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Abstract 

 Numerical techniques and theoretical results for an 

incompressible laminar separated flows were presented. For the case of 

the internal flow over backward facing step. The heat transfer processes 

and the flow behavior were effected with type of the fluid, expansion 

ratio, and Reynolds number. It was found that, an increasing in 

Reynolds number leads to increase the vorticity strength and the size of 

the recirculation zone in linear relation. This increasing in each of size 

of the recirculation zone and vorticity strength depends on the 

expansion ratio. Also, it was found that the average Stanton number in 

the recirculation zone decreases with increasing of Reynolds number at 

lower expansion ratios. For high expansion ratios, the average of 

Stanton number in the recirculation zone, increases with increasing 

Reynolds number for range of Reynolds number of (Re < 175), and 

decreasing with increasing Reynolds number for range of Reynolds 

number of    (Re > 175). The results were represented for the 

reattachment length (Rl) and for the average Stanton number in 

recirculation zone ( 
__

St ). Also,  velocity distribution, vorticity 

distributions, temperature distributions, were presented for range of 

Reynolds number greater than 25 and less than 1000 for different 

conditions.  
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Nomenclatures  

 

1- Introduction 

        In many flows of practical interest, separation of boundary layer and 

subsequent of the separated layer to a solid surface is unavoidable, such flows 

occurs in nuclear reactor, gas turbines, combustion chambers, heat exchangers, and 

cooling systems for equipments [1]. The reattachment flows can pose a serious 

problem for the heat transfer engineering, because they can cause a large variations 

Greek symbols unit description Symbol 

unit description symbol m Size of the step. S 

m
2
/s 

Thermal diffusivity = Cρ
k

  
m Reattachment length. Rl 

kg/m.s Dynamic viscosity. m Longitudinal coordinate referenced to step 

position. 

X 

m
2
/s Kinematics viscosity = ρ

μ
  m Transverse coordinate. Y 

kg/m
3 

Mass density of fluid. m   

N/m
2 

Stress. m/s Velocity component in x-direction. U 

m Displacement boundary layer 

thickness. 
m/s Velocity component in y-direction. V 

   m
2
/s Stream function. m/s   

1/s Vorticity. m/s Total velocity. Q 

m Distance between left and right 

sides of control volume. 
 x N/m

2 
Pressure. P 

m Distance between upper and lower 

sides of control volume. 
 y k Temperature. T 

Subscripts - 
Prandtl number = 

k

μcp   
Pr 

description symbol 

At the step position. s - 
Reynolds number, 

 







 
μ

AFUρ in  
Re 

Flat plate condition. F.P 

Mesh index corresponding to longitudinal 

direction. 

i - 
Stanton number,  

PrRe
Nu

Ucρ
h

p 











 
St 

Mesh index corresponding to transverse 

direction. 

j - 
Nusselt number, 








k

h s  
Nu 

Eastern control volume direction. e - Peclet number=Re . Pr Pe 

Western control volume direction. w m Distance between left and right sides of 

control volume. 

Dx 

North control volume direction. n W/K Distance between upper and lower sides of 

control volume. 

Dy 

South control volume direction. s J/kg.K Thermal convection conductance. K 

Center of control volume. p J/m
2 

Specific heat at constant pressure. Cp 

Dimensionless value. * W/m
2
K Quantity of heat transfer per unit area. Q 

Average value. -  Local heat transfer coefficient. H 

Value at point A. A - Ratio between downstream area to upstream 

area. 

R 

Value at point E. E 

Value at point F. F 
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of the local heat transfer coefficient as well as substantial heat transfer 

augmentation. Convective heat transfer in the separation and reattachment regions 

following abrupt area changes in tubes and ducts is of considerable technical 

interest .Therefore, it was needed to study the overall heat transfer coefficient under 

the effect of separation. The present work study the fluid dynamics and heat 

transfer characteristics in the separated regions, and the region area of 

reattachment for laminar flows in rectangular cross-sectional ducts with abrupt 

increases in flow cross-sectional area. The Navier-Stokes equations and energy 

conservation equations, which were considered to describe the fluid motion and heat 

transfer of interest, are nonlinear, because of this non linearity, some difficulties 

have arisen in numerical as well as in analytical studies. One of the greatest 

difficulties with the numerical studies is the problem of divergence of the iterative 

methods. Since an analytical solution of the actual problem is extremely difficult if 

not possible, a number of assumptions together using the computational fluid 

dynamic techniques to obtain approximate results. The present work deals with 

internal flow represented by laminar incompressible flows through a flat duct 

having backward facing step , as shown in Fig. (1). Attention was focused to study 

the flow behaviors and mechanism of heat transferred by forced convection in 

recirculation zones. 

