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ARTICLE INFO ABSTRACT

Recently, there have been changes in the exchange rate of the Iragi dinar against foreign
currencies, which are considered important financial indicators that affect the labor market
and the currency exchange market. In order to monitor the changes in the exchange rate of
the Iragi dinar against the US dollar and to anticipate future stages and the direction of the
exchange rate changes, the aim of the research is to predict the exchange rate of the Iraqi
dinar against the US dollar for the coming years by applying the Box-Jenkins
methodology and neural networks. This is done to compare the traditional predictive
models, such as ARIMA, with the neural network model, which demonstrated its
prediction accuracy by reducing the Mean Squared Error (MSE) through training the
network, selecting the appropriate model, and choosing the best architecture to represent
the time series.
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The study included a time series representing the exchange rates of the Iraqi dinar against
the US dollar from January to December for the years 2015-2022. The data was sourced
from the 2021/2022 annual statistical group issued by the Central Statistical Organization
of Iraq, with data from the Central Bank of Irag. For the analysis of the time series, the
GRETL statistical program was used, and the Matlab R 2019b program was utilized for
forecasting when using neural networks.

1. Introduction: analysis is considered one of the methods used
to study the behavior of phenomena and
forecast changes in prices, enabling the

formulation of future plans.

Forecasting is one of the important statistical
methods for decision-making and has a
significant impact on future planning. It

encompasses various fields (health, agriculture,
industry, finance, and population studies) as
well as numerous phenomena .[11]

Given the fluctuations in the exchange rate of
the Iraqi dinar against the US dollar and their
impact on the national economy, these changes
in prices can be observed over previous years
to develop future plans for predicting the
values of this phenomenon. Time series

Therefore, the Box-Jenkins methodology is
considered one of the most important
approaches used in time series analysis and
forecasting for future years. Recently, some
studies have focused on the application of the
Box-Jenkins  methodology as well as
employing neural networks for forecasting and
comparing the two methods.

Corresponding author E-mail address: Fatimah.a@coadec.uobaghdad.edu.ig

https://doi.org/10.62933/egnts624
This work is an open-access article distributed under a CC BY
License (Creative Commons Attribution 4.0 International) under

https://creativecommons.org/licenses/by-nc-sa/4.0/



https://isj.edu.iq/index.php/rjes

Fatimah Abdul — Hammeed jawad AL-Bermani / Iraqgi Statisticians Journal / VVol. 2, no.1, 2025: 09-28

The researcher Imad Yacoub Hamid (2011)
compared the Box-Jenkins models with neural
networks, and the results showed the
superiority of neural networks in forecasting.
The application was conducted on data from
the Sudanese agricultural sector, represented by
the time series of wheat productivity.[15]

The researchers Salioua and Matar (2019)
conducted a comparison between the Box-
Jenkins methodology and artificial neural
networks using the monthly average data of
maximum temperatures for the city of Mosul
(1983-2009). The results demonstrated the
accuracy of artificial neural networks in
prediction.[25]

Researcher Majd Naama (2023) compared
traditional predictive models, including the
multiple regression model, the ARIMA model,
and the artificial neural network model, in
terms of predictive capability for tobacco
production in Latakia Governorate. The study
utilized data from the annual agricultural
statistical reports on production and cultivated
area for the period (1991-2019). The results
revealed the accuracy of artificial neural
networks in prediction.[18]

2. Time Series

There are many economic and social
phenomena that occur over successive or equal
time periods, showing the effects of time,
which may be increasing or decreasing. A time
series can be defined as the values of a
phenomenon arranged according to time; the
time intervals can be consecutive and equal
(annual, quarterly, monthly, daily, etc.). The
nature of the changes that occur in the values
of the phenomenon makes it possible to
analyze, estimate, and forecast the time series
[22].

The goal of time series is to accurately describe
the phenomenon and explain the changes
occurring in the data and the influencing
factors, thus building a model for forecasting
based on the changes occurring over a period

of time according to the data of the
phenomenon [22, 1].

