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Abstract

Numerical techniques and theoretical results for an
incompressible laminar separated flows were presented. For the case of
the internal flow over backward facing step. The heat transfer processes
and the flow behavior were effected with type of the fluid, expansion
ratio, and Reynolds number. It was found that, an increasing in
Reynolds number leads to increase the vorticity strength and the size of
the recirculation zone in linear relation. This increasing in each of size
of the recirculation zone and vorticity strength depends on the
expansion ratio. Also, it was found that the average Stanton number in
the recirculation zone decreases with increasing of Reynolds number at
lower expansion ratios. For high expansion ratios, the average of
Stanton number in the recirculation zone, increases with increasing
Reynolds number for range of Reynolds number of (Re < 175), and
decreasing with increasing Reynolds number for range of Reynolds
number of (Re > 175). The results were represented for the
reattachnment length (RI) and for the average Stanton number in
recirculation zone ( st). Also, velocity distribution, vorticity
distributions, temperature distributions, were presented for range of
Reynolds number greater than 25 and less than 1000 for different
conditions.
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Nomenclatures

Reattachment Iength. Thermal diffusivity = A c

Longitudinal coordinate referenced to step Dynamic viscosity.
position.

I Transverse coordinate. Kinematics viscosity =
P

Mass density of fluid.

Stress.

Displacement boundary layer
thickness.

|| Total velocity.
Pressure. Distance between left and right
sides of control volume.
Temperature. Distance between upper and lower
sides of control volume.

-
pranctt umber = %0 "/ e subserios ]

Reynolds number, | P Ui, (A'y At the step position.
' i . Flat plate condition.

Mesh index corresponding to longitudinal

Stanton number, [%.Cp . Uj = (N%e- Pr) direction.

h j Mesh index corresponding to transverse
Nusselt number, % direction.

Peclet number=Re . Pr Eastern control volume direction.
Distance between left and right sides of w Western control volume direction.
control volume.

Distance between upper and lower sides of North control volume direction.
control volume.

Thermal convection conductance. . South control volume direction.
Specific heat at constant pressure. Center of control volume.
Quantity of heat transfer per unit area. 5 Dimensionless value.

Local heat transfer coefficient. Average value.

Ratio between downstream area to upstream Value at point A.

area.

Value at point E.
Value at point F.

1- Introduction

In many flows of practical interest, separation of boundary layer and
subsequent of the separated layer to a solid surface is unavoidable, such flows
occurs in nuclear reactor, gas turbines, combustion chambers, heat exchangers, and
cooling systems for equipments [1]. The reattachment flows can pose a serious
problem for the heat transfer engineering, because they can cause a large variations
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of the local heat transfer coefficient as well as substantial heat transfer
augmentation. Convective heat transfer in the separation and reattachment regions
following abrupt area changes in tubes and ducts is of considerable technical
interest . Therefore, it was needed to study the overall heat transfer coefficient under
the effect of separation. The present work study the fluid dynamics and heat
transfer characteristics in the separated regions, and the region area of
reattachment for laminar flows in rectangular cross-sectional ducts with abrupt
increases in flow cross-sectional area. The Navier-Stokes equations and energy
conservation equations, which were considered to describe the fluid motion and heat
transfer of interest, are nonlinear, because of this non linearity, some difficulties
have arisen in numerical as well as in analytical studies. One of the greatest
difficulties with the numerical studies is the problem of divergence of the iterative
methods. Since an analytical solution of the actual problem is extremely difficult if
not possible, a number of assumptions together using the computational fluid
dynamic techniques to obtain approximate results. The present work deals with
internal flow represented by laminar incompressible flows through a flat duct
having backward facing step , as shown in Fig. (1). Attention was focused to study
the flow behaviors and mechanism of heat transferred by forced convection in
recirculation zones.

The phenomena of flow separation caused by sudden changes in geometries was
well known. The importance of such flows to engineering equipment has been
stressed in many publications, and attempts have been made to develop advanced
experimental and theoretical techniques in order to study carefully flows with
separation regions. Though a number of investigations on the flow field have been
reported, there appears to be very little published studies concerning the
corresponding heat transfer problem in separated region were used the techniques
of computational fluid dynamics.