        The phenomena of flow separation caused by sudden changes in geometries was 

well known. The importance of such flows to engineering equipment has been 

stressed in many publications, and attempts have been made to develop advanced 

experimental and theoretical techniques in order to study carefully flows with 

separation regions. Though a number of investigations on the flow field have been 

reported, there appears to be very little published studies concerning the 

corresponding heat transfer problem in separated region were used the techniques 

of computational fluid dynamics.  

Aung [2]  presented heat transfer measurements for laminar flow past 

backsteps in low speed wind tunnel with expansion ratio of (r=12.5:1) and test 

section of 20 cm height, 15 cm width, and 61 cm length, step heights of 1.27 cm, 0.64 

cm, and 0.38 cm and 1.02 cm, respectively. The results were given for the local heat 

transfer as well as the average value in separated regions. It was found that the 

average Stanton number exhibits a minus one half power dependency on the 

Reynolds number, the local heat transfer increases monotonically across the 

reattachment point and quantitatively less than flat-plate value. Average Stanton 

number (for upstream and downstream of backstep) was correlated in the following 

equation: 

(1)

0.72

sx

s0.550.787(Re)
___
St 







  

Durst et al [3] used the flow visualization and laser-anemometry 

measurements to report  the flow downstream of a plane 3:1 symmetric expansion in 

a duct with an aspect ratio of 9.2:1 downstream of expansion. Ede et al [4] studied 

the effect of an abrupt disturbance (0.5 diameter ratio) on water flowing in a pipe. 

The effect of the abrupt convergence on the local heat transfer coefficient was 

determined for Reynolds number ranging from 800 to 100,000 in the smallest pipe. 
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Sinha et al [5]  studied the flow over backsteps in laminar range. The results were 

reported experimentally at a wind speed of 1.8 m/s over three backward facing steps 

0.625, 1.25, and 2.5 cm high, the separating boundary layer in all cases was 1.4 cm 

thick. They found that the dimensionless reattachment length (xr/s)   increases 

linearly with Reynolds number (Res ) as long as the reattachment was laminar. 

Krall and Sparrow [6] was studied experimentally the effect of the flow separation 

on the heat transfer characteristics in turbulent pipe flow. The flow separation was 

induced by an orifice situated at the inlet of an electrically heated circular tube. 

Water was the working fluid and the flow was fully developed. Seki et al [7]  studied 

experimentally heat transfer in the separated reattached and redevelopment region 

behind a double step in a flat duct, with air as the working fluid. They presented 

experimental data for the local heat transfer coefficient for fluid flows into the 

abrupt symmetrical enlargement. 

Goldstein et al [8]  made experiments on the shear layer following a 

downstream facing step. Results were reported over a range of 0.36-1.02 cm in step 

height, 0.61-2.44 m/s in free stream velocity at the step, and 0.16-0.51 cm in 

boundary layer displacement thickness at the step. They found that the laminar 

reattachment length was not constant number of step heights as for turbulent flow, 

but varies with Reynolds number and boundary layer thickness at the step, and 

given by: 

(2)
δ

s
2

δ

s
0.01325Re

δ

x
*

s

*

s

δ*

s

r
* 


























  

Filletti and Kays [9]  studied experimentally heat transfer in the separated 

reattached and redevelopment region behind a double step in a flat duct, with air as 

the working fluid. Air was blown by a ducted fan into the test section. Sparrow and 

Kalejs [10]  presented experimental investigation for the heat transfer coefficient 

distributions in the regions of flow separation. Reattachment, and redevelopment 

along the walls of a channel whose inlet was partially constricted. The experiments 

were carried out for Reynolds numbers in the laminar range and utilized the 

naphthalene sublimation technique with air as the working fluid. Seban et al [11]  

presented the local heat transfer coefficients and recovery factors for separated and 

reattached turbulent flows as obtained downstream of a flat surface in two 

dimensional subsonic air flow. Wind tunnel test were made on a rounded nose 

model with a sudden step down to a flat surface. Najdat [12]  used the numerical 

techniques to analysis a two-dimensional, incompressible, laminar flows in the 

entrance region of a channel with and without contractions. This constructions 

representing by forward facing step, backward facing step, or finite step. Finite 

difference method was used to solve the governing equations which were formulated 

in stream function-vorticity approach. Nallassamy [13]  studied a steady state, two-

dimensional, viscous, incompressible flows over a thin obstruction in a channel 

through the numerical solution of the Navier-Stokes equations using finite 

difference method. The characteristics of the separated flow behind the obstruction 

where obtained up to Reynolds number of 1500. 