3. Time Series Components

A time series has four components that are
influenced by economic, environmental, social,
and political factors, as follows:

1. Secular Trend

The secular trend describes the general
effect of the phenomenon over a period
of time, where the series may be
increasing, decreasing, or stable [6].

2. Seasonal Variations

These are changes that occur within a
year in a regular pattern. Climate and
weather conditions are among the
factors causing seasonal changes, as
temperature or rainfall can influence
seasonal variation [3].

3. Cyclical Variations

These variations manifest as rises or
falls in the general trend of the time
series values and occur over a long
period in an irregular manner, but they
may recur [6].

4. Randomness Variations

These are irregular changes that occur
in the general trend of the time series
and happen randomly by chance,
making  them  unpredictable  and
uncontrollable, such as earthquakes,
volcanoes, floods, and wars [3].

4. Box-Jenkins Models
The Box-Jenkins method for time series

analysis is an advanced statistical approach for
forecasting. Box and Jenkins (1970) introduced

a method consisting of several stages,
including  identifying the time  series,
diagnosing and estimating, and finally
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forecasting. This method allows for the
selection of the appropriate model based on
autoregressive (AR), moving average (MA),
and mixed (ARMA) models [7].

1) Autoregressive Model (AR)
The Autoregressive model (AR) defines
the current value of the time series y, as
a function of its previous values plus
random error terms. It can be expressed
in the following form:

Ve = pt 01yeat OoyVez + ot OpYept €

..(1)
Where:

v:: Represents the value of the time series at
time t

ve—i . Represents the value of the time series at
time t , where i=1,2,...,p

9J; : Model parameters to be estimated, ranging
from (1,-1) ,where i=1,2,...,p

e, . Represents random errors, which have a
mean of zero and variance ¢

u: The constant term

If the PACF displays a sharp cutoff while the
ACF decays more slowly (i.e., has significant
spikes at higherlags), we say that the
stationarized series displays an AR [26].

2) Moving Average Model (MA)

The Moving Average model (MA)
expresses the current value of the time
series y, in terms of random error terms
(e, €t—1,...) upon which the model
relies. The general form of the model of
order g is denoted as MA(q) and can be
written as follows [26]:

Ve = ut e Vi€ q- Ve, - .

.(2)

O ﬁqet_q

Where :
u : The constant term

y: . Represents the value of the time series at
time t

g : model order

e,—; . Random variations that are independent
of each other at time t (i=.1,2,...,q)

9J; : Model parameters to be estimated, ranging
from (1,-1) ,where i=1,2,...,q

The ( PACF ) decreases exponentially or in a
damped sinusoidal pattern, and (ACF ) for the
model MA ( q ) cuts off at zero after the lag,
determining the model order.

3) Mixed Autoregressive-Moving
Average Model (ARMA)

The ARMA model combines the AR(p)
and MA(g) models, incorporating
characteristics of both types to achieve
a more flexible model . It is denoted as
ARMA(p, q) and its general form is as
follows:

Ve = Ut 01y qt Y Tt Oy pt e -
Qlet_l- Hzet_z T eel” 9q€t_q cee (3)

Where:
u : The constant term

v: . Represents the value of the time series at
time t

Ye—; . The value of the time series at time t ,
(i=1,2,...,p)

9; . The parameter autoregressive coefficients
=1,2,...,p

6; : The parameter moving average coefficients
=1,2,....q
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u; : Represents random errors with a mean of
zero and a variance of o2
The PACF values are decreasing exponentially
or in diminishing sinusoidal waves, while the
ACF for the MA(q) model cuts off at zero after
lag g, which determines the order of the model
[23].

4) Autoregressive Integrated Moving
Averages Model (ARIMA)

This model transforms the non-
stationary time series into a stationary
time series after taking differences d,
which is the degree of integration to
stabilize the series. It is one of the most
commonly used models for forecasting,
denoted as ARIMA(p,d,q), where ppp
represents the order of the AR model
and q represents the order of the MA
model [20].