Aung [2] presented heat transfer measurements for laminar flow past
backsteps in low speed wind tunnel with expansion ratio of (r=12.5:1) and test
section of 20 cm height, 15 cm width, and 61 cm length, step heights of 1.27 cm, 0.64
cm, and 0.38 cm and 1.02 cm, respectively. The results were given for the local heat
transfer as well as the average value in separated regions. It was found that the
average Stanton number exhibits a minus one half power dependency on the
Reynolds number, the local heat transfer increases monotonically across the
reattachment point and quantitatively less than flat-plate value. Average Stanton
number (for upstream and downstream of backstep) was correlated in the following
equation:

0.72
= O.787(Re)_0'55{i} ———————————— )
Xs

Durst et al [3] used the flow visualization and laser-anemometry
measurements to report the flow downstream of a plane 3:1 symmetric expansion in
a duct with an aspect ratio of 9.2:1 downstream of expansion. Ede et al [4] studied
the effect of an abrupt disturbance (0.5 diameter ratio) on water flowing in a pipe.
The effect of the abrupt convergence on the local heat transfer coefficient was
determined for Reynolds number ranging from 800 to 100,000 in the smallest pipe.
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Sinha et al [5] studied the flow over backsteps in laminar range. The results were
reported experimentally at a wind speed of 1.8 m/s over three backward facing steps
0.625, 1.25, and 2.5 cm high, the separating boundary layer in all cases was 1.4 cm
thick. They found that the dimensionless reattachment length (x/s) increases
linearly with Reynolds number (Res ) as long as the reattachment was laminar.
Krall and Sparrow [6] was studied experimentally the effect of the flow separation
on the heat transfer characteristics in turbulent pipe flow. The flow separation was
induced by an orifice situated at the inlet of an electrically heated circular tube.
Water was the working fluid and the flow was fully developed. Seki et al [7] studied
experimentally heat transfer in the separated reattached and redevelopment region
behind a double step in a flat duct, with air as the working fluid. They presented
experimental data for the local heat transfer coefficient for fluid flows into the
abrupt symmetrical enlargement.

Goldstein et al [8] made experiments on the shear layer following a
downstream facing step. Results were reported over a range of 0.36-1.02 cm in step
height, 0.61-2.44 m/s in free stream velocity at the step, and 0.16-0.51 cm in
boundary layer displacement thickness at the step. They found that the laminar
reattachment length was not constant number of step heights as for turbulent flow,
but varies with Reynolds number and boundary layer thickness at the step, and
given by:

X _0.01325Re .|| > |42 | ——o )
d 1\ 3 )

S S S

Filletti and Kays [9] studied experimentally heat transfer in the separated
reattached and redevelopment region behind a double step in a flat duct, with air as
the working fluid. Air was blown by a ducted fan into the test section. Sparrow and
Kalejs [10] presented experimental investigation for the heat transfer coefficient
distributions in the regions of flow separation. Reattachment, and redevelopment
along the walls of a channel whose inlet was partially constricted. The experiments
were carried out for Reynolds numbers in the laminar range and utilized the
naphthalene sublimation technique with air as the working fluid. Seban et al [11]
presented the local heat transfer coefficients and recovery factors for separated and
reattached turbulent flows as obtained downstream of a flat surface in two
dimensional subsonic air flow. Wind tunnel test were made on a rounded nose
model with a sudden step down to a flat surface. Najdat [12] used the numerical
techniques to analysis a two-dimensional, incompressible, laminar flows in the
entrance region of a channel with and without contractions. This constructions
representing by forward facing step, backward facing step, or finite step. Finite
difference method was used to solve the governing equations which were formulated
in stream function-vorticity approach. Nallassamy [13] studied a steady state, two-
dimensional, viscous, incompressible flows over a thin obstruction in a channel
through the numerical solution of the Navier-Stokes equations using finite
difference method. The characteristics of the separated flow behind the obstruction
where obtained up to Reynolds number of 1500.