          Mei [14]  used finite difference method to investigate two-dimensional, 

laminar, and incompressible fluid flows through a channel with symmetrical and 

asymmetrical sudden constructions formed by a semi-infinite step change in width 
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and through cascade. The Navier-Stokes equations in stream function-vorticity form 

in body fitted coordinates were solved for up to critical Reynolds numbers. 

Morrision and Napolitano [15]  provide a simple efficient and robust numerical 

technique for solving two dimensional incompressible steady viscose flows at 

moderate to high Reynolds number using the streamfunction vorticity formulation 

simultaneously on steeped channel using finite difference method. Roland [16]  used 

the Newton iteration and finite difference method to solve the ensuing algebraic 

system resulting from discretizing Navier-Stokes equation. In order to avoid high-

frequency errors, locally fine grid was used near corner by transformation of the 

independent variables. As compared with the previous works the present work 

characterized by the following: 

i- The present work afforded a theoretical study for knowledge of the effect of 

affection factors on flow and heat transfer characteristic in wide field by the use of 

computational fluid dynamics techniques, and this was a complement for Aung's 

work [2]. 

ii- The present work adopting stream function vorticity approach [17], like the 

problems of the present work, after some modifications such as using of converging 

factors, and non uniform mesh distribution. 

iii- The present work afforded a computer program have unlimited capacity in the 

range of laminar flow. 

2- Theoretical background 

        The fundamental conservation laws of mass, energy and momentum provide 

the differential equations; then auxiliary relations, for the thermodynamic, 

transport properties, and for the boundary conditions, make the mathematical 

problem complete; and all that was needed to solve the equations, and to deduce 

from their solution the practically interesting information. The present method of 

solution was a finite difference one: it confines attention to a finite number of points, 

distributed irregularly through the flow field as the nodes of the grid; it is primarily 

for these nodes that will calculate the values of temperature, concentration, and 

other variables; and, if values are required at intermediate points, it can be obtained 

by interpolation. Confinement of attention to a two-dimensional array of points 

entails that the differential equations should be replaced by algebraic ones, relating 

together the values of the variables which prevail at neighboring nodes. The exist 

various ways of deriving these "finite difference equations" from the differential 

ones; the present method employs one which, if not novel, was certainly not 

conventional. Since was a suitable reason for this practice, which will be explained 

later; elsewhere, when the conventional procedures bring problems, they have been 

adopted. Iterative procedures for solving equations were susceptible to a crippling 

diseases; this was "divergence", i.e. the failure of the method, no matter for how 

long it was allowed to proceed, to find for the variables a set values which satisfies 

the equations within the specified limits. Its opposite, "convergence", was the steady 

progress from the set of values which was supplied at the beginning as "initial 

guesses", towards a new set which satisfies the equations as closely as is desired. 

Several of the novelties of the present method have been introduced in order to 

procure this convergence, for all the circumstances which were of practical interest 

[17]. 



 

00 

 

Journal of Thi-Qar University   No.3   Vol.4       December/2008 

 

2-1 Conservation equations of mass, momentum, and energy for two dimensional 

laminar flow  

         To drive the conservation of mass or continuity equation, consider a control 

volume as shown in Fig. (2) with assumption of steady-state conditions prevail, and 

neglecting the gradients in z-direction (perpendicular to the plane of the sketch), 

and the fluid is incompressible. Then the rates of mass flow inlet and outlet the 

control volume , in x-direction are (ρudy)  and dydx
x

u
uρ 












  respectively. Thus the 

net mass flow into the element in x-direction was dxdy
x

u
ρ



 . Similarly, the net 

mass flow into the control volume in y-direction was dydx
y

u
ρ



 . Since the net mass 

flow rate out the control volume must be zero for study flow condition, then: 

(3)0.dxdy
y

v

x

u
ρ 

















   

As in reference [17], the two-dimensional incompressible, steady flow, 

conservation of mass becomes: 

   (4)0
y

v

x

u










                                                                               