Ve = U+t 01y qt Ve o+ A DY gt e -
Blet_l- Hzet_z . qut_q cee (4)

Where :

v . The value of the time series at time t

u : The mean or constant term of the series
9;: The autoregressive coefficients i=1,2,...,p
6;: The moving average coefficients j=1,2,...,q

d: The degree of differencing to make the
series stationary

5. Reasons for using Box-Jenkins
models [4,14]:

1. The Box-Jenkins methodology
addresses both univariate models and
multivariate models stationary and non
— stationary .

2. They suit complex time series and
forecasting situations that provide
various patterns, enabling the selection
of an appropriate model and
minimizing error as much as possible.

6. Box-Jenkins Methodology

To forecast using the Box-Jenkins
methodology, there are four stages to
reach the forecast as follows:

1. Checking the stationarity of the time
series, and applying the necessary

2. Model identification
3. Checking the model’s adequacy
4. Diagnosis checking the model’s

adequacy and forecasting

Stage One: Testing for the stationarity of the
time series

A time series is considered stable if it oscillates
around a constant mean with constant variance.
Conversely, if it oscillates around a non-
constant mean or has non-constant variance, it
is deemed unstable. There are three conditions
for achieving complete stationarity:[16]

1 - E(y;) = u ,The mean value must be
constant
2 - Var(y,) = a2 = $,,The variance must be
constant

where

Po = %Z?=1(yt — ¥)? , represents the
estimate of the variance of the time series,
which is constant and does not depend on
the values of t
3 - The autocovariance function must also
be constant

For seasonal time series, the autocovariance
function at seasonal lag k (where the

seasonality period is m) can be expressed
similarly, but with seasonal lags:

V=Bl Yesr —W)] e
where :
i is the autocovariance at lag k

¥: 1S the value of the time series at time t
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Ve+k 1S the value of the time series at time t+k
w is the mean of the time series

However, in seasonal data, the lag k is usually
associated with the seasonality period m.

For a seasonal period of m, the lag k will
typically be a multiple of m, such as
m,2m,3m,...

However, in seasonal data, the lag k is typically
associated with the period of the seasonality, so
if the time series exhibits seasonal patterns
with a period m, the lag k corresponds to a
multiple of m (e.g., after m periods, the series
is expected to repeat its pattern). For seasonal
series, this could involve seasonal differencing
or adjustments to account for this seasonality.

In cases of non-stationarity, which are common
in many models, the series may exhibit a
general trend or seasonality. This can be
observed through the autocorrelation and
partial autocorrelation functions, where their
values approach zero after the second or third
lag, while remaining large for several lags.
However, it is possible to transform them into
stationary time series, which can be done in
two ways:

1. Stationarity in Mean:

Non-stationarity around the mean
indicates that the time series does not
fluctuate around a constant mean,
which can be removed after appropriate
differencing. A stable time series can be
achieved after taking differences d,
such that

W,=V%y,  ..(6)

V represents the backward difference
operator defined as:

Vy: =(1- B)y:=yt - Yi-1 (7

The general form of the differencing d
can be written as:

Viye=(1- By, ...(8)
2. Stationarity in Variance:

Stationarity is achieved when there are no
varying fluctuations in the form of the time
series. When the fluctuations are non-constant,
the series is considered unstable. Therefore, it
is transformed into a stable series through
logarithmic or exponential transformations
(power transformations), which are the
simplest transformations, defined as follows:

vt ifA#0

Lny, ifA=0 +0)

yi =

Where:
y{ : The transformed series at time t

v . The original untransformed series value

A : The transformation parameter, usually
ranging from (1< A < —1)

The purpose of transforming the original data
is to obtain residuals with constant
(homogeneous) variance.

To check for stationarity, several tests can be
conducted to assess the stability of the time
series, as follows:

First: The Autocorrelation Function (ACF)

The ACF measures the degree of relationship
between values of the same variable over time
at different lags. Its values range from(-
1< p, < 1), where p, is the autocorrelation
coefficient.

