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Recently, there have been changes in the exchange rate of the Iraqi dinar against foreign 

currencies, which are considered important financial indicators that affect the labor market 
and the currency exchange market. In order to monitor the changes in the exchange rate of 
the Iraqi dinar against the US dollar and to anticipate future stages and the direction of the 
exchange rate changes, the aim of the research is to predict the exchange rate of the Iraqi 
dinar against the US dollar for the coming years by applying the Box-Jenkins 
methodology and neural networks. This is done to compare the traditional predictive 
models, such as ARIMA, with the neural network model, which demonstrated its 
prediction accuracy by reducing the Mean Squared Error (MSE) through training the 
network, selecting the appropriate model, and choosing the best architecture to represent 

the time series. 

The study included a time series representing the exchange rates of the Iraqi dinar against 
the US dollar from January to December for the years 2015-2022. The data was sourced 
from the 2021/2022 annual statistical group issued by the Central Statistical Organization 
of Iraq, with data from the Central Bank of Iraq. For the analysis of the time series, the 

GRETL statistical program was used, and the Matlab R 2019b program was utilized for 
forecasting when using neural networks. 
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1. Introduction: 

Forecasting is one of the important statistical 

methods for decision-making and has a 

significant impact on future planning. It 

encompasses various fields (health, agriculture, 

industry, finance, and population studies) as 

well as numerous phenomena .[11] 

Given the fluctuations in the exchange rate of 

the Iraqi dinar against the US dollar and their 

impact on the national economy, these changes 

in prices can be observed over previous years 

to develop future plans for predicting the 

values of this phenomenon. Time series 

analysis is considered one of the methods used 

to study the behavior of phenomena and 

forecast changes in prices, enabling the 

formulation of future plans. 

Therefore, the Box-Jenkins methodology is 

considered one of the most important 

approaches used in time series analysis and 

forecasting for future years. Recently, some 

studies have focused on the application of the 

Box-Jenkins methodology as well as 

employing neural networks for forecasting and 

comparing the two methods. 

https://isj.edu.iq/index.php/rjes
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The researcher Imad Yacoub Hamid (2011) 

compared the Box-Jenkins models with neural 

networks, and the results showed the 

superiority of neural networks in forecasting. 

The application was conducted on data from 

the Sudanese agricultural sector, represented by 

the time series of wheat productivity.[15] 

The researchers Salioua and Matar (2019) 

conducted a comparison between the Box-

Jenkins methodology and artificial neural 

networks using the monthly average data of 

maximum temperatures for the city of Mosul 

(1983–2009). The results demonstrated the 

accuracy of artificial neural networks in 

prediction.[25] 

Researcher Majd Naama (2023) compared 

traditional predictive models, including the 

multiple regression model, the ARIMA model, 

and the artificial neural network model, in 

terms of predictive capability for tobacco 

production in Latakia Governorate. The study 

utilized data from the annual agricultural 

statistical reports on production and cultivated 

area for the period (1991–2019). The results 

revealed the accuracy of artificial neural 

networks in prediction.[18] 

2. Time Series 

There are many economic and social 

phenomena that occur over successive or equal 

time periods, showing the effects of time, 

which may be increasing or decreasing. A time 

series can be defined as the values of a 

phenomenon arranged according to time; the 

time intervals can be consecutive and equal 

(annual, quarterly, monthly, daily, etc.). The 

nature of the changes that occur in the values 

of the phenomenon makes it possible to 

analyze, estimate, and forecast the time series 

[22]. 

The goal of time series is to accurately describe 

the phenomenon and explain the changes 

occurring in the data and the influencing 

factors, thus building a model for forecasting 

based on the changes occurring over a period 

of time according to the data of the 

phenomenon [22, 1]. 

3.  Time Series Components 

 

A time series has four components that are 

influenced by economic, environmental, social, 

and political factors, as follows: 

1. Secular Trend 

The secular trend describes the general 

effect of the phenomenon over a period 

of time, where the series may be 

increasing, decreasing, or stable [6]. 

2. Seasonal Variations 

These are changes that occur within a 

year in a regular pattern. Climate and 

weather conditions are among the 

factors causing seasonal changes, as 

temperature or rainfall can influence 

seasonal variation [3]. 

3. Cyclical Variations 

These variations manifest as rises or 

falls in the general trend of the time 

series values and occur over a long 

period in an irregular manner, but they 

may recur [6]. 

4. Randomness Variations 

These are irregular changes that occur 

in the general trend of the time series 

and happen randomly by chance, 

making them unpredictable and 

uncontrollable, such as earthquakes, 

volcanoes, floods, and wars [3]. 

4. Box-Jenkins Models 

The Box-Jenkins method for time series 

analysis is an advanced statistical approach for 

forecasting. Box and Jenkins (1970) introduced 

a method consisting of several stages, 

including identifying the time series, 

diagnosing and estimating, and finally 
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forecasting. This method allows for the 

selection of the appropriate model based on 

autoregressive (AR), moving average (MA), 

and mixed (ARMA) models [7]. 