Mei [14] used finite difference method to investigate two-dimensional,
laminar, and incompressible fluid flows through a channel with symmetrical and
asymmetrical sudden constructions formed by a semi-infinite step change in width
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and through cascade. The Navier-Stokes equations in stream function-vorticity form
in body fitted coordinates were solved for up to critical Reynolds numbers.
Morrision and Napolitano [15] provide a simple efficient and robust numerical
technique for solving two dimensional incompressible steady viscose flows at
moderate to high Reynolds number using the streamfunction vorticity formulation
simultaneously on steeped channel using finite difference method. Roland [16] used
the Newton iteration and finite difference method to solve the ensuing algebraic
system resulting from discretizing Navier-Stokes equation. In order to avoid high-
frequency errors, locally fine grid was used near corner by transformation of the
independent variables. As compared with the previous works the present work
characterized by the following:
i- The present work afforded a theoretical study for knowledge of the effect of
affection factors on flow and heat transfer characteristic in wide field by the use of
computational fluid dynamics techniques, and this was a complement for Aung's
work [2].
ii- The present work adopting stream function vorticity approach [17], like the
problems of the present work, after some modifications such as using of converging
factors, and non uniform mesh distribution.
iii- The present work afforded a computer program have unlimited capacity in the
range of laminar flow.
2- Theoretical background

The fundamental conservation laws of mass, energy and momentum provide
the differential equations; then auxiliary relations, for the thermodynamic,
transport properties, and for the boundary conditions, make the mathematical
problem complete; and all that was needed to solve the equations, and to deduce
from their solution the practically interesting information. The present method of
solution was a finite difference one: it confines attention to a finite number of points,
distributed irregularly through the flow field as the nodes of the grid; it is primarily
for these nodes that will calculate the values of temperature, concentration, and
other variables; and, if values are required at intermediate points, it can be obtained
by interpolation. Confinement of attention to a two-dimensional array of points
entails that the differential equations should be replaced by algebraic ones, relating
together the values of the variables which prevail at neighboring nodes. The exist
various ways of deriving these "finite difference equations™ from the differential
ones; the present method employs one which, if not novel, was certainly not
conventional. Since was a suitable reason for this practice, which will be explained
later; elsewhere, when the conventional procedures bring problems, they have been
adopted. Iterative procedures for solving equations were susceptible to a crippling
diseases; this was *‘divergence™, i.e. the failure of the method, no matter for how
long it was allowed to proceed, to find for the variables a set values which satisfies
the equations within the specified limits. Its opposite, "‘convergence’, was the steady
progress from the set of values which was supplied at the beginning as "initial
guesses', towards a new set which satisfies the equations as closely as is desired.
Several of the novelties of the present method have been introduced in order to
procure this convergence, for all the circumstances which were of practical interest
[17].
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2-1 Conservation equations of mass, momentum, and energy for two dimensional
laminar flow

To drive the conservation of mass or continuity equation, consider a control
volume as shown in Fig. (2) with assumption of steady-state conditions prevail, and
neglecting the gradients in z-direction (perpendicular to the plane of the sketch),
and the fluid is incompressible. Then the rates of mass flow inlet and outlet the

control volume , in x-direction are (pudy) and p[u +2—udx}dy respectively. Thus the
X

net mass flow into the element in x-direction was —pg—udxdy. Similarly, the net
X

mass flow into the control volume in y-direction was — p%udydx. Since the net mass

flow rate out the control volume must be zero for study flow condition, then:
-p @‘F@ dxdy=0. -~ —————————————— (3)
oxX oy
As in reference [17], the two-dimensional incompressible, steady flow,

conservation of mass becomes:

M N oo (4)

ox oy
The conservation of momentum equation was obtained from application of
Newton's second law of motion to the element. The rates of momentum flow in the x-
direction for the fluid flowing across the left- and right-hand vertical faces is shown

in Fig.( 2 ) were (pu’dy)and p[u+(8%x)jx]2dy respectively. It should be noted,

however, that flow across the horizontal faces will also contribute to the momentum
balance in the x-direction. The x-momentum flow entering through the bottom face
is puvdx, and the momentum flow per unit width leaving through the upper face

was p(v+%dyj(u +%Udy]dx . The viscous shear force at the bottom face was

—u @+a_u dx and at the top face was | p @+a—u +ui ﬂ+a—u dy |[dx . Thus
X oy oxX oy oy\ox oy

the net viscous shear in the x-direction was H%(? +%u]dxdy .The normal force on
X

