB). 

 (2)- Neighbor Generation: 

 In this step, the feasible solution σ*=σ* (σ*(1), …, σ*(n)) of the current 

solution is generated by choosing randomly two jobs from σ in the first stage, (not 

necessarily adjacent) and transpose their positions, and a feasible neighbor is also 

generated by choosing randomly a block of jobs from  σ at the second stage, and 

transpose their positions, for each case calculate the function values and the 

minimum value is denoted by (CUB). 

(3)-Acceptance Test: 

 Now consider the test whither to accept the move from σ to σ* or not, as 

follows: 

(a)- If CUB <IUB: then σ* replace σ as the current solution and we set IUB= CUB, 

and go to step(2) (Neighbor generation). 

(b)- Otherwise (i.e. UB1≤ CUB):  σ is retained as the current solution, and go to step 

(2) 

(5)- Termination Test: 

 Repeat step (2) and other possibilities are considered in a similar way. The 

DM terminates if no neighbor provides an improved objective function value, in 

which case the current solution IUB is a local minimum. 

6-Test Problems 

 In selecting test problems, one important goal is to create problem instances 

that are representatives of the general problem class. We generated experiments the 

test problems with value of n (10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150). When 

comparing the performance of algorithms, it is important to test them on a range of 

problem instances. The main characteristic of an instance of our scheduling problem 

is its size, as measured by number of jobs n. 

 Our test problems were generated as follows: [1]. The processing times ai and 

bi in the test problems were randomly sampled from a uniform distribution on the 
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integers defined on [1, 10], and due dates were generated from the uniform 

distribution on 

 [(1-TF-RDD/2) sp, (1-TF+RDD/2) sp] such that 

sp= 


n

i

Ci
1

 where Ci = (ai + bi)/2  

TF     =  0.2, 0.4, 

RDD  =  0.2, 0.4, 0.6, 0.8, 1 

Since n = 10 and 20 are the sizes that were solved to optimality by the BAB method 

given in section (4), the other sizes should also be tested by using descent method 

(DM) and adjacent pairwise interchange method (APIM). 

 

Table (1) Comparative Computation Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n no UB LB BAB 

5 

1 41 30 35 

2 37 27 34 

3 37 26 34 

4 46 32 41 

5 62 43 49 

10 

1 88 70 81 

2 85 79 83 

3 95 78 90 

4 100 82 93 

5 114 101 105 

15 

1 118 99 101 

2 150 121 126 

3 136 100 105 

4 157 122 131 

5 122 87 97 

20 

1 173 146 156 

2 170 154 162 

3 187 156 176 

4 199 181 189 

5 220 187 206 
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DM APIM  

LB 

 

UB 
 

Times Values Times Values 

0.06 81 0.06 81 70 88 1 

10 

0.03 84 0.01 83 79 85 2 

0.03 90 0.03 90 78 95 3 

0.2 93 0.1 93 82 100 4 

0.02 107 0.02 105 101 114 5 

0.03 161 0.03 156 146 173 1 

20 

0.01 169 0.01 162 154 170 2 

0.1 176 0.1 176 156 187 3 

0.2 193 0.1 189 181 199 4 

0.03 208 0.03 206 187 220 5 

0.2 318 0.2 318 305 341 1 

30 

0.1 246 0.1 243 235 255 2 

0.5 272 0.2 272 253 279 3 

0.2 282 0.1 282 278 288 4 

0.1 298 0.1 298 270 303 5 

0.1 325 0.2 325 310 347 1 

40 

0.2 385 0.2 389 365 397 2 

0.3 392 0.2 388 379 399 3 

0.2 329 0.1 329 304 340 4 

0.1 371 0.1 371 354 382 5 

o.3 415 o.2 410 389 423 1 

50 

0.6 412 0.2 412 383 425 2 

0.5 456 0.2 456 449 486 3 

0.2 518 0.1 522 495 535 4 

0.2 573 0.2 573 512 594 5 

0.4 657 0.2 659 616 678 1 

75 

0.1 693 0.1 693 672 709 2 

0.2 702 0.2 699 674 711 3 

0.2 690 0.3 683 673 728 4 

0.2 689 0.1 689 673 705 5 

1.1 877 1.2 875 851 897 1 

100 

1.3 981 1.3 981 912 995 2 

1.1 918 1.2 915 908 927 3 

1.5 935 1.2 932 915 944 4 

1.2 983 1.2 983 952 997 5 

2.5 1362 2.5 1357 1329 1381 1 

150 

2.6 1419 2.3 1410 1387 1450 2 

2.5 1412 2.5 1408 1391 1448 3 

2.7 1380 2.5 1387 1344 1429 4 

2.3 1407 2.3 1405 1392 1411 5 
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Comparative Results 

 This section shows the efficiency of local search methods, comparing them 

with the optimal solution (obtained by BAB algorithm) for each test problem. For 

the methods (BAB, DM and APIM), we present table of results which show the 

efficiency of this method. we return to calculate the optimal solution for each test 

problem which is obtained by BAB algorithm, these optimal solution values are used 

to assess the quality of solutions generated by local search methods and, for BAB 

algorithm, whenever a problem was not solved within a number of nodes greater 

than 1000000 computation was bounded for the problem. 

 For all n≤20 job problems the optimal solution are available by using BAB 

algorithm, It is clear from table (1) that the value of lower bound (LB) and upper 

bound (UB) closed to the optimal solution. 

 The problem from n>20 are unsolved because the number of nodes is greater 

than or equal to 1000000, hence we don’t use the BAB method for n>20.  

Since the BAB algorithm can not generate optimal solution for test problem 

(with n>20). In this case, local search methods are used to obtain the best solution 

value and forms the basis for comparison. Table (2) gives the results of comparison 

between BAB and local search methods. Also shows the results for lower and upper 

bounds for our problem.  

 The results in table (2) show that the local search methods(DM and APIM) 

perform very well, Also it is clear from table (2) that APIM has the best value and 

time with respect to DM. 

 

References 

1. Anderson E. J., Glass C. A. and Potts C. N.,”Application of local search in machine scheduling”, 

Mach (1995). 

2. Blazewicz J., Ecker K.H., P Esch E. Schmidt G., and Weglarz J.,” Scheduling Computer and 

manufacturing processes”, Spring verlay Berlin. Heidelberg (1996). 

3. Chen, B., A better heuristic for preemptive parallel machine scheduling with batch set-up time. 

SIAM Jornal on computing 22-1303-1318(1993). 



 

77 

 

Journal of Thi-Qar University   No.3   Vol.4       December/2008 

4. Conway, R. W., Maxwell W. L. and Miller L.W. "Theory of scheduling" Addison Wesley, Reading, 

MA, (1967). 

5. Graham R. L., Lawler E. L., Lenstra J. K., and Rinnooy Kan A. H. G., “Optimization and 

approximation in deterministic sequencing and scheduling theory :a survey” , Discrete math. 5, 

287-326(1979). 

6. Johnson, S.M., "Optimal two and three stage production schedules with set-up times included", 

Naval Research Logistic Quart, 1, 61-68, (1954). 

7. Karp R. M., Reducibility among combinatorial problems. In complexity of computer 

computations, Miller R. E and Thatcher J. W. Eds. Plenum press, New York, 95-103(1972). 

8. Lenstra J. K., Rinnooy Kan A. H. G. , and Brucker P., “Complexity of Machine Scheduling 

Problems”. Ann. Of discrete mathematics, 1, 343-362(1977). 

9. Tjark Vredereld, (2002)” Combinatorial Approximation Algorithms Guaranteed Versus 

Experimental performance”.  

 

 

 

 

 