1) Autoregressive Model (AR) 

The Autoregressive model (AR) defines 

the current value of the time series    as 

a function of its previous values plus 

random error terms. It can be expressed 

in the following form: 

   =  +       +        + …+       +           

…(1) 

Where: 

  : Represents the value of the time series at 

time t 

     : Represents the value of the time series at 

time t , where i=1,2,…,p 

   : Model parameters to be estimated, ranging 

from (1,-1) ,where i=1,2,…,p 

   : Represents random errors, which have a 

mean of zero and variance   
  

 : The constant term 

If the PACF displays a sharp cutoff while the 

ACF decays more slowly (i.e., has significant 

spikes at higherlags), we say that the 

stationarized series displays an AR  [26]. 

2) Moving Average Model (MA) 
 

The Moving Average model (MA) 

expresses the current value of the time 

series    in terms of random error terms 

(       ,…) upon which the model 

relies. The general form of the model of 

order q is denoted as MA(q) and can be 

written as follows [26]: 

   =  +   -       -        - …-                   

…(2) 

Where : 

  : The constant term 

   : Represents the value of the time series at 

time t 

q : model order 

     : Random variations that are independent 

of each other at time t ( i=.1,2,…,q) 

   : Model parameters to be estimated, ranging 

from (1,-1) ,where i=1,2,…,q 

The ( PACF ) decreases exponentially or in a 

damped sinusoidal pattern, and (ACF ) for the 

model MA ( q ) cuts off at zero after the lag, 

determining the model order. 

3) Mixed Autoregressive-Moving 

Average Model (ARMA) 
 

The ARMA model combines the AR(p) 

and MA(q) models, incorporating 

characteristics of both types to achieve 

a more flexible model . It is denoted as 

ARMA(p, q) and its general form is as 

follows: 

   =   +       +        + …+       +    - 

      -        - …-         … (3) 

Where: 

  : The constant term 

   : Represents the value of the time series at 

time t 

     : The value of the time series at time t , 

(i=1,2,…,p) 

    : The parameter autoregressive coefficients 

i=1,2,…,p  

   : The parameter moving average coefficients 

j=1,2,…,q 
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   : Represents random errors with a mean of 

zero and a variance of   
  

The PACF values are decreasing exponentially 

or in diminishing sinusoidal waves, while the 

ACF for the MA(q) model cuts off at zero after 

lag q, which determines the order of the model 

[23]. 

4) Autoregressive Integrated Moving 

Averages Model (ARIMA) 

 

This model transforms the non-

stationary time series into a stationary 

time series after taking differences d, 

which is the degree of integration to 

stabilize the series. It is one of the most 

commonly used models for forecasting, 

denoted as ARIMA(p,d,q), where ppp 

represents the order of the AR model 

and q represents the order of the MA 

model [20]. 

   =   +       +        + …+         +    - 

      -        - …-         … (4) 

Where :   

   : The value of the time series at time t 

  : The mean or constant term of the series 

  : The autoregressive coefficients i=1,2,…,p 

  : The moving average coefficients j=1,2,…,q 

d: The degree of differencing to make the 

series stationary 

5. Reasons for using Box-Jenkins 

models [4,14]: 

1. The Box-Jenkins methodology 

addresses both univariate models and 

multivariate models stationary and non 

– stationary . 

2. They suit complex time series and 

forecasting situations that provide 

various patterns, enabling the selection 

of an appropriate model and 

minimizing error as much as possible. 

6.  Box-Jenkins Methodology 

 

To forecast using the Box-Jenkins 

methodology, there are four stages to 

reach the forecast as follows: 

1. Checking the stationarity of the time 

series, and applying the necessary 

2. Model identification  

3. Checking the model’s adequacy 

4. Diagnosis checking the model’s 

adequacy and  forecasting 

Stage One: Testing for the stationarity of the 

time series 

A time series is considered stable if it oscillates 

around a constant mean with constant variance. 

Conversely, if it oscillates around a non-

constant mean or has non-constant variance, it 

is deemed unstable. There are three conditions 

for achieving complete stationarity:[16] 

1 - E(  ) =   ,The mean value must be 

constant 

2 - Var(  ) =    =  ̂ ,The variance must be 

constant 

where 

 ̂  = 
 

 
∑       ̅    

    , represents the 

estimate of the variance of the time series, 

which is constant and does not depend on 

the values of t 

3 - The autocovariance function must also 

be constant 

For seasonal time series, the autocovariance 

function at seasonal lag k (where the 

seasonality period is m) can be expressed 

similarly, but with seasonal lags: 

  =E[(  −μ)(     −μ)]          …(5) 

where :  

  is the autocovariance at lag k 

   is the value of the time series at time t 
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     is the value of the time series at time t+k 

μ is the mean of the time series 

However, in seasonal data, the lag k is usually 

associated with the seasonality period m.  

