

17

Journal of Thi-Qar University No.3 Vol.4 December/2008

Using local search methods

To solve two machine flow shop scheduling Problem

Waffa Abdul-Abbas

Dept. of mathematics / College of Education,

University of Thi-Qar.

Keywords

Scheduling, Branch and bound, two machine flow shop, local search, descent

method (DM), adjacent pairwise interchange method (APIM).

Abstract

 There are a lot of scheduling problems that have a combinatorial

aspect and these problems are difficult to be solved. Therefore we can

use the local search methods to find the optimal solution or near optimal

solution.

 In this paper we consider the scheduling problem on two machine

flow shop to find the minimum value of the objective function

(maximum completion time and maximum of tardiness).The main

contribution in this work is a branch and bound(BAB) algorithm with

optimal solution and some of the local search methods namely descent

method (DM), adjacent pairwise interchange method (APIM). Also,

prove some of special cases of which leads to optimal solution. Since the

problem is NP-hard, descent method (DM)and adjacent pairwise

interchange method (APIM) are proposed to solve the problem

efficiency.

17

Journal of Thi-Qar University No.3 Vol.4 December/2008

1-Introduction

 We shall introduce a number of basic definitions which explain the structure

of scheduling problems. The machine scheduling problem that forms the object of

this paper can be defined as follows:

 Sequencing number of jobs on one or more machines for a given period of

time to minimize, a given objective function, which can be either single or multi

objective function, subject to some constraints. A schedule specifies, for each

machine i and j, one or more time intervals through which processing is performed

on j by i. Sequencing, generally speaking, means to assign machines to jobs in some

order to complete all these jobs under the imposed constraints. The problem is to

find the optimal processing order for these jobs on each machine such that

minimizes the given objective function. There are two general constraints in

classical scheduling theory [2]. Each job is to be processed by; at most, one machine

at a time and each machine is capable of processing at most one job at time. A

schedule is feasible if it satisfies the two general constraints, and also if it satisfies

the various requirements relating to the specific problem. The problem type is

specified by the machine environment, the characteristics and an optimality

criterion.

2-Two machine flow shop problem

 The general flow shop problem, in general would be indicated by Fm / / Cmax ,

can be stated as follows. There are n jobs numbered 1, …,n, each of which is to be

processed on machines 1, …, m in some order. Each job i (i= 1, …, n) has a

processing time Pik on machine k (k= 1, …, m). Each machine can be processed not

more than one job at a time and each job can be processed by not more than one

machine at a time. The order in which jobs are processed need not be the same on

all machines. The objective is to find a processing sequence order on each machine

which minimizes Cmax (the maximum completion time of all the jobs).

 For Fm / / Cmax problem, Conway, Maxwell and Miller [4] observed that there

exists an optimal schedule with the same processing order of jobs on the first pair of

machines and the same order on the last pair of machines.

17

Journal of Thi-Qar University No.3 Vol.4 December/2008

 It is also well known that for m=2, the resulting flow shop problem (i.e. F2 / /

Cmax), can be solved using Johnson’s algorithm [6] in which job i is sequenced before

job j if

min {Pi1, Pj2} ≤ min{Pi2, Pj1}.

 Note that using other criteria usually leads to NP- hard problems for

example F2 / / Lmax (Lenstra et al, [8]).

3- Problem Formulation

 To state our scheduling problem more precisely, we are given n jobs which

are numbered 1, …, n. All jobs are available for processing at time zero and

are to be processed on machines 1 and 2 in that order during uninterrupted times ai

and bi respectively. The objective is to find a processing order of the jobs that

minimizes the composition objective function (maximum of completion time and

maximum of tardiness on the second machine), this objective function is denoted by

(Cmax + Tmax).Using the three field classification suggested by Graham et al. [5], This

problem denoted as F2 / / Cmax+ Lmax. The problem under investigation is known to

be NP-complete, since F2 / / Tmax is NP-complete (Lenstra et al. [8]). Given any

sequence π = (π (1), …, π(n)), the minimum completion times
AC)1(and)1(C of the

first job π(1), in the sequence on the first and second machine are equal to)1(a and

)1(a +)1(b respectively. The minimum complation times of any other job π(i),

(i=2, …, n) on the first and second machines are given by

A

iC)(=
A

iC)1(+)(ia and)(iC = max {
A

iC)(,
A

iC)1(} +)(ib respectively, hence

the tardiness for each job π(i), i=1, …, n on the second machine is given by

)(iT = max {)(iC –)(id , 0}, where)(id is the due date of job π(i).