= cov(Ye.Ye+k)
k Jvar(yovar Verr)

...(10)

Where:

P - The autocorrelation coefficient

13
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K : The maximum lag (where k=1,2,....K ,
which can be determined as :

1
K= 12*(%)1 ,and n represents the number of
observations.

To achieve stationarity, the autocorrelation
coefficients must fall within the confidence
interval at a 95% level and a significance level
of 0.05. If they fall outside this interval, the
series is  considered  unstable.  The
autocorrelation  coefficients are normally
distributed, expressed as:

pr ~ N(O
follows:

1 . .
,ﬁ) , The test formulation is as

Hoipk=0
Hlipkio

If p, falls within the confidence interval, the
null hypothesis is don’t reject ; if it falls
outside the confidence interval, the alternative
hypothesis is accepted [11].

Second: The
Function (PACF)

Partial  Autocorrelation

The PACF measures the relationship between
the autocorrelations (y, y.+x) and helps
determine the order and type of the model. It
can be estimated using the least squares
method or a set of approximate equations. The
mathematical formula for estimating the partial
autocorrelation coefficients is as follows:

~ kK = -
_ Pr+17Xj=1 Pk jPr+1-j

¢k+1,k+1 - 1_29{=1 6k1ﬁ] b J:1’2’-.-,k 5
and when k=1 ...(11)

@11 =p1

p; . Estimates of the autocorrelation
coefficients

The PACF can be used to determine whether
the time series is stable and to specify the
degree of the AR model, the MA model, or the

appropriate ARIMA model to represent the
time series data [10].

Third: Unit Root Test

The condition for stationarity is satisfied when
the unit roots of the series lie inside the unit
circle. One of the most commonly used
methods to detect the stationarity of a time
series is the Augmented Dickey-Fuller (ADF)
test, which is based on three mathematical
equations that assume the existence of a
random process Y .

The first equation does not include a constant
term (test without constant):

DY, = @Yoy + X BjAY,_j + e

(12)

P : changes in time series values for time
periods

The second equation includes a constant term
(test with constant):

AY, = o + B,V + X0_ B AY,_; + e,
..(13)

The third equation includes both a constant
term and a time trend (with constant and trend):

A - Yt = ®0 + @1 - Yt—l +Z‘§)=1B]Ayt—] +
St +e, ...(14)

Notations:
Y:: The random process

A : The differencing operator ( i.e , AY; =
Yt - Yt—l )

e;- A series of random variables

@,B: Test parameters
@, : The constant term

ot : The time trend

14
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7. Hypothesis Testing
The hypotheses are expressed as follows:
Hy: @, = 0 : (unstable, presence of a unit root)

H,: @, # 0 : (stable, absence of a unit root)

The test statistic is compared as: t = Sgél with

tabulated values (Dickey-Fuller tables). If the
computed t value is greater than the tabulated
value, the null hypothesis is rejected, and the
alternative hypothesis H;: @, # 0 is accepted,
indicating  that the series is stable.
Alternatively, if the p-value is less than 0.05,
the alternative hypothesis is  accepted,
suggesting the series is stable [13, 26].

8. Determining the Order of the Model

There are several criteria for determining the
order of the model, as follows:

1) Akaike Information Criterion (AIC)

The AIC, proposed by the Japanese
scientist Hirotugu Akaike in 1974,
aims to minimize the difference
between the model density and the true
density (observations), reducing the
model's variance relative to the
increase in the number of estimated
parameters, expressed as [8]:

AIC =nLogé2 +2V  ...(15)

Where:

V: The total number of estimated
parameters

62 : The variance of the error
n : The number of observations
2) Hannan-Quinn Criterion (H-Q)

Proposed by researchers Hannan and
Quinn in 1979, this criterion is

abbreviated as H-Q, and its formula is
as follows [1]:

H - Q(M) = Lng?2 + 2MCLn(Ln(n))/n , C >2
...(16)

M : Represents the number of parameters in the
model

C : Constant

3) Schwartz Bayesian Criterion (SBC)

Abbreviated as SBC, this criterion was
proposed by researcher Schwartz in 1978,
similar to the Bayesian Information Criterion
(BIC). Its formula is as follows [2]:

SBC(P) = nLn(62 ) + pLn(n) ..(17)

Where:

P : Represents the order of the chosen model or
the number of model parameters

9. Estimating Model Parameters

After diagnosing the model and determining its
order, the parameters are estimated. In the case
of the ARIMA model, estimating the
parameters can be complex and may not be
straightforward,; thus, the Maximum
Likelihood Method is employed. This method
is used when dealing with moving average
processes that have unknown error bounds,
aiming to minimize the sum of squared errors
[13].