For a seasonal period of m, the lag k will 

typically be a multiple of m, such as 

m,2m,3m,… 

However, in seasonal data, the lag k is typically 

associated with the period of the seasonality, so 

if the time series exhibits seasonal patterns 

with a period m, the lag k corresponds to a 

multiple of m (e.g., after m periods, the series 

is expected to repeat its pattern). For seasonal 

series, this could involve seasonal differencing 

or adjustments to account for this seasonality. 

In cases of non-stationarity, which are common 

in many models, the series may exhibit a 

general trend or seasonality. This can be 

observed through the autocorrelation and 

partial autocorrelation functions, where their 

values approach zero after the second or third 

lag, while remaining large for several lags. 

However, it is possible to transform them into 

stationary time series, which can be done in 

two ways: 

1. Stationarity in Mean: 

Non-stationarity around the mean 

indicates that the time series does not 

fluctuate around a constant mean, 

which can be removed after appropriate 

differencing. A stable time series can be 

achieved after taking differences d, 

such that 

   =             …(6) 

   represents the backward difference 

operator defined as: 

    = (1- B)  =    -             …(7) 

The general form of the differencing d 

can be written as: 

    =                 …(8) 

2. Stationarity in Variance: 

Stationarity is achieved when there are no 

varying fluctuations in the form of the time 

series. When the fluctuations are non-constant, 

the series is considered unstable. Therefore, it 

is transformed into a stable series through 

logarithmic or exponential transformations 

(power transformations), which are the 

simplest transformations, defined as follows: 

  
  = [

  
       

          
]         …(9) 

Where: 

  
  : The transformed series at time t 

   : The original untransformed series value 

  : The transformation parameter, usually 

ranging from (1     ) 

The purpose of transforming the original data 

is to obtain residuals with constant 

(homogeneous) variance. 

To check for stationarity, several tests can be 

conducted to assess the stability of the time 

series, as follows: 

First: The Autocorrelation Function (ACF) 

The ACF measures the degree of relationship 

between values of the same variable over time 

at different lags. Its values range from(-

1     ), where    is the autocorrelation 

coefficient. 

  = 
            

√                
       …(10) 

Where: 

   : The autocorrelation coefficient 
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K  : The maximum lag (where k=1,2,…,K , 

which can be determined as : 

K= 12* 
 

   
 
 

    ,and n represents the number of 

observations. 

To achieve stationarity, the autocorrelation 

coefficients must fall within the confidence 

interval at a 95% level and a significance level 

of 0.05. If they fall outside this interval, the 

series is considered unstable. The 

autocorrelation coefficients are normally 

distributed, expressed as: 

     N(0,
 

√ 
) , The test formulation is as 

follows: 

   :    = 0 

   :      0  

If     falls within the confidence interval, the 

null hypothesis is don’t reject ; if it falls 

outside the confidence interval, the alternative 

hypothesis is accepted [11]. 

Second: The Partial Autocorrelation 

Function (PACF) 

The PACF measures the relationship between 

the autocorrelations (        ) and helps 

determine the order and type of the model. It 

can be estimated using the least squares 

method or a set of approximate equations. The 

mathematical formula for estimating the partial 

autocorrelation coefficients is as follows: 

 ̂        = 
 ̂    ∑  ̂   ̂     

 
   

  ∑  ̂   ̂ 
 
   

      , j=1,2,…,k , 

and when k=1     …(11) 

 ̂   =  ̂  

 ̂   : Estimates of the autocorrelation 

coefficients 

The PACF can be used to determine whether 

the time series is stable and to specify the 

degree of the AR model, the MA model, or the 

appropriate ARIMA model to represent the 

time series data [10]. 

Third: Unit Root Test 

The condition for stationarity is satisfied when 

the unit roots of the series lie inside the unit 

circle. One of the most commonly used 

methods to detect the stationarity of a time 

series is the Augmented Dickey-Fuller (ADF) 

test, which is based on three mathematical 

equations that assume the existence of a 

random process Yt  . 

The first equation does not include a constant 

term (test without constant): 

 --     ---     ∑   
 
              … 

(12) 
P : changes in time series values for time 

periods 

The second equation includes a constant term 

(test with constant): 

              ∑   
 
               

…(13)                                      

The third equation includes both a constant 

term and a time trend (with constant and trend): 

                ∑   
 
         

      …(14) 

Notations: 

Yt : The random process 

  : The differencing operator ( i.e ,     = 

         ) 

et : A series of random variables 

 ,B: Test parameters 

   : The constant term 

   : The time trend 
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7. Hypothesis Testing 

The hypotheses are expressed as follows: 

        : (unstable, presence of a unit root) 

        : (stable, absence of a unit root) 

The test statistic is compared as:    
  

    
 with 

tabulated values (Dickey-Fuller tables). If the 

computed t value is greater than the tabulated 

value, the null hypothesis is rejected, and the 

alternative hypothesis         is accepted, 

indicating that the series is stable. 