The conservation of momentum equation was obtained from application of 

Newton's second law of motion to the element. The rates of momentum flow in the x-

direction for the fluid flowing across the left- and right-hand vertical faces is shown 

in Fig.( 2 ) were  ( dyρu 2
)and    yddx

x
uuρ

2


 respectively. It should be noted, 

however, that flow across the horizontal faces will also contribute to the momentum 

balance in the x-direction. The x-momentum flow entering through the bottom face 

is uvdx , and the momentum flow per unit width leaving through the upper face 

was dxdy
y

u
udy

y

v
vρ 

























   . The viscous shear force at the bottom face was 

dx
y

u

x

v
μ 

















  and at the top face was dxdy

y

u

x

v

y
μ

y

u

x

v
μ 















































 . Thus 

the net viscous shear in the x-direction was dxdy
y

u

x

v

y
μ 





















.The normal force on 

the left face was dy
x

u
2μ




  and on the right face was dydx

x

u

x
2μ

x

u
2μ 





























 . 

Thus the net normal force in the direction of motion was dxdy
x

u
2μ

2

2




 . The pressure 

force on the left face was (pdy) and on the right face was dydx
x

p
p 




















  . Thus 
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the net pressure force in the direction of motion was dxdy
x

p












  . Equating the sum 

of the forces to the momentum flow rate out of the control volume in the x-direction 

gives : 

)(5dxdy
x

u
2μdxdy

y

u

x

v

y
μdxdy

x

p

ρvudxdxdx
x

u
udy

y

v
vρdyρudydx

x

u
uρ

2

2

2










































































 

 

As in reference [17], by neglecting second-order differentials and using the 

conservation of mass equation, the conservation of momentum equation in x-

direction reduces to: 

(6)
y

u

x

u
μ

x

p

y

u
v

x

u
uρ

2

2

2

2









































 

Similarly, the momentum equation in y-direction was  

)(7
y

v

x

v
μ

y

p

y

v
v

x

v
uρ

2

2

2

2









































 

 Fig.(3) shows the rate at which energy was conducted and convected into and 

out of the control volume. An energy balance requires that the rate of conduction 

and convection be zero. This yields : 

)(80dydxdy
y

T

y

v
T

y

v

y

T
vcρ

dydxdx
x

T

x

u
T

x

u

x

T
ucρ

y

T

x

T
dydxk

p

p2

2

2

2

























































































 

 As in reference [18], by using the conservation of mass equation and 

neglecting second-order terms gives the following expression for the energy equation 

without dissipation: 

)(9
y

T

x

T
α

y

T
v

x

T
u

2

2

2

2




























 

 The dimensionless stream wise and normal velocity components u
*
 & v

*
 were 

referred to the maximum stream velocity Uin , the stream wise and normal 

dimensionless coordinates (x ,y) are normalized with size of back step (s). The 

dimensionless Navier-Stokes equations were: 

Momentum equation in x-direction 

)(10
y

u

x

u

Re

1

x

p

y

u
v

x

u
u

2*

*2

2*

*2

*

*

*

*
*

*

*
* 






































 

Momentum equation in y-direction 

)1(1
y

v

x

v

Re

1

y

p

y

v
v

x

v
u

2*

*2

2*

*2

*

*

*

*
*

*

*
* 






































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Where the Renold number based on the size of back step (s), and the maximum 

stream velocity U∞  was represented by: 

 
)(12

μ

AFρU
Re in   

 As in reference [19],the continuity equation becomes: 

(13)0
y

v

x

u
*

*

*

*










 

As in reference [19], the dimensionless stream function ψ
*
(x

*
,y

*
) is introduced in 

usual manner: 

(14)
y

ψ
u

*

*
* 




  

)(15
x

ψ
v

*

*
* 




  

 It is evident from Eqs. (14) and (15) that the stream function satisfies the 

continuity equation identically [19]. For this plan flow field, the only non-zero 

component of vorticity is: 

(16)
y

u

x

v
ω

*

*

*

*
* 









  

 Combining the definition of vorticity and velocity components terms of 

stream function, and cross-differentiating the Navier-Stockes equations to reduce 

the number of equations and eliminate the pressure terms, a new set of equations 

was obtained with independent variable (ψ
*
) and (ω

*
) as following: 

)(17ω
y

ψ

x

ψ *

*

*2

*

*2

22










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y

ω

x

ψ

x

ω

y

ψ

yxRe

1
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*

*

*

*

*

*
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*
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22

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


































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The numerical technique selected treats the equations such that the stream 

function derivatives in Eq. (18) are known: hence this equation will be considered to 

be elliptic in vorticity ω. These two equations are to be solved in a given region 

subjected to the condition that the value of stream function and the vorticity, or 

their derivatives, are prescribed on the boundary of the domain. 