10. Testing Model Significance

This involves testing the error term and
verifying the validity and adequacy of the
specified model. The residuals resulting from
applying the model should be randomly
distributed. To determine whether the
autocorrelation is randomly distributed, the
Ljung-Box test is applied [3].

Q=m(m+2)zk_, L

=1 (m—i)

..(18)

Where :
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m=(n-d)

n : number of time series views
d : number of differences

k : largest displacement

autocorrelation of statistics at

ri( e )

displacement
11. Residual Testing

This is used to assess whether the model is
adequate based on the values of the
autocorrelation coefficients of the residuals
within a 95% confidence interval [22].

A (W<196 =}=1- a ...(19)

12. Forecasting

To predict future values after determining the
appropriate  model and estimating its
parameters, which is considered the final stage
in the Box-Jenkins methodology. The
forecasted values can be obtained by taking the
expectation at time t, expressed as [4]:

Veer = E [Vesrl , Yer Ye—10 YVe—25---
...(20)

13. Neural Networks

Neural networks have achieved significant
advancements in many applications. Their
concept revolves around simulating the human
brain to make decisions and improve
relationships between the elements used, as
well as for forecasting [21].

In general, neural networks consist of the
following layers [12, 21]:

1. Input Layer: This layer receives data
through the neurons that comprise the
network and contains only one layer.

2. Output Layer: This is where the final
output is generated, and the architecture

of the network depends on whether
there is one or more processing units.

3. Hidden Layer: This layer performs
processing and mathematical operations
and sends the results to the output layer.

4. Weights: Weights are responsible for
connecting the layers to each other,
facilitating the transfer of data between
the units.

14. Processing Units (Neurons) [19]

Weights are the primary element connecting
the layers. The activation function is a value
constrained within a specific range, comparing
the sum with a threshold value, and its range is
between [0, 1] and [-1, 1]. The following are
common activation functions [17, 24]:

1. Sigmoid Function: This function
transforms the outputs into a value bounded
between [0, 1] and [-1, 1]. It is known as the
sigmoid activation function and is one of the
most widely used.[9]

2. Step Function: This function makes
the output value equal to 0 or 1, known
as the binary activation function.

3. Linear Function: The outputs equal
the weighted inputs for the processing
unit.

4. Sign Function: The output value from
the processing unit equals 1 or -1, used
in classification tasks to distinguish
patterns.

5. Output Function: This function adjusts
the result of the activation function.

There are several types of neural networks
based on the types of layers [27]:

1- Single-Layer Neural Network

A Single-Layer Neural Network is one of the
simplest types of neural networks. It consists of
a single layer of neurons (or units) that process
inputs and generate outputs. This network is
composed of three main components:

1. Input Layer:
It contains a set of neurons that
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represent the inputs. Each neuron in this
layer represents a specific value from
the input data.

2. Output Layer:
It contains one or more neurons to
represent the results or predictions. The
network generates output values based
on the inputs it receives.

3. Weights:

Each connection between neurons in
the input layer and the output layer has
a weight, which is a value that is
adjusted during the training process to
improve the network's accuracy. These
weights are modified using algorithms
like backpropagation.

2- Multilayer Neural Network

A Multilayer Neural Network (MLP) is a
more complex type of neural network
compared to a single-layer network. It consists
of multiple layers of neurons: an input layer,
one or more hidden layers, and an output layer.
MLPs are designed to solve more complicated
problems and can capture nonlinear patterns in
data. Here's how it works:

Components:
1. Input Layer:

This layer represents the raw input
data. Each neuron in the input layer
corresponds to a feature of the input
data.