Alternatively, if the p-value is less than 0.05, 

the alternative hypothesis is accepted, 

suggesting the series is stable [13, 26]. 

8. Determining the Order of the Model 

There are several criteria for determining the 

order of the model, as follows: 

1) Akaike Information Criterion (AIC) 

The AIC, proposed by the Japanese 

scientist Hirotugu Akaike in 1974, 

aims to minimize the difference 

between the model density and the true 

density (observations), reducing the 

model's variance relative to the 

increase in the number of estimated 

parameters, expressed as [8]: 

AIC = nLog ̂ 
  + 2V     …(15) 

Where: 

V: The total number of estimated 

parameters 

 ̂ 
  : The variance of the error 

n : The number of observations 

2) Hannan-Quinn Criterion (H-Q) 

Proposed by researchers Hannan and 

Quinn in 1979, this criterion is 

abbreviated as H-Q, and its formula is 

as follows [1]: 

H – Q(M) = Ln  
  + 2MCLn(Ln(n))/n  , C >2    

…(16) 

M : Represents the number of parameters in the 

model  

C : Constant               

3) Schwartz Bayesian Criterion (SBC) 

Abbreviated as SBC, this criterion was 

proposed by researcher Schwartz in 1978, 

similar to the Bayesian Information Criterion 

(BIC). Its formula is as follows [2]: 

SBC(P) = nLn( ̂ 
  ) + pLn(n)                 …(17) 

Where: 

P : Represents the order of the chosen model or 

the number of model parameters 

9. Estimating Model Parameters 

After diagnosing the model and determining its 

order, the parameters are estimated. In the case 

of the ARIMA model, estimating the 

parameters can be complex and may not be 

straightforward; thus, the Maximum 

Likelihood Method is employed. This method 

is used when dealing with moving average 

processes that have unknown error bounds, 

aiming to minimize the sum of squared errors 

[13]. 

10. Testing Model Significance 

This involves testing the error term and 

verifying the validity and adequacy of the 

specified model. The residuals resulting from 

applying the model should be randomly 

distributed. To determine whether the 

autocorrelation is randomly distributed, the 

Ljung-Box test is applied [3]. 

Q=m(m+2)∑
  
     

     

 
          …(18) 

Where :  
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m=(n-d) 

n : number of time series views 

d : number of differences 

k : largest displacement  

  ( e ) : autocorrelation of statistics at 

displacement 

11. Residual Testing 

This is used to assess whether the model is 

adequate based on the values of the 

autocorrelation coefficients of the residuals 

within a 95% confidence interval [22]. 

  { ̂    <1.96 
 

√ 
 } = 1-  𝛼            …(19) 

12. Forecasting 

To predict future values after determining the 

appropriate model and estimating its 

parameters, which is considered the final stage 

in the Box-Jenkins methodology. The 

forecasted values can be obtained by taking the 

expectation at time t, expressed as [4]: 

 ̂    = E [    ]  ,    ,     ,     ,…             

…(20) 

13. Neural Networks 

Neural networks have achieved significant 

advancements in many applications. Their 

concept revolves around simulating the human 

brain to make decisions and improve 

relationships between the elements used, as 

well as for forecasting [21]. 

In general, neural networks consist of the 

following layers [12, 21]: 

1. Input Layer: This layer receives data 

through the neurons that comprise the 

network and contains only one layer. 

2. Output Layer: This is where the final 

output is generated, and the architecture 

of the network depends on whether 

there is one or more processing units. 

3. Hidden Layer: This layer performs 

processing and mathematical operations 

and sends the results to the output layer. 

4. Weights: Weights are responsible for 

connecting the layers to each other, 

facilitating the transfer of data between 

the units. 

14. Processing Units (Neurons)  [19] 

Weights are the primary element connecting 

the layers. The activation function is a value 

constrained within a specific range, comparing 

the sum with a threshold value, and its range is 

between [0, 1] and [-1, 1]. The following are 

common activation functions [17, 24]: 

1. Sigmoid Function: This function 

transforms the outputs into a value bounded 

between [0, 1] and [-1, 1]. It is known as the 

sigmoid activation function and is one of the 

most widely used.[9] 

2. Step Function: This function makes 

the output value equal to 0 or 1, known 

as the binary activation function. 

3. Linear Function: The outputs equal 

the weighted inputs for the processing 

unit. 

4. Sign Function: The output value from 

the processing unit equals 1 or -1, used 

in classification tasks to distinguish 

patterns. 

5. Output Function: This function adjusts 

the result of the activation function. 