 The objective is to find a schedule σ (σ(1), …, σ(n)) of the jobs that minimizes

the total cost Z(σ). Our problem (p) can formally be stated as :

17

Journal of Thi-Qar University No.3 Vol.4 December/2008

S
min {Z (σ)} = Min {Cmax+ Tmax}

s.t.

)1(C =
AC)1(+)1(b

)(iC = max {
A

iC)(,
A

iC)1(} +)(ib i= 2,…, n (P)

Cmax =)(nC

)(iT ≥)(iC –)(id i= 1,…, n

Tmax = max {)(iT }

 where σ (i) denoted the position of job i in the ordering σ and S denotes the

set of all sequences.

3-1 Special cases(yields optimal solutions):

 Finding a special case for scheduling problem means finding an optimal

schedule directly without using BAB algorithm. A special case (if it exists) depends

on satisfying some conditions in order to make the problem easily solvable. These

conditions depend on the objective function as well as on the jobs. Now we shall give

the following special cases:

Case (1): The sequence which is obtained by Johnson’s rule is optimal for F2 / /

Cmax+ Tmax problem if Ti = 0 for each job i (i=1, …, n).

Proof:

 Since all jobs are early or completed on time this mean that there are no

tardiness (i.e. Ti = 0 for each i) and hence Tmax = 0, and our problem F2 / / Cmax+

Tmax is reduced to F2 / / Cmax which can be solved by Johnson’s rule (J. R).

Case (2): The sequence which is obtained by Johnson’s rule is optimal for F2 / /

Cmax+ Tmax problem if di = d for each i (i=1, …, n).

Proof:

 Let σ = (1, …, n) be the sequence obtained by Johnson’s rule (J. R) and the

minimum Cmax is given by Cmax = max { 1nC ,
A

nC }+ nb

17

Journal of Thi-Qar University No.3 Vol.4 December/2008

where 1nC is the completion time of job n-1 on machine B,
A

nC is the completion

time of job n on machine A, nb is the processing time of the last job n on machine B.

 For each job i σ, Ti = iC - d and hence the maximum tardiness Tmax=

Cmax– d , which is less than or equal to the maximum tardiness given by any other

sequence π σ . Hence σ is optimal for F2 / / Cmax+ Tmax.

3-2 Derivation the Upper and Lower bounds for the problem (P):

 Consider the two machine flow-shop problem to be minimized the

composition objective function, the maximum of completion time and maximum of

tardiness (Cmax+ Tmax). This problem is clearly NP-hard since the simpler version

F2 / /Tmax is already NP-hard [7]. It is well known that computation can be reduced

by using a heuristic approach to find a good solution to act as an upper bound (UB).

Also a simple technique is used to obtain a lower bound (LB) for our problem (P).

3-3 Upper bound (UB):

 We can find upper bound (UB) for our problem (P) by using Johnson’s rule

(J.R), since Johnson’s rule gives the optimal solution to the important part Cmax of

this problem.

3-4 Lower bound (LB):

 Decomposition of the problem and derivation of lower bound (LB). Now

consider again the formulation of the problem (P), we decompose the problem into

two subproblems with a simpler structures. Then the lower bound (LB) of the

problem (P) is the sum of the minimum value of the problem (P1) and the lower

bound of the sub problem (P2).

Z1=
S

min {Cmax}

s.t.

)1(C =
AC)1(+)1(b (P1)

)(iC = max {
A

iC)(,
A

iC)1(} +)(ib i= 2,…, n

Cmax =)(nC

17

Journal of Thi-Qar University No.3 Vol.4 December/2008

And

Z2= min Tmax

s.t.