 If the temperature of fluid at inlet (T) and the temperature of the wall 

surface (Tw), the dimensionless of temperature (T
*
) can be obtained from: 

)19(
TT

TT
T

w

* 







  

 As in reference [18], the dimensionless energy conservation equations are: 
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Derivation of the finite-difference analogue of the differential equation 

 There are two ways for deriving finite difference equations from differential 

ones: Either using Taylor-series expansions, and by integration over control volume, 

together with assumptions about the distributions of the variables between the 

nodes of the grid [21]. In the present work the second method was used for two 

reasons: firstly, it enables the present work to ensure that the conservation laws 

were obeyed over arbitrarily large oe small portions of the field, a merit which was 

not possessed by certain of the other schemes which have encountered. Secondly, 

this procedure lends itself better to physical interpolation, and hence simple in 

understanding. 

Domain of the integration 

Fig.(5) displays a part of such a grid; there is shown a typical node (P), and 

the four surrounding nodes (N, S, E, and W). The finite difference equation will 

eventually be expressed primarily in terms of the values of the variable at these 

nodes. The integration of the differential equation will be performed over the area 

enclosed by the small rectangle, shown by the dotted lines, which encloses the point 

(P). The sides of this rectangle are supposed to lie midway between the neighboring 

grid lines. Similar rectangle also exist for other point in the field [21]. 

Integration of the equations 

The result of integration of Eq. (17) is: 

)22(bψaψaψaψaψa *
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*
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Energy conservation equation is: 
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The integration of this equation is: 
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Where:  
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Tank and tube scheme or upwind scheme    

As shown in Fig.(6), the control volumes can be thought to be stirred tanks 

that are connected in series by short tubes. The flow through the tube represents 

convection, while the conduction through the tank walls represents diffusion. Since 

the tanke are stirred each contains a uniform temperature fluid. Then it is 

appropriate to suppose that the fluid flowing in each connecting tube has 

temperature that prevails in the tank on the upstream side. Normally the fluid in the 

tube would not know anything about the tank toward it is heading but would carry 

the full legacy of the tank from which it has come. This is the essence of the tank and 

tube scheme or upwind scheme [21]. 

Conditions for converge  

The convergence of  an iterative solution of Eqs. (22) or (24) may be procured if 

the following conditions are satisfied [21]: 

i. The value of ( (ae+aw+an+as) / ap ) must be less than or equal to unity at 

every node 

     of the grid. 

ii. This value must be less than unity on at  least one grid node. 

iii. This value and (b) in Eqs. (22) or (24) must not vary too greatly one cycle 

of iteration to 

     another. 

Convection heat transfer 

Before obtaining the Stanton number and Nusselt and number the 

convection process must be examined in some detail and relate the convection of 

heat to the flow of fluid. The first point to note is that the velocity decreases in the 

directions to word the surface as a result of viscous forces acting in the fluid. Since 

the velocity of the fluid layer adjacent to the wall is zero , the heat transfer between 

the surface and this fluid layer by conduction ( according to reference [1] ) must be: 

  )(25TTh
y

T
kQ w

0y





 



 

Although this equation suggests that the process can be viewed as conduction the 

temperature gradient at the surface 

0y
y

T















is determined by the rate at which the 

fluid farther from the wall can transport the energy into the mainstream. In 

convection heat transfer, the unknown parameter is the heat transfer coefficient. 

From Eq.(24): 
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  )(26TTh
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 
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Dividing by step size (Tw-T∞) and multiply with (s), it gives: 

 
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Inspection of this equation suggest that the appropriate dimensionless form of the 

heat transfer coefficient is the so-called Nusselt number (Nu) defined by: 

(28)
k

hs
Nu   

Therefore: )(29
y

T
Nu

*

*





  

Computation procedures 

The solution of the governing partial differential Eqs. (17), (19) and (22) was 

obtained by using a finite difference numerical scheme and to get a stable and 

converged solution, upwind scheme was used for non uniformly grid distributed. 

The stream function and vorticity equations are first solved and their results stored. 

The stored information was then used to obtain the solution of the energy equation. 