2. Hidden Layers:

These are intermediate layers that lie
between the input and output layers.
The number of hidden layers can
vary, and each layer can have
multiple neurons. The hidden layers
allow the network to capture
complex relationships and
nonlinearities in the data. The output

of each neuron in these layers is
passed through an  activation
function, which helps the network
learn and generalize.

3. Output Layer:

The output layer provides the final
prediction or classification based on
the learned weights from the
previous layers. The number of
neurons in the output layer
corresponds to the number of
possible outputs or classes.

4. Weights and Biases:

Weights determine the strength of
the connections between neurons.
During training, the network adjusts
these weights to minimize the error
in the predictions. Biases are
additional parameters that help shift
the activation function, improving
the model's flexibility.

15. Practical Framework

The Box-Jenkins methodology was applied to
forecast the exchange rate of the Iraqgi dinar
against the US dollar. The time series data
represents monthly exchange rates from
January 2015 to December 2022, with a sample
size of 96 observations collected from the
Central Statistical Organization (Iraqi Central
Bank). The statistical software Gretl was used
to obtain the results.

16. Application of the Box-Jenkins
Methodology

1. Stationarity of the Time Series
We start by plotting the time series to
understand its behavior regarding

stationarity in mean and variance, as
shown in Figure (1):

17
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Figure (1) represents the time series plot.

Figure 1 illustrates the instability of the time
series in terms of both mean and variance. A
stationarity test can be conducted by plotting
the Autocorrelation Function (ACF) and the
Partial Autocorrelation Function (PACF) for

increased accuracy. Figure (2) sequentially
shows the plots of both functions based on the
values of the autocorrelation and partial
autocorrelation coefficients provided in Table
(1) below:

Table (1): Autocorrelation and Partial Autocorrelation Functions

Lag ACF PACF
1 0.3910 *** 0.3919 ***
2 0.3798 *** 0.2672 ***
3 0.3724 *** 0.2018 **
4 0.3579 *** 0.1492
5 0.3431 *** 0.1115
6 0.3290 *** 0.0843
7 0.2966 *** 0.0380
8 0.2815 *** 0.0288
9 02686 *** 0.0243
10 0.2556 ** 0.0200
11 0.2394 ** 0.0113
12 0.2268 ** 0.0092
13 0.2055 ** -0.0053
14 0.1901 * -0.0081
15 0.1726 * -0.0138
16 0.1615 -0.0087
17 0.1353 -0.0267
18 0.0794 -0.0803
19 0.0547 -0.0728
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*Significance of the data

AT forz

0.4 - +-1.96/T*0.5 —

lag

PACF forz

0.4r +-1.96/T*0.5 —
1
|

lag

Figure (2) shows the plots of the Autocorrelation Function (ACF) and the Partial Autocorrelation Function (PACF).

Table (2) illustrates the autocorrelation and The first difference is taken to eliminate the
partial autocorrelation coefficients. Figure 2 instability of the series in terms of the mean as
indicates that the coefficient values are outside f 0 I I 0 w S :

the confidence limits (x£0.2), which suggests
the instability of the series.

dz

Figure (3) shows the time series plot after taking the first difference.
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To confirm the stationarity of the series, the with their values illustrated in Table (2) as
Autocorrelation Function (ACF) and Partial follows:

Autocorrelation Function (PACF) are plotted,
Table (2): Values of Autocorrelation and Partial Autocorrelation After the First Difference

Lag ACF PACF
1 - 0.4964 *** - 0.4964 ***
2 - 0.0027 - 0.3307 ***
3 0.0063 - 0.2380 **
4 0.0002 -0.1810 *
5 -0.0010 - 0.1438
6 0.0135 - 0.0942
7 -0.0151 - 0.835
8 - 0.0015 -0.0771
9 - 0.0002 - 0.0718
10 0.0023 - 0.0623
11 - 0.0038 - 0.0605
12 0.0076 - 0.0448
13 - 0.0055 - 0.0413
14 0.0020 - 0.0345
15 - 0.0046 - 0.0372
16 0.0123 -0.0174
17 0.0244 0.0401
18 - 0.0274 0.0337
19 - 0.0039 0.0209
ACFford_z
‘JI +- 1.96/T~0.5 ——
N ‘
lag
PACF ford_z
¢ +-1.96/T~0.5 ——
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Figure (4) shows the plots of the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) after
taking the first difference.