)(iT ≥)(iC −)(id (P2)

Tmax = Max {)(iT }

)(iT ≥ 0

It is clear from the decomposition that (P1) and (P2) have simple structures

then (P), and thus appear easily to solve optimality for (P1) (i. e.(P1) is solved by

Johnson’s rule), and a lower bound can be obtained for (P2) by using the relaxation

theqniquies. The lower bound for (P2) is obtained as follows. Let ai = 0 for each job i

and the resulting problem is 1/ / Tmax which is solved by EDD rule (the job i is

sequenced before job j if di ≤ dj (i, j=1, …, n) let LBT= min{ Tmax} for (P2). Hence

LB=Z1+LBT.

4-The Branch and Bound Method (BAB)

 The BAB method starts by applying the special cases given in section (3-1). If

the data for the (P) satisfy the conditions of one of the special cases ((1) or (2)) then

the (P) is considered to be solved. If not, at this stage a BAB method should be used.

 To get an optimal solution for our (P), The (BAB) method is used. At the root

node of the search tree J.R. is used to generate upper bound UB on the cost of the

optimal schedule.

 Also at the root node of the search tree an initial LB on the cost of an optimal

schedule is obtained from LB given in section (3-4). For all nodes, we can use the

bounding procedure to calculate LB. If LB for any node is greater than or equal to

the current UB already computed, then this node is discarded, otherwise it may by

selected for next branching.

 The BAB method uses a forward sequencing branching rule for which nodes

at level k of the search tree correspond to initial partial sequences in which jobs are

sequenced in the first k position. An adjacent job interchange rule is applied at each

node of the search tree, except those at the first level in which only one job is

sequenced, in an attempt to eliminate nodes through the dominance theorem of

11

Journal of Thi-Qar University No.3 Vol.4 December/2008

dynamic programming(DP). At the current node, the adjacent job interchange rule

compares the cost of the last two jobs of the initial partial sequence with the

corresponding cost when the jobs are interchanged; if the formed cost is larger, then

the current node is eliminated, while if both costs are the same, some convention is

used to decide whether the current node should be discarded.

 The BAB method continues in a similar way by using forward branching

procedure. Whenever a complete sequence is obtained, this sequence is evaluated

and the UB is altered if the new objective value is less than the old one. The

procedure is repeated until all nodes have been considered.

5-General approach of local search method:

 There are numerous combinatorial optimization problems for which

computing exact optimal solution is computationally intractable those known as NP-

hard problems. As a consequence, much effort has been devoted to construct

algorithms that can find high quality approximate solutions, in reasonable running

times, such as local search called also neighborhood search methods. These methods

can be viewed as tools for searching a space of legal alternatives in order to find the

best solution within reasonable time limitation. This section describes the local

search method to solve the two flow-shop machine scheduling problem to minimize

the maximum of completion time and the maximum of tardiness. It is well know

that many flow shop scheduling problems have been shown to be NP-hard, the

computational requirements are enormous for large sized problem to avoid this

draw back we can appeal to local search method.

The use of search technique presupposes definitions of the problem and a

neighboring in scheduling problems, as follows:

Definition (5-1) [9]:

 A neighborhood function N is a mapping N : S S with specifies for

each ((sS) a subset N(s) of S of neighbors of s.

We can introduce four cases of N(s) as follows:

1) Inser Neighborhood

 Nins(S) ={Si j/i j}. Here (Si j) is the sequence obtained from S by

moving the j-th job to the location before the i-th job.

17

Journal of Thi-Qar University No.3 Vol.4 December/2008

2) Swap Neighborhood

 Nins(S) ={Si j/i j}. Here (Si j) is the sequence obtained by

interchanging the i-th job and j-th job of s.

 A special case is transposing Ntra where the two jobs are adjacent.

5-2 Adjacent pairwise interchange method (APIM).

 This (APIM) depends on interchange elements (jobs) at positions (i) and (i+1)

of a given sequence, (i=1, …, n-1) [3]. The following steps describe this method:

 (1) Initialization:

 To obtain an initial current solution jobs are ordered according to Johnson

rule (J. R.), by sequencing job i with (ai ≤ bi) first in non-decreasing other of ai

followed by the remaining jobs i with (ai>bi) sequencing in non-decreasing order of

bi (i=1, …, n) to obtain the current sequence σ (σ(1), …, σ(n)), with its

objective function value (UB), where UB=Cmax+Tmax.