There are several types of neural networks 

based on the types of layers [27]: 

1- Single-Layer Neural Network   

A Single-Layer Neural Network is one of the 

simplest types of neural networks. It consists of 

a single layer of neurons (or units) that process 

inputs and generate outputs. This network is 

composed of three main components: 

1. Input Layer: 
It contains a set of neurons that 
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represent the inputs. Each neuron in this 

layer represents a specific value from 

the input data. 

2. Output Layer: 

It contains one or more neurons to 

represent the results or predictions. The 

network generates output values based 

on the inputs it receives. 

3. Weights: 
Each connection between neurons in 

the input layer and the output layer has 

a weight, which is a value that is 

adjusted during the training process to 

improve the network's accuracy. These 

weights are modified using algorithms 

like backpropagation. 

2- Multilayer Neural Network 

A Multilayer Neural Network (MLP) is a 

more complex type of neural network 

compared to a single-layer network. It consists 

of multiple layers of neurons: an input layer, 

one or more hidden layers, and an output layer. 

MLPs are designed to solve more complicated 

problems and can capture nonlinear patterns in 

data. Here's how it works: 

Components: 

1. Input Layer: 

This layer represents the raw input 

data. Each neuron in the input layer 

corresponds to a feature of the input 

data. 

2. Hidden Layers: 

These are intermediate layers that lie 

between the input and output layers. 

The number of hidden layers can 

vary, and each layer can have 

multiple neurons. The hidden layers 

allow the network to capture 

complex relationships and 

nonlinearities in the data. The output 

of each neuron in these layers is 

passed through an activation 

function, which helps the network 

learn and generalize. 

3. Output Layer: 

The output layer provides the final 

prediction or classification based on 

the learned weights from the 

previous layers. The number of 

neurons in the output layer 

corresponds to the number of 

possible outputs or classes. 

4. Weights and Biases: 

Weights determine the strength of 

the connections between neurons. 

During training, the network adjusts 

these weights to minimize the error 

in the predictions. Biases are 

additional parameters that help shift 

the activation function, improving 

the model's flexibility. 

15. Practical Framework 

The Box-Jenkins methodology was applied to 

forecast the exchange rate of the Iraqi dinar 

against the US dollar. The time series data 

represents monthly exchange rates from 

January 2015 to December 2022, with a sample 

size of 96 observations collected from the 

Central Statistical Organization (Iraqi Central 

Bank). The statistical software Gretl was used 

to obtain the results. 

16. Application of the Box-Jenkins 

Methodology 

1. Stationarity of the Time Series 

We start by plotting the time series to 

understand its behavior regarding 

stationarity in mean and variance, as 

shown in Figure (1): 
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Figure (1) represents the time series plot. 

 

Figure 1 illustrates the instability of the time 

series in terms of both mean and variance. A 

stationarity test can be conducted by plotting 

the Autocorrelation Function (ACF) and the 

Partial Autocorrelation Function (PACF) for 

increased accuracy. Figure (2) sequentially 

shows the plots of both functions based on the 

values of the autocorrelation and partial 

autocorrelation coefficients provided in Table 

(1) below:

 

Table (1): Autocorrelation and Partial Autocorrelation Functions 

PACF ACF Lag 

0.3919  *** 0.3919 *** 1 

0.2672  *** 0.3798  *** 2 

0.2018  ** 0.3724  *** 3 

0.1492 0.3579  *** 4 

0.1115 0.3431  *** 5 

0.0843 0.3290  *** 6 

0.0380 0.2966  *** 7 

0.0288 0.2815  *** 8 

0.0243 02686  *** 9 

0.0200 0.2556  ** 10 

0.0113 0.2394  ** 11 

0.0092 0.2268  ** 12 

-0.0053 0.2055  ** 13 

-0.0081 0.1901  * 14 

-0.0138 0.1726  * 15 

-0.0087 0.1615 16 

-0.0267 0.1353 17 

-0.0803 0.0794 18 

-0.0728 0.0547 19 
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*Significance of the data 

 

 

Figure (2) shows the plots of the Autocorrelation Function (ACF) and the Partial Autocorrelation Function (PACF). 

Table (2) illustrates the autocorrelation and 

partial autocorrelation coefficients. Figure 2 

indicates that the coefficient values are outside 

the confidence limits (±0.2), which suggests 

t h e  i n s t a b i l i t y  o f  t h e  s e r i e s . 