The solution procedure starts by supplying initial guesses of the stream function and 

vorticity then computes a converged solution by iteration. Convergence of the 

solution was considered satisfactory when the percentage normalized residuals of 

over the whole calculation domain) where less than 10
-6

. The language of technical 

computing MATLAB was used to build a spatial program to solve these equations. 

As shown in Fig.(7) where (s) is the step size, (x)  horizontal coordinate referenced to 

the step position, and (y) vertical coordinate. The calculations were started at a 

distance of (5) times of the step size upstream of back step. Down stream of the back 

step the grids are extended for a distance of (15) times of the step size. 

Boundary conditions 

The differential equations Eqs. (17), (19) and (23) have been solved within the 

limited region shown in Fig.(7), and within the following boundary conditions: 

1-On inlet part AF (uniform inlet flow) 

a.Stream Function       )30(yyψ *

F

**   

b. Vorticity [13]           )31(0ω*   

c. Temperature             )32(0T*   

2-On solid boundaries 

a.Stream Function 

Walls (FE, DC, and ED)             )33(0ψ*   

Wall (AB)                                    )34(Ψψ *

A

*   

b. Vorticity [12] 
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Walls( FE & DC)    
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c. Temperature 

At unheated region     )38(0T*     

At heated regions        )39(0T*   

3- BC in a position with long distance from the back step position, all of flow 

properties in each node were equal to the neighbored properties node in the up 

stream part [22]. 

a. Stream Function      )40(ψψ *

w

*   

b. Vorticity                  )41(ωω *

w

*   

c. Temperature              )42(TT *

e

*   

3- Results and discussions 

A discussions were made for the fluid flow inside flat duct with a symmetric 

sudden expansion. The study was performed to investigate the effect of  Rynolds 

number, expansion ratio, and Prandtl number on each of the size of the separated 

region, wall vorticity, temperature distributions, Nusselt number distribution, and 

Stanton number distribution. To give a good indication about the influence of 

effecting factors, results were formulated using modern techniques and presented in 

detailed using MATLAB and SURFER software.   

Size of the separated region  

The typical flow patterns obtained from the numerical solution of the flow 

inside duct with backward facing step were shown in Figs. (8) to (10 ). The 

separation starts down stream of the corner and the dividing streamline was 

originated from a point below the corner and reattached to the wall after traveling a 

from step to point of attachment where the local wall vorticity equal to zero 

 on Reynolds 

number for a given step size (s), and expansion ratio (r). The size of the separated 

region increases with increasing Reynolds number due to increasing  the 

reattachment length. Fig. (11) shows the distribution of the dimensionless axial 

component of velocity (u / U) for Reynolds number of (Re = 400), and expansion 

ratio of (r=4:3). Fig. (12) shows the distribution of the dimensionless transverse 

component of velocity v / U for Reynolds number of (Re=400), and expansion ratio 

of (r=4:3). Fig.(13) shows the relation between Reynolds number, and dimensionless 

of reattachment length for various values of expansion ratios. It can be seen from 

this figure that the reattachment length increases with increasing Reynolds number 

for range of Reynolds num
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increases with increasing expansion ratio. The influencing parameters on 

reattachment length is correlated by the following equation: 

  (43)Re0.2300
s

Rl 0.55
 for expansion ratio of (r=4:3) 

  (44)Re0.2614
s

Rl 0.55
     for expansion ratio of (r=3:2) 

Vorticities  

Figs. (14), to (16) show the contour lines of the dimensionless vorticity 

distributions for different values of expansion ratios and Reynolds number. It was 

shown that the heavy concentration of contour lines near the sharp corner indicate a 

high vorticity gradients in this region as expected. It was seen that the vorticity 

which was very strong near the corner of the step is swept and transported into the 

recirculation region. Figs. (17) to (19) show the relation between the lower wall 

vorticity versus the dimensionless distance down stream of back step (x/s) for 

different values of Reynolds numbers and expansion ratios. It is noted that the local 

value of wall vorticity converged to an constant value at distance far away from 

back step location. These figures also show that the local wall vorticity increases 

with increasing Reynolds number or decreasing initial dimensionless displacement 

boundary layer thickness. Figs. (20) to (22) show the relation between the upper wall 

vorticity versus the distance down stream of inlet position (x/s) for different values 

of Reynolds numbers. It was shown that the maximum local wall vorticity accrues at 

fully developed position, and also it was shown that an increasing in Reynolds 

number leads to increase the local wall vorticity. 