To confirm stationarity, the Augmented
Dickey-Fuller (ADF) unit root test is conducted

without a constant, with a constant, and with a
Table (3): Unit Root Test Results

constant and trend. The results are presented in
Table (3) as follows:

Estimated value Test statistic p — value

Test without constant -2.91793 -7.88051 9.738e-14
Test with constant -2.92688 -7.85498 1.324e-12

With constant and trend -2.94965 -7.87206 5.129%-12

The results of the unit root test indicate that the To diagnose the suitable model for

p-value is less than the significance level of
0.05 for the equation without a constant, with a
constant, and with a constant and trend. This
suggests that the series is stationary after taking
the first difference.

2. Diagnosis, Estimation, and Selection of
the Best Model

comparison, statistical criteria such as the
Akaike Information  Criterion (AIC),
Bayesian Schwartz Criterion (SBC), and
Hannan-Quinn Criterion (H-Q) are relied
upon. The results are presented in Table (4)
below:

Table (4): Comparison of Box-Jenkins Models

Model AlC SBC H-Q
1 (2,1,0) 1281.029 1291.202 1285.138
2 (1,2,0) 1383.021 1390.618 1383.021
3 (1,1,2) 1214.569 1227.285 1219.706
4 (1,1,1) 1238.007 1248.180 1242.116
5 (1,1,0) 1305.809 1313.439 1308.891
6 (0,1,2) 1212.919 1223.093 1217.029

The results indicate that the ARIMA (0,1,2)
model is the best, as it has the lowest errors
among the three criteria. The estimation of the

parameters for the best model is shown in
Table (5) below:

Table (5): Estimation of Parameters for the ARIMA(0,1,2) Model and Their Significance Values

Model Parameters coefficient Std.error Z p- value
Const 0.197434 0.0379785 5.199 2.01e-Q7***

Theta -1.99942 0.00282689 -707.3 0.0000***

Theta - 2 0.999978 0.0278446 359.1 0.0000***

The results indicate the significance of the
model parameters when comparing the p-value,
which is less than the significance level of
0 . 0 5

To test the model and confirm its adequacy
after estimation, the Ljung-Box test is applied.
The calculated Q statistic (Q_(L-B)) is
1.54865, and when compared to the critical
Chi-square value, it is greater than the Q

statistic. Furthermore, all autocorrelation and
partial autocorrelation coefficients fall within
the confidence limits, indicating that the model
used is suitable for forecasting. The following
figure 5 illustrates the coefficients of the
Autocorrelation Function (ACF) and Partial
Autocorrelation Function (PACF) for the
residual series of the ARIMA(0,1,2) model,
which fall within the confidence interval.

21



Iraqi Statisticians Journal / VVol. 2, no.1, 2025: 09-28

Residual ACF
+- 1.96/T~0.5 ——
L. L0 .« -
" LN DR B R D B RN B B ]
lag
Residual PACF
+- 1.96/T"0.5 ——
L. L. n
L IR R B DR B RN B R |

Figure (5): Autocorrelation and Partial Autocorrelation Coefficients for the Residual Series of the Significant

17. Forecasting

lag

ARIMA(0,1,2) Model

This is the final stage in building Box-Jenkins
models after conducting all tests on the time
series and selecting the significant model at the

95% confidence level, with z(0.025)

Table (6): Forecasted Values for the Time Series Using Box-Jenkins

= 1.96.