The first difference is taken to eliminate the 

instability of the series in terms of the mean as 

f o l l o w s : 

 

Figure (3) shows the time series plot after taking the first difference. 
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 To confirm the stationarity of the series, the 

Autocorrelation Function (ACF) and Partial 

Autocorrelation Function (PACF) are plotted, 

with their values illustrated in Table (2) as 

follows: 

Table (2): Values of Autocorrelation and Partial Autocorrelation After the First Difference 

  

 

PACF ACF Lag 

- 0.4964 *** - 0.4964 *** 1 

- 0.3307 *** - 0.0027 2 

- 0.2380 ** 0.0063 3 

- 0.1810 * 0.0002 4 

- 0.1438 -0.0010 5 

- 0.0942 0.0135 6 

- 0.835 -0.0151 7 

- 0.0771 - 0.0015 8 

- 0.0718 - 0.0002 9 

- 0.0623 0.0023 10 

- 0.0605 - 0.0038 11 

- 0.0448 0.0076 12 

- 0.0413 - 0.0055 13 

- 0.0345 0.0020 14 

- 0.0372 - 0.0046 15 

- 0.0174 0.0123 16 

0.0401 0.0244 17 

0.0337 - 0.0274 18 

0.0209 - 0.0039 19 
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Figure (4) shows the plots of the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) after 

taking the first difference. 

To confirm stat ionarity,  the Augmented 

Dickey-Fuller (ADF) unit root test is conducted 

without a constant, with a constant, and with a 

constant and trend. The results are presented in 

T a b l e  ( 3 )  a s  f o l l o w s : 

Table (3): Unit Root Test Results 

p – value Test statistic Estimated value  

9.738e-14 -7.88051 -2.91793 Test without constant 

1.324e-12 -7.85498 -2.92688 Test with constant 

5.129e-12 -7.87206 -2.94965 With constant and trend 

 

The results of the unit root test indicate that the 

p-value is less than the significance level of 

0.05 for the equation without a constant, with a 

constant, and with a constant and trend. This 

suggests that the series is stationary after taking 

t h e  f i r s t  d i f f e r e n c e . 

2. Diagnosis, Estimation, and Selection of 

the Best Model 

To diagnose the suitable model for 

comparison, statistical criteria such as the 

Akaike Information Criterion (AIC), 

Bayesian Schwartz Criterion (SBC), and 

Hannan-Quinn Criterion (H-Q) are relied 

upon. The results are presented in Table (4) 

below: 

Table (4): Comparison of Box-Jenkins Models 

H-Q SBC AIC Model  

1285.138 1291.202 1281.029 (2,1,0) 1 

1383.021 1390.618 1383.021 (1,2,0) 2 

1219.706 1227.285 1214.569 (1,1,2) 3 

1242.116 1248.180 1238.007 (1,1,1) 4 

1308.891 1313.439 1305.809 (1,1,0) 5 

1217.029 1223.093 1212.919 (0,1,2) 6 

The results indicate that the ARIMA (0,1,2) 

model is the best, as it has the lowest errors 

among the three criteria. The estimation of the 

parameters for the best model is shown in 

Table (5) below: 

Table (5): Estimation of Parameters for the ARIMA(0,1,2) Model and Their Significance Values 

p- value Z Std.error coefficient Model Parameters 

2.01e-07*** 

0.0000*** 

0.0000*** 

5.199 

-707.3 

359.1 

0.0379785 

0.00282689 

0.0278446 

0.197434 

-1.99942 

0.999978 

Const 

Theta 

Theta - 2 

The results indicate the significance of the 

model parameters when comparing the p-value, 

which is less than the significance level of 

0 . 0 5 . 

To test the model and confirm its adequacy 

after estimation, the Ljung-Box test is applied. 

The calculated Q statistic (Q_(L-B)) is 

1.54865, and when compared to the critical 

Chi-square value, it is greater than the Q 

statistic. Furthermore, all autocorrelation and 

partial autocorrelation coefficients fall within 

the confidence limits, indicating that the model 

used is suitable for forecasting. The following 

figure 5 illustrates the coefficients of the 

Autocorrelation Function (ACF) and Partial 

Autocorrelation Function (PACF) for the 

residual series of the ARIMA(0,1,2) model, 

which fall within the confidence interval. 
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Figure (5): Autocorrelation and Partial Autocorrelation Coefficients for the Residual Series of the Significant 

ARIMA(0,1,2) Model 

 

17. Forecasting 

This is the final stage in building Box-Jenkins 

models after conducting all tests on the time 

series and selecting the significant model at the 

95% confidence level, with z(0.025) = 1.96. 

Table (6) presents the forecasted values for the 

time series from (2023:1 to 2025:11) as 

follows: 

Table (6): Forecasted Values for the Time Series Using Box-Jenkins 

Obs prediction std. error 95% interval 

2023:01 1500.26 141.870 (1222.20, 1778.32) 

2023:02 1503.56 143.474 (1222.36, 1784.77) 

2023:03 1506.30 145.384 (1221.36, 1791.25) 

2023:04 1509.04 147.269 (1220.40, 1797.68) 

2023:05 1511.78 149.129 (1219.49, 1804.07) 

2023:06 1514.52 150.967 (1218.63, 1810.41) 

2023:07 1517.26 152.783 (1217.81, 1816.71) 

2023:08 1520.00 154.578 (1217.03, 1822.97) 

2023:09 1522.74 156.352 (1216.29, 1829.18) 

2023:10 1525.48 158.106 (1215.60, 1835.36) 