Heat transfer coefficient  

To compute the Stanton number and Reynolds number as a function of 

influence parameters. Figs. (23) to (25) demonstrated the dimensionless temperature 

contours for different values of Reynolds number, and expansion ratios. These 

figures show that the concentration of temperature contours increases at the walls 

with increasing Reynolds number. Figs. (26) to (28) show the local Nusselt number 

distribution downstream of back step for different values of Reynolds, and 

expansion ratios. Increasing of Reynolds number (or decreasing of expansion ratio) 

leads to increase the value of local Nusselt number distribution. Figs. (29) to (31) 

show the local Stanton number distribution downstream of back step for different 

r 

Increasing of Reynolds number (or increasing of expansion ratio) leads to decreases 

the value of local Stanton number distribution. Fig. (32) shows the average value of  

Nusselt number versus Reynolds number for three expansion ratios. This figure 

indicate that the larger expansion ratios leads to decrease the value of average 

Nusselt number. Fig. (33) shows the average value of Stanton number versus 

r  

.This figure indicate that the larger expansion ratios leads to decreases the value of 

average Stanton number. The average Stanton number in recirculation zone was 

correlated by the following equation: 

  )45(Re0.135St
0.55

___




         for expansion ratio of (r=1:3) 
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  )46(Re0.1242St
0.55

___




       for expansion ratio of (r=3:2) 

 

4- Conclusions  

          The present numerical techniques and solutions  for internal fluid flow enable 

us to examine the effecting of a number of factors which are considered the main 

controller keys on each of separation, reattachment, redevelopment, and the heat 

transfer process in the separated regions. The main effecting factors on the size of 

the separated region are  initial shear layer thickness, and Reynolds number. In 

addition to these factors the Prandtl number, affects the heat transfer processes. 

From the results it can be concluded that: 

1-An increasing in Reynolds number leads to increase the vorticity strength, and the 

size of the recirculation zone in linear relation. This increasing in each of size of the 

recirculation zone and vorticity strength depends on the expansion ratio, it was 

found that the rate of this increasing, increases with increasing expansion ratio. The 

reattachment length was correlated as a function of Reynolds number and 

expansion ratio by Eqs. (43) and (44). 

2. The average Stanton number in the recirculation zone decreases with increasing 

of Reynolds number at lower expansion ratios, but for high expansion ratios, the 

average of Stanton number in the recirculation zone increases with increasing 

Reynolds number for range of Reynolds number of (Re < 175), and decreasing with 

increasing Reynolds number for range  of (Re > 175). For this case studied the 

average Stanton number in recirculation zone were correlated by Eqs. (45) and (46). 
 
 

 انتقال الحرارةتأثير التغير التدريجي المفاجئ للمقطع على معامل 
 

 
 المستخلص

تعرض الدراسة الحالٌة نتائج وتقنٌات عددٌة لتحلٌل جرٌان طباقً لا انضغاطً فً حالة  
الانفصال. بالنسبة لحالة  الجرٌان الداخلً فوق الحاجز التدرٌجً ذو التوجٌه الخلفً, فان عملٌة 

وع المائع,نسبة التوسع, و انتقال الحرارة وطرٌقة تصرف الجرٌان تكون متأثرة بعدة عوامل كن
عدد رٌنولدز. لقد وجد إن أي زٌادة فً عدد رٌنولدز تؤدي إلى زٌادة فً كل من شدة الدوامات 
وحجم منطقة إعادة التدوٌر ضمن علاقة خطٌة. وهذه الزٌادة فً كل من حجم منطقة إعادة 

عدد ستانتون فً  توسطالتدوٌر وشدة الدوامات تعتمد على نسبة التوسع, وقد وجد كذلك إن م
منطقة إعادة التدوٌر ٌتناقص بزٌادة عدد رٌنولدز عند نسب توسع صغٌره. وفً حالة نسب 
التوسع الكبٌرة فان معدل عدد ستانتون ٌزداد بزٌادة عدد رٌنولدز ضمن مدى معٌن من عدد 

(, وان متوسط عدد ستانتون ٌتناقص بزٌادة عدد رٌنولدز Re<175رٌنولدز ٌتراوح فً حدود )ٌ

(. وقد تم تمثٌل بعض النتائج التً تم Re>175)ٌضمن مدى معٌن من عدد رٌنولدز ٌتراوح بحدود 

الحصول علٌها لهذه الحالة المدروسة ببعض المعادلات الرٌاضٌة والتً تشمل طول اعادة 

( و معدل عدد ستانتون )Rlالتلامس)
__

St فً منطقة إعادة التدوٌر. ولقد تم رسم خطوط )