the left face was —Zpa—udy and on the right face was Zua—u+2pi ] dx |dy
OX OX OX \ OX

o%u

XZ

Thus the net normal force in the direction of motion was 2u dxdy . The pressure

force on the left face was (pdy) and on the right face was —{p+(?jdx}dy . Thus
X
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the net pressure force in the direction of motion was —(?jdxdy . Equating the sum
X

of the forces to the momentum flow rate out of the control volume in the x-direction
gives :

p[u +8_udedy— pu’dy +p v+@dy (u +8—udxjdx —pvudx =
OX oy OX

op o (ov o%u
—dxd —| —+— |dxdy + 2
Py el (20D oay 2

As in reference [17], by neglecting second-order differentials and using the
conservation of mass equation, the conservation of momentum equation in Xx-
direction reduces to:

ou  éu op 0%u  o%u
ppU—+V_—|=-—+U —+—| —————————————— (6)
OX oy OX oxX*: oy
Similarly, the momentum equation in y-direction was
2
p uﬂ+v@ :—@+p, 0 \2/+8—\2I ——————————————— @)
ox oy oy ox° oy

Fig.(3) shows the rate at which energy was conducted and convected into and
out of the control volume. An energy balance requires that the rate of conduction
and convection be zero. This yields :

2 2
kdxdy(g T a T] {pcp(uﬂ a_u.l_ a_ugd ﬂdxdy_
X 2

oy’ OX OX  OX X
[pc (v%%T %%dyﬂdxdwo —————————————— ®

As in reference [18], by using the conservation of mass equation and
neglecting second-order terms gives the following expression for the energy equation
without dissipation:

or orT 0°T 0°T
Uu—+v—=aua +
ox oy (ax2 ayzj

The dimensionless stream wise and normal velocity components u” & v~ were
referred to the maximum stream velocity U, , the stream wise and normal
dimensionless coordinates (x ,y) are normalized with size of back step (s). The
dimensionless Navier-Stokes equations were:

Momentum equation in x-direction

* * * 2 * 2 *
u” 8u*+v* 8U* :—ap* +i 0 u2 _|-8 u2 ———————————————— (10)
OX oy ox Rel gx* oy
Momentum equation in y-direction
* * * 2 * 2 *
u*av* V*av*:—ép*_yi 0 V2+8 V2 ———————————————— (12)
ox" oy @y Relax” oy
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Where the Renold number based on the size of back step (s), and the maximum
stream velocity U,, was represented by:

Re = pU'”—(AF) _______________ (12)
1l
As in reference [19],the continuity equation becomes:
M N (13)
ox oy

As in reference [19], the dimensionless stream function \|1*(X*,y*) is introduced in
usual manner:

*za\ll ______________14
U= (14)
*__ * e

VvV = o (15)

It is evident from Eqs. (14) and (15) that the stream function satisfies the
continuity equation identically [19]. For this plan flow field, the only non-zero
component of vorticity is:

*

e A (16)

* *

ox oy
Combining the definition of vorticity and velocity components terms of
stream function, and cross-differentiating the Navier-Stockes equations to reduce
the number of equations and eliminate the pressure terms, a new set of equations
was obtained with independent variable (y") and (o) as following:

o*y” 62\;/*_ .

e e ( (17)
OX oy
2 * 2 > * * * *
10w 0o (0w oo Owoo | ___________ (18)
Re ox™ oy oy’ ox  ox’ oy

The numerical technique selected treats the equations such that the stream
function derivatives in Eg. (18) are known: hence this equation will be considered to
be elliptic in vorticity ®. These two equations are to be solved in a given region
subjected to the condition that the value of stream function and the vorticity, or
their derivatives, are prescribed on the boundary of the domain.