 (2)- Neighbor Generation:

 In order to improve the sequence σ, the position of two adjacent jobs σ(i),

σ(i+1) , (1≤i≤n-1) are transposed. Hence a new sequence σ* is obtained with its

objective function value UB*= Cmax+Tmax.

 (3)-Evaluation:

 If the improvement is made (i. e UB*<UB) then, the two jobs are left in their

new positions. On the other hand, the two jobs are replaced in their original

positions. The procedure is then repeated from step (2) and other possibilities are

considered in a similar way.

 (4)- Termination Step:

 The method is terminated when all possibilities are considered for adjacent

jobs σ(i), σ(i+1) , (1≤i≤n-1), without making any improvement.

5-3 Descent Method (DM)

 This method is a simple form of local search methods. It can be executed as

follows:

17

Journal of Thi-Qar University No.3 Vol.4 December/2008

(1) Initialization:

In this step, the feasible solution σ=σ (σ(1), …, σ(n)) obtained from Johnson

rule (J. R.), is chosen to be the initial current solution for descent method, with its

objective function value(IUB).

 (2)- Neighbor Generation:

 In this step, the feasible solution σ*=σ* (σ*(1), …, σ*(n)) of the current

solution is generated by choosing randomly two jobs from σ in the first stage, (not

necessarily adjacent) and transpose their positions, and a feasible neighbor is also

generated by choosing randomly a block of jobs from σ at the second stage, and

transpose their positions, for each case calculate the function values and the

minimum value is denoted by (CUB).

(3)-Acceptance Test:

 Now consider the test whither to accept the move from σ to σ* or not, as

follows:

(a)- If CUB <IUB: then σ* replace σ as the current solution and we set IUB= CUB,

and go to step(2) (Neighbor generation).

(b)- Otherwise (i.e. UB1≤ CUB): σ is retained as the current solution, and go to step

(2)

(5)- Termination Test:

 Repeat step (2) and other possibilities are considered in a similar way. The

DM terminates if no neighbor provides an improved objective function value, in

which case the current solution IUB is a local minimum.

6-Test Problems

 In selecting test problems, one important goal is to create problem instances

that are representatives of the general problem class. We generated experiments the

test problems with value of n (10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150). When

comparing the performance of algorithms, it is important to test them on a range of

problem instances. The main characteristic of an instance of our scheduling problem

is its size, as measured by number of jobs n.

 Our test problems were generated as follows: [1]. The processing times ai and

bi in the test problems were randomly sampled from a uniform distribution on the

78

Journal of Thi-Qar University No.3 Vol.4 December/2008

integers defined on [1, 10], and due dates were generated from the uniform

distribution on

 [(1-TF-RDD/2) sp, (1-TF+RDD/2) sp] such that

sp=

n

i

Ci
1

 where Ci = (ai + bi)/2

TF = 0.2, 0.4,

RDD = 0.2, 0.4, 0.6, 0.8, 1

Since n = 10 and 20 are the sizes that were solved to optimality by the BAB method

given in section (4), the other sizes should also be tested by using descent method

(DM) and adjacent pairwise interchange method (APIM).