الانسٌاب, منحنٌات توزٌع السرعة, منحنٌات توزٌع دالة الدوامة, ومنحنٌات توزٌع درجات 
 وبضروف مختلفة. 1000و 25 الحرارة لمدى واسع من عدد رٌنولدز ٌتراوح بٌن 
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Fig. (1) Internal flow backward facing step 

 
Fig. (4) Symbols for stretching function [20] 

 

 

                                       

                   
      Fig. (5) Typical grid distribution 

(a) Grid distribution       (b) Control volume 

 
(a) Momentum fluxes 

 
(b) Forces 

 

Fig.(2) Differential  control volume for 

conservation of momentum in a two 

dimensional incompressible flow 

              
Fig. (6) Tank and tube model [21] 
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Fig. (3) Differential control volume for 

conservation of energy in two dimensional 

incompressible laminar flow 

 

Fig. (7) Typical grid distribution for finite difference solution 

[a]: r=4:3               [b]: r=3:2              [c]: r=2:1 

 

 

 
[a]: Re=25 

 
[b]: Re=200 

 

 
[c]: Re=800 

Fig. (8) Stream lines patterns for different values of Reynolds number at  r=4:3 
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[a]: Re=25 

 
[b]: Re=200 

 
[b]: Re=800 

Fig. (9) Stream lines patterns for different values of Reynolds number at  r=3:2 
 

 
[a]: Re=25 

 
[b]: Re=200 

 
[c]: Re=800 

Fig. (10) Stream lines patterns for different values of Reynolds number at  r=2:1 
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Fig. (11) Dimensionless axial component of velocity contours at Re=400 and r=4:3 

 
Fig. (12) Dimensionless transverse component of velocity contours at Re=400 and r=4:3 

 
Fig. (13) Dimensionless reattachment length vs. Reynolds number for different of expansion ratio 
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[a]: Re=25 

 
[b]: Re=200 

 
[c]: Re=800 

Fig. (14) Vorticity contours for different of Reynolds number at r=4:3 
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[a]: Re=25 

 
[b]: Re=200 

 
[c]: Re=800 

Fig. (15) Vorticity contours for different of Reynolds number at r=3:2 

 
[a]: Re=25 

 
[b]: Re=200 

 
[c]: Re=800 

Fig. (16) Vorticity contours for different of Reynolds number at r=2:1 
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Fig. (17) Lower wall vorticity distribution 

downstream of back step for different values 

of Re at r=4:3 

 
Fig. (18) Lower wall vorticity distribution downstream 

of back step for different values of Re at r=3:2 

 
Fig. (19) Lower wall vorticity distribution 

downstream of back step for different values 

of Re at r=2:1 

 
Fig. (20) Upper wall vorticity distribution downstream 

of back step for different values of Re at r=4:3 

 
Fig. (21) Upper wall vorticity distribution 

downstream of back step for different values 

of Re at r=3:2 

 
Fig. (22) Upper wall vorticity distribution downstream 

of back step for different values of Re at r=2:1 
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[a]: Re=25 

 
[b]: Re=200 

 
[c]: Re=800 

Fig. (23) Isothermal contours for different of Reynolds number at r=4:3 
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[a]: Re=25 

 
[b]: Re=200 

 
[c]: Re=800 

Fig. (24) Isothermal contours for different of Reynolds number at r=3:2 

 
[a]: Re=25 

 
[b]: Re=200 

 
[c]: Re=800 

Fig. (25) Isothermal contours for different of Reynolds number at r=2:1 
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Fig. (26) Nuselt number distribution 

downstream of back step for different values 

of Re at r=4:3 

 
Fig. (27) Nuselt number distribution downstream of 

back step for different values of Re at r=3:2 

 
Fig. (28) Nuselt number distribution 

downstream of back step 

for different values of Re at r=2:1 

 
Fig. (29) Stanton number distribution downstream of 

back step for different values of Re at r=4:3 and Pr=0.72 

 
Fig. (30) Stanton number distribution 

downstream of back step for different values 

of Re at r=3:2 and Pr=0.72 

 
Fig. (31) Stanton number distribution downstream of 

back step for different values of Re at r=2:1 and Pr=0.72 
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Fig.(32) Average Nuselt number vs. Renolds number for different of expansion ratios 

 
Fig.(33) Average Stanton number vs. Renolds number for different of expansion ratios and Pr=0072 