If the temperature of fluid at inlet (T) and the temperature of the wall
surface (Ty), the dimensionless of temperature (T") can be obtained from:

T* — & ————————————— (19)
T,-T,

As in reference [18], the dimensionless energy conservation equations are:
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* * 2 * 2 *
u*aT*+V*8T*:Pr8T2+6T ————————————— (20)
OX oy OX oy
2T* 2T*
QwoT oyoT _lotT o) -
0y 0X 0X 0y ox” ay*z

Derivation of the finite-difference analogue of the differential equation

There are two ways for deriving finite difference equations from differential
ones: Either using Taylor-series expansions, and by integration over control volume,
together with assumptions about the distributions of the variables between the
nodes of the grid [21]. In the present work the second method was used for two
reasons: firstly, it enables the present work to ensure that the conservation laws
were obeyed over arbitrarily large oe small portions of the field, a merit which was
not possessed by certain of the other schemes which have encountered. Secondly,
this procedure lends itself better to physical interpolation, and hence simple in
understanding.
Domain of the integration

Fig.(5) displays a part of such a grid; there is shown a typical node (P), and
the four surrounding nodes (N, S, E, and W). The finite difference equation will
eventually be expressed primarily in terms of the values of the variable at these
nodes. The integration of the differential equation will be performed over the area
enclosed by the small rectangle, shown by the dotted lines, which encloses the point
(P). The sides of this rectangle are supposed to lie midway between the neighboring
grid lines. Similar rectangle also exist for other point in the field [21].
Integration of the equations

The result of integration of Eq. (17) is:

ap\lfp :ae\l]e +aW\VW +an\IJn +as‘|’s + b ___________ (22)
o 3y, 0 o
a,=a,+a, +a, +a, ae:—( Yo ¥ v.) awz—( Yo F )
0X, 0x,,
Where: (6* 8*) (6* 8*)
b=o)(6x; +5x, oy, +3y])  a, =-one OXw) a, = X TO%w)
6},I’l 6st
Energy conservation equation is:
a(uT)+a(VT)=i T AT 23
OX oy Pel ox” oy"
The integration of this equation is:
a,T, =a,T, +a,T, +a,T, +a, T, ——————————- (24)
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Where:

a,=a,+a, +a, +a,

Sy, +93y, oo « Sy, +3y.  fo «
0= ) ol o) e, = 5 PP o s o)
= L) o o von) a = 2B oo vax)
Pe 3y, Pe  dy,

Tank and tube scheme or upwind scheme
As shown in Fig.(6), the control volumes can be thought to be stirred tanks
that are connected in series by short tubes. The flow through the tube represents
convection, while the conduction through the tank walls represents diffusion. Since
the tanke are stirred each contains a uniform temperature fluid. Then it is
appropriate to suppose that the fluid flowing in each connecting tube has
temperature that prevails in the tank on the upstream side. Normally the fluid in the
tube would not know anything about the tank toward it is heading but would carry
the full legacy of the tank from which it has come. This is the essence of the tank and
tube scheme or upwind scheme [21].
Conditions for converge
The convergence of an iterative solution of Egs. (22) or (24) may be procured if
the following conditions are satisfied [21]:
i. The value of ( (a-+aw+an+as) / a, ) must be less than or equal to unity at
every node
of the grid.
ii. This value must be less than unity on at least one grid node.
iii. This value and (b) in Egs. (22) or (24) must not vary too greatly one cycle
of iteration to
another.
Convection heat transfer
Before obtaining the Stanton number and Nusselt and number the
convection process must be examined in some detail and relate the convection of
heat to the flow of fluid. The first point to note is that the velocity decreases in the
directions to word the surface as a result of viscous forces acting in the fluid. Since
the velocity of the fluid layer adjacent to the wall is zero , the heat transfer between
the surface and this fluid layer by conduction ( according to reference [1] ) must be:

YL, O — (25)

y=0
Although this equation suggests that the process can be viewed as conduction the

. T) . : :
temperature gradient at the surface (a—j is determined by the rate at which the
y=0

fluid farther from the wall can transport the energy into the mainstream. In
convection heat transfer, the unknown parameter is the heat transfer coefficient.
From Eq.(24):
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kT

y=0

Dividing by step size (Tw-T.) and multiply with (s), it gives:

. lat0)

kK T,-T,
Inspection of this equation suggest that the appropriate dimensionless form of the
heat transfer coefficient is the so-called Nusselt number (Nu) defined by:

hs
Nu=— ———(28
” (28)

——————————— (27)