2023:11 1528.22 159.840 (1214.93, 1841.50) 

2023:12 1530.95 161.557 (1214.31, 1847.60) 

2024:01 1533.69 163.255 (1213.72, 1853.67) 

2024:02 1536.43 164.935 (1213.17, 1859.70) 

2024:03 1539.17 166.599 (1212.64, 1865.70) 

2024:04 1541.91 168.246 (1212.15, 1871.67) 

2024:05 1544.65 169.877 (1211.70, 1877.60) 

2024:06 1547.39 171.493 (1211.27, 1883.51) 
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2024:07 1550.13 173.094 (1210.87, 1889.39) 

2024:08 1552.87 174.680 (1210.50, 1895.23) 

2024:09 1555.61 176.251 (1210.16, 1901.05) 

2024:10 1558.35 177.809 (1209.85, 1906.85) 

2024:11 1561.09 179.354 (1209.56, 1912.61) 

2024:12 1563.82 180.885 (1209.30, 1918.35) 

2025:01 1566.56 182.403 (1209.06, 1924.07) 

2025:02 1569.30 183.909 (1208.85, 1929.76) 

2025:03 1572.04 185.402 (1208.66, 1935.42) 

2025:04 1574.78 186.884 (1208.50, 1941.07) 

2025:05 1577.52 188.354 (1208.35, 1946.69) 

2025:06 1580.26 189.812 (1208.23, 1952.28) 

2025:07 1583.00 191.260 (1208.14, 1957.86) 

2025:08 1585.74 192.696 (1208.06, 1963.41) 

2025:09 1588.48 194.122 (1208.00, 1968.95) 

2025:10 1591.22 195.537 (1207.97, 1974.46) 

2025:11 1593.95 196.943 (1207.95, 1979.96) 

Table (6) shows the forecasted values for the years 2023–2025, and we observe an increase in the 

p r i c e  o f  t h e  I r a q i  d i n a r .  

The time series of the forecasted values can be plotted, as illustrated in Figure (6). 

 

Figure (6): Plot of Forecasted Values 

18. A r t i f i c i a l  N e u r a l  N e t w o r k 

The neural network is used to forecast changes 

in the price of the Iraqi dinar against the US 

dollar. The artificial neural network is selected 

to build the time series model using a dynamic 

network, ut ilizing the software package 

( M A T L A B  R 2 0 1 5 b ) . 

The network is defined, consisting of inputs, 

hidden layers, and outputs. Data is processed 

using the NAR neural network, with the data 

d i v i d e d  i n t o  t h r e e  g r o u p s . 

The first group, the training set, includes 68 

observations, representing 70% of the total 

observat ions. The network is trained by 
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calculating the difference between the actual 

outputs and the outputs predicted by the 

network, determining the error level, and 

adjusting the weights to minimize the error. 

The second group, the validation set, includes 

14 observations, representing 15%, to assess 

the network's performance and its predictive 

a b i l i t y  d u r i n g  t r a i n i n g . 

The third group, the test set, also includes 14 

observations, accounting for 15% of the data, 

for conducting the final test. These three 

groups determine the architecture of the 

network, where the price of the Iraqi dinar 

serves as the independent variable input 

neuron, consisting of 68 observations. The 

number of hidden layers is set to one, while the 

number of neurons is determined through the 

t r a i n i n g  o f  t h e  n e t w o r k . 

A nonlinear activation function is used in the 

hidden layer, while a linear activation function 

is applied in the output layer, with one output 

neuron. The testing is conducted to obtain the 

best architecture using the hidden neurons, as 

i l l u s t r a t e d  i n  F i g u r e  ( 7 ) . 

 

Figure (7): Architecture of the Neural Network 

The number of hidden layers is 10, with one 

output layer. To train the network, the 

TRANLM backpropagation algorithm is used 

to minimize the Mean Squared Error (MSE) for 

improved output efficiency. The correlation 

coefficient (R) is calculated to evaluate the 

efficiency of the network training, reflecting 

the relationship between the targets and the 

outputs; the smaller the value, the higher the 

prediction efficiency. 

Figure (8) illustrates the decrease in the 

network errors with increased training, as 

shown below: 
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Figure (8): Network Errors After Training 

The autocorrelation function lies within the confidence limits, indicating the efficiency of the 

network training. The value of the correlation coefficient (R = 6.51106e-1) is shown in the following 

f i g u r e : 

 

Figure (9): Autocorrelation Function 

This figure illustrates the prediction of the 

exchange rate of the Iraqi dinar against the US 

dollar using neural networks, with the results 

p r e s e n t e d  i n  T a b l e  ( 7 ) . 