Table (1) Comparative Computation Results

n no UB LB BAB

5

1 41 30 35

2 37 27 34

3 37 26 34

4 46 32 41

5 62 43 49

10

1 88 70 81

2 85 79 83

3 95 78 90

4 100 82 93

5 114 101 105

15

1 118 99 101

2 150 121 126

3 136 100 105

4 157 122 131

5 122 87 97

20

1 173 146 156

2 170 154 162

3 187 156 176

4 199 181 189

5 220 187 206

77

Journal of Thi-Qar University No.3 Vol.4 December/2008

DM APIM

LB

UB

Times Values Times Values

0.06 81 0.06 81 70 88 1

10

0.03 84 0.01 83 79 85 2

0.03 90 0.03 90 78 95 3

0.2 93 0.1 93 82 100 4

0.02 107 0.02 105 101 114 5

0.03 161 0.03 156 146 173 1

20

0.01 169 0.01 162 154 170 2

0.1 176 0.1 176 156 187 3

0.2 193 0.1 189 181 199 4

0.03 208 0.03 206 187 220 5

0.2 318 0.2 318 305 341 1

30

0.1 246 0.1 243 235 255 2

0.5 272 0.2 272 253 279 3

0.2 282 0.1 282 278 288 4

0.1 298 0.1 298 270 303 5

0.1 325 0.2 325 310 347 1

40

0.2 385 0.2 389 365 397 2

0.3 392 0.2 388 379 399 3

0.2 329 0.1 329 304 340 4

0.1 371 0.1 371 354 382 5

o.3 415 o.2 410 389 423 1

50

0.6 412 0.2 412 383 425 2

0.5 456 0.2 456 449 486 3

0.2 518 0.1 522 495 535 4

0.2 573 0.2 573 512 594 5

0.4 657 0.2 659 616 678 1

75

0.1 693 0.1 693 672 709 2

0.2 702 0.2 699 674 711 3

0.2 690 0.3 683 673 728 4

0.2 689 0.1 689 673 705 5

1.1 877 1.2 875 851 897 1

100

1.3 981 1.3 981 912 995 2

1.1 918 1.2 915 908 927 3

1.5 935 1.2 932 915 944 4

1.2 983 1.2 983 952 997 5

2.5 1362 2.5 1357 1329 1381 1

150

2.6 1419 2.3 1410 1387 1450 2

2.5 1412 2.5 1408 1391 1448 3

2.7 1380 2.5 1387 1344 1429 4

2.3 1407 2.3 1405 1392 1411 5

77

Journal of Thi-Qar University No.3 Vol.4 December/2008

Comparative Results

 This section shows the efficiency of local search methods, comparing them

with the optimal solution (obtained by BAB algorithm) for each test problem. For

the methods (BAB, DM and APIM), we present table of results which show the

efficiency of this method. we return to calculate the optimal solution for each test

problem which is obtained by BAB algorithm, these optimal solution values are used

to assess the quality of solutions generated by local search methods and, for BAB

algorithm, whenever a problem was not solved within a number of nodes greater

than 1000000 computation was bounded for the problem.

 For all n≤20 job problems the optimal solution are available by using BAB

algorithm, It is clear from table (1) that the value of lower bound (LB) and upper

bound (UB) closed to the optimal solution.

 The problem from n>20 are unsolved because the number of nodes is greater

than or equal to 1000000, hence we don’t use the BAB method for n>20.

Since the BAB algorithm can not generate optimal solution for test problem

(with n>20). In this case, local search methods are used to obtain the best solution

value and forms the basis for comparison. Table (2) gives the results of comparison

between BAB and local search methods. Also shows the results for lower and upper

bounds for our problem.

 The results in table (2) show that the local search methods(DM and APIM)

perform very well, Also it is clear from table (2) that APIM has the best value and

time with respect to DM.

References

1. Anderson E. J., Glass C. A. and Potts C. N.,”Application of local search in machine scheduling”,

Mach (1995).

2. Blazewicz J., Ecker K.H., P Esch E. Schmidt G., and Weglarz J.,” Scheduling Computer and

manufacturing processes”, Spring verlay Berlin. Heidelberg (1996).

3. Chen, B., A better heuristic for preemptive parallel machine scheduling with batch set-up time.

SIAM Jornal on computing 22-1303-1318(1993).

77

Journal of Thi-Qar University No.3 Vol.4 December/2008

4. Conway, R. W., Maxwell W. L. and Miller L.W. "Theory of scheduling" Addison Wesley, Reading,

MA, (1967).

5. Graham R. L., Lawler E. L., Lenstra J. K., and Rinnooy Kan A. H. G., “Optimization and

approximation in deterministic sequencing and scheduling theory :a survey” , Discrete math. 5,

287-326(1979).

6. Johnson, S.M., "Optimal two and three stage production schedules with set-up times included",

Naval Research Logistic Quart, 1, 61-68, (1954).

7. Karp R. M., Reducibility among combinatorial problems. In complexity of computer

computations, Miller R. E and Thatcher J. W. Eds. Plenum press, New York, 95-103(1972).

8. Lenstra J. K., Rinnooy Kan A. H. G. , and Brucker P., “Complexity of Machine Scheduling

Problems”. Ann. Of discrete mathematics, 1, 343-362(1977).

9. Tjark Vredereld, (2002)” Combinatorial Approximation Algorithms Guaranteed Versus

Experimental performance”.