Therefore: Nu = or

*

Computation procedures

The solution of the governing partial differential Egs. (17), (19) and (22) was
obtained by using a finite difference numerical scheme and to get a stable and
converged solution, upwind scheme was used for non uniformly grid distributed.
The stream function and vorticity equations are first solved and their results stored.
The stored information was then used to obtain the solution of the energy equation.
The solution procedure starts by supplying initial guesses of the stream function and
vorticity then computes a converged solution by iteration. Convergence of the
solution was considered satisfactory when the percentage normalized residuals of
each variable ( 0" Oor OO0"0) between any two successive iterations (Summed
over the whole calculation domain) where less than 10®. The language of technical
computing MATLAB was used to build a spatial program to solve these equations.
As shown in Fig.(7) where (s) is the step size, (X) horizontal coordinate referenced to
the step position, and (y) vertical coordinate. The calculations were started at a
distance of (5) times of the step size upstream of back step. Down stream of the back
step the grids are extended for a distance of (15) times of the step size.
Boundary conditions

The differential equations Eqgs. (17), (19) and (23) have been solved within the
limited region shown in Fig.(7), and within the following boundary conditions:
1-On inlet part AF (uniform inlet flow)

a.Stream Function vy =y -y, ————————— (30)
b. Vorticity [13] 0 =0 ———————— (31)
c. Temperature T=0 ———————— (32)

2-On solid boundaries
a.Stream Function

Walls (FE, DC, and ED) y =0 —————- (33)
Wall (AB) v =¥, —-———- (34)
b. Vorticity [12]
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. (\VT,H _\VTJ) 1.
Wa”S( FE & DC) ® _3m_5mi'jﬂ —————— (35)

Wall ED 0 = 3((\1’(%_):");_) _ %wi*ﬂ,,- ______ (36)
i+1 i

N (\VT _W’ik'—l) 1 .
Wa.” (AB) o = 3 L J _ _O‘)i,'—l ______ (37)
(yi Y )2 2
c. Temperature
At unheated region T =0 ————— (38)

At heated regions T=0 ———— (39)

3- BC in a position with long distance from the back step position, all of flow
properties in each node were equal to the neighbored properties node in the up
stream part [22].

a. Stream Function ¢ =y, —-————- (40)
b. Vorticity o =m, —————- (42)
c. Temperature T =T, -————- (42)

3- Results and discussions

A discussions were made for the fluid flow inside flat duct with a symmetric
sudden expansion. The study was performed to investigate the effect of Rynolds
number, expansion ratio, and Prandtl number on each of the size of the separated
region, wall vorticity, temperature distributions, Nusselt number distribution, and
Stanton number distribution. To give a good indication about the influence of
effecting factors, results were formulated using modern techniques and presented in
detailed using MATLAB and SURFER software.
Size of the separated region

The typical flow patterns obtained from the numerical solution of the flow
inside duct with backward facing step were shown in Figs. (8) to (10 ). The
separation starts down stream of the corner and the dividing streamline was
originated from a point below the corner and reattached to the wall after traveling a
distance called reattachment length. The dividing stream line [0 Ostarted
from step to point of attachment where the local wall vorticity equal to zero
000000, but in this case; the reattachment length effected only on Reynolds
number for a given step size (s), and expansion ratio (r). The size of the separated
region increases with increasing Reynolds number due to increasing the
reattachment length. Fig. (11) shows the distribution of the dimensionless axial
component of velocity (u / U) for Reynolds number of (Re = 400), and expansion
ratio of (r=4:3). Fig. (12) shows the distribution of the dimensionless transverse
component of velocity v / U for Reynolds number of (Re=400), and expansion ratio
of (r=4:3). Fig.(13) shows the relation between Reynolds number, and dimensionless
of reattachment length for various values of expansion ratios. It can be seen from
this figure that the reattachment length increases with increasing Reynolds number
for range of Reynolds number [OJ00Re (000250011, and the reattachment length
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increases with increasing expansion ratio. The influencing parameters on
reattachment length is correlated by the following equation:

RI_ 0.2300(Re)*” ————————— (43) for expansion ratio of (r=4:3)
s

RI_ 0.2614(Re)*®”® ————————— (44) for expansion ratio of (r=3:2)
s

Vorticities

Figs. (14), to (16) show the contour lines of the dimensionless vorticity
distributions for different values of expansion ratios and Reynolds number. It was
shown that the heavy concentration of contour lines near the sharp corner indicate a
high vorticity gradients in this region as expected. It was seen that the vorticity
which was very strong near the corner of the step is swept and transported into the
recirculation region. Figs. (17) to (19) show the relation between the lower wall
vorticity versus the dimensionless distance down stream of back step (x/s) for
different values of Reynolds numbers and expansion ratios. It is noted that the local
value of wall vorticity converged to an constant value at distance far away from
back step location. These figures also show that the local wall vorticity increases
with increasing Reynolds number or decreasing initial dimensionless displacement
boundary layer thickness. Figs. (20) to (22) show the relation between the upper wall
vorticity versus the distance down stream of inlet position (x/s) for different values
of Reynolds numbers. It was shown that the maximum local wall vorticity accrues at
fully developed position, and also it was shown that an increasing in Reynolds
number leads to increase the local wall vorticity.

Heat transfer coefficient

To compute the Stanton number and Reynolds number as a function of
influence parameters. Figs. (23) to (25) demonstrated the dimensionless temperature
contours for different values of Reynolds number, and expansion ratios. These
figures show that the concentration of temperature contours increases at the walls
with increasing Reynolds number. Figs. (26) to (28) show the local Nusselt number
distribution downstream of back step for different values of Reynolds, and
expansion ratios. Increasing of Reynolds number (or decreasing of expansion ratio)
leads to increase the value of local Nusselt number distribution. Figs. (29) to (31)
show the local Stanton number distribution downstream of back step for different
values of Reynolds, at Prandtl number of P, = 0.7200 , and expansion ratios.
Increasing of Reynolds number (or increasing of expansion ratio) leads to decreases
the value of local Stanton number distribution. Fig. (32) shows the average value of
Nusselt number versus Reynolds number for three expansion ratios. This figure
indicate that the larger expansion ratios leads to decrease the value of average
Nusselt number. Fig. (33) shows the average value of Stanton number versus
Reynolds number for three expansion ratios at Prandtl number of OP=0.72001
.This figure indicate that the larger expansion ratios leads to decreases the value of
average Stanton number. The average Stanton number in recirculation zone was
correlated by the following equation:

St =0.135(Re) > ——————— (45) for expansion ratio of (r=1:3)
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St =0.1242(Re) **® ——————— (46)  for expansion ratio of (r=3:2)

4- Conclusions

The present numerical techniques and solutions for internal fluid flow enable
us to examine the effecting of a number of factors which are considered the main
controller keys on each of separation, reattachment, redevelopment, and the heat
transfer process in the separated regions. The main effecting factors on the size of
the separated region are initial shear layer thickness, and Reynolds number. In
addition to these factors the Prandtl number, affects the heat transfer processes.
From the results it can be concluded that:
1-An increasing in Reynolds number leads to increase the vorticity strength, and the
size of the recirculation zone in linear relation. This increasing in each of size of the
recirculation zone and vorticity strength depends on the expansion ratio, it was
found that the rate of this increasing, increases with increasing expansion ratio. The
reattachment length was correlated as a function of Reynolds number and
expansion ratio by Eqgs. (43) and (44).
2. The average Stanton number in the recirculation zone decreases with increasing
of Reynolds number at lower expansion ratios, but for high expansion ratios, the
average of Stanton number in the recirculation zone increases with increasing
Reynolds number for range of Reynolds number of (Re < 175), and decreasing with
increasing Reynolds number for range of (Re > 175). For this case studied the
average Stanton number in recirculation zone were correlated by Egs. (45) and (46).
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Fig. (3) Differential control volume for
conservation of energy in two dimensional
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Fig. (17) Lower wall vorticity distribution Fig. (18) Lower wall vorticity distribution downstream
downstream of back step for different values of back step for different values of Re at r=3:2
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Fig. (21) Upper wall vorticity distribution Fig. (22) Upper wall vorticity distribution downstream
downstream of back step for different values of back step for different values of Re at r=2:1
of Re at r=3:2
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Fig. (23) Isothermal contours for different of Reynolds number at r=4:3
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Fig. (29) Stanton number distribution downstream of
back step for different values of Re at r=4:3 and P,=0.72
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