Prediction observation prediction Observation Prediction observation 

2025:01 1655.61848 2024:01 1623.70582 2023:01 1592.09991 

2025:02 1658.29144 2024:02 1626.35361 2023:02 1594.72182 

2025:03 1660.96645 2024:03 1629.00353 2023:03 1597.34591 

2025:04 1663.64353 2024:04 1631.65556 2023:04 1599.97218 

2025:05 1666.32265 2024:05 1634.30972 2023:05 1602.60062 

2025:06 1669.00382 2024:06 1636.96598 2023:06 1605.23122 

2025:07 1671.68703 2024:07 1639.62435 2023:07 1607.86400 

2025:08 1674.37227 2024:08 1642.28482 2023:08 1610.49893 

2025:09 1677.05954 2024:09 1644.94738 2023:09 1613.13602 

2025:10 1679.74882 2024:10 1647.61204 2023:10 1615.77525 

2025:11 1682.44012 2024:11 1650.27877 2023:11 1618.41664 

2025:01 1655.61848 2024:12 1652.94759 2023:12 1621.06016 

 

We observe an increase in the price for the 

y e a r s  2 0 2 3 – 2 0 2 5 . 

19. Conclusions: 

1. Neural networks excel in handling data and 

deriving appropriate models for analysis, 

making them an effective tool for improving 

results. This is achieved by intensively training 

the network to develop a more accurate and 

suitable model for predicting various 

phenomena and patterns in the data. 
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2. There is an increase in the exchange rate of 

the Iraqi dinar using neural networks, which 

explained 70% of the observations (68) for 

training the network, 15% for validating the 

network, and 15% for testing the architecture 

of the network. Furthermore, increasing the 

training of the network leads to a reduction in 

the network errors, thereby providing greater 

accuracy in predictions compared to the Box-

Jenkins method. 

3. Neural networks become more effective as 

the size of the data increases, which leads to 

enhanced training, resulting in the best model 

and the lowest Mean Squared Error (MSE). 
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تطبيق الشبكات العصبية للتنبؤ بسعر الصرف للدينار العراقي مقابل الددلارر ارمريكدي لامقارهت دا 

  5155-5102مع طريقة بوكس جنكينز للسلسلة الزمنية 
 م.د فبطوت عبذ الحوٍذ جىاد البٍشهبًً

 كلٍت الاداسة والاقخصبد/ جبهعت بغذاد

Fatimah.a@coadec.uobaghdad.edu.iq 

 

 الوسخخلص :

ظهشث فً الاوًت الاخٍشة حغٍشاث فً سعش صشف الذٌٌبس العشاقً هقببل العولةت الاجٌبٍةت والخةً حعخبةش هةي الو اةشاث الوبلٍةت الوهوةت 

حةذاو  العوة ث و ولغةشت هخببعةت الخغٍةشاث الحبصةلت فةً سةعش الصةشف للةذٌٌبس العشاقةً الخً ح ثش على سةى  العوةل وكةزلو سةى  

 هقببل الذولاس الاهشٌكً وللىقىف على الوشاحل القبدهت وهب ٌ و  الٍه الخغٍش الحبصل فً سعش الصشف . 

خة   حببٍةم هٌهةٍةت بةىكك جٌكٌٍةض لزا فبى الهذف هي البحث هى الخٌب  بسعش الصشف للذٌٌبس العشاقً هقببل الةذولاس الاهشٌكةً هةي 

وًوىرج الشبكت العصةبىًٍت والخةً اظهةشث   ARIMAوالشبكبث العصبٍت للسٌىاث القبدهت و وللوفبضلت بٍي الٌوبرج الخٌب ٌت الخقلٍذٌت 

دقت حٌبئهب هي خ   حقلٍل هخىسط هشبعةبث الخبةو ورلةو هةي خة   حةذسٌك الشةبكت واخخٍةبس الٌوةىرج الو مةن واف ةل هعوبسٌةت لخو ٍةل 

 السلسلت الضهٌٍت .

هةي اةهش كةبًىى ال ةبًً الةى كةبًىى  فقذ اولج الذساست سلسلت صهٌٍت حو لج ببسعبس الصشف للذٌٌبس العشاقةً هقببةل الةذولاس الاهشٌكةً

الخةةةً ٌصةةةذسهب الةهةةةبص  5150/5155واخةةةزث البٍبًةةةبث هةةةي الوةوىعةةةت الاحصةةةبمٍت السةةةٌىٌت  5155 – 5102الاو  للسةةةٌىاث هةةةي 

الاحصبمً فةً ححلٍةل   GRETLالوشكضي ل حصبء / العشا  وهصذسهب البٌو الوشكضي العشاقً و ولاٌةبد الٌخبمج حن حببٍم بشًبهج 

 للخٌب  عٌذ اسخخذام الشبكبث العصبٍت.  MatlabR 2019bالضهٌٍت وبشًبهج السلسلت 

 

 :  هةوىعت الخذسٌك و هةوىعت الخحقم و بٌٍت الشبكبث العصبٍت و الس سل الضهٌٍت .  الكلمات المفتاحية
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