Table (6) presents the forecasted values for the
time series from (2023:1 to 2025:11) as

follows:

Obs prediction std. error 95% interval
2023:01 1500.26 141.870 (1222.20, 1778.32)
2023:02 1503.56 143.474 (1222.36, 1784.77)
2023:03 1506.30 145.384 (1221.36, 1791.25)
2023:04 1509.04 147.269 (1220.40, 1797.68)
2023:05 1511.78 149.129 (1219.49, 1804.07)
2023:06 1514.52 150.967 (1218.63, 1810.41)
2023:07 1517.26 152.783 (1217.81, 1816.71)
2023:08 1520.00 154.578 (1217.03, 1822.97)
2023:09 1522.74 156.352 (1216.29, 1829.18)
2023:10 1525.48 158.106 (1215.60, 1835.36)
2023:11 1528.22 159.840 (1214.93, 1841.50)
2023:12 1530.95 161.557 (1214.31, 1847.60)
2024:01 1533.69 163.255 (1213.72, 1853.67)
2024:02 1536.43 164.935 (1213.17, 1859.70)
2024:03 1539.17 166.599 (1212.64, 1865.70)
2024:04 1541.91 168.246 (1212.15, 1871.67)
2024:05 1544.65 169.877 (1211.70, 1877.60)
2024:06 1547.39 171.493 (1211.27, 1883.51)
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2024:07 1550.13 173.094 (1210.87, 1889.39)
2024:08 1552.87 174.680 (1210.50, 1895.23)
2024:09 1555.61 176.251 (1210.16, 1901.05)
2024:10 1558.35 177.809 (1209.85, 1906.85)
2024:11 1561.09 179.354 (1209.56, 1912.61)
2024:12 1563.82 180.885 (1209.30, 1918.35)
2025:01 1566.56 182.403 (1209.06, 1924.07)
2025:02 1569.30 183.909 (1208.85, 1929.76)
2025:03 1572.04 185.402 (1208.66, 1935.42)
2025:04 1574.78 186.884 (1208.50, 1941.07)
2025:05 1577.52 188.354 (1208.35, 1946.69)
2025:06 1580.26 189.812 (1208.23, 1952.28)
2025:07 1583.00 191.260 (1208.14, 1957.86)
2025:08 1585.74 192.696 (1208.06, 1963.41)
2025:09 1588.48 194.122 (1208.00, 1968.95)
2025:10 1591.22 195.537 (1207.97, 1974.46)
2025:11 1593.95 196.943 (1207.95, 1979.96)

Table (6) shows the forecasted values for the years 2023—-2025, and we observe an increase in the

p r i c e
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Il r a d i n a r
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The time series of the forecasted values can be plotted, as illustrated in Figure (6).

dz
forecast ——
95 percent intenval —s—

18. Artificial

Neural

Figure (6): Plot of Forecasted Values

Network

The neural network is used to forecast changes
in the price of the Iragi dinar against the US
dollar. The artificial neural network is selected
to build the time series model using a dynamic
network, utilizing the software package
(MATLAB R2015b).

The network is defined, consisting of inputs,
hidden layers, and outputs. Data is processed
using the NAR neural network, with the data
divided into three groups.

The first group, the training set, includes 68

observations, representing 70% of the total
observations. The network is trained by
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calculating the difference between the actual network, where the price of the lIraqgi dinar
outputs and the outputs predicted by the serves as the independent variable input
network, determining the error level, and neuron, consisting of 68 observations. The
adjusting the weights to minimize the error. number of hidden layers is set to one, while the
number of neurons is determined through the
The second group, the validation set, includes training of the network.
14 observations, representing 15%, to assess
the network's performance and its predictive A nonlinear activation function is used in the
ability during training. hidden layer, while a linear activation function
is applied in the output layer, with one output
The third group, the test set, also includes 14 neuron. The testing is conducted to obtain the
observations, accounting for 15% of the data, best architecture using the hidden neurons, as
for conducting the final test. These three ilfTustrated in Figure (7).

groups determine the architecture of the

Hidden Layer with Delays Qutput Layer

Hy(tJ 9@ l ) l mﬂL
;VT .,I/M.E,l/  J

Figure (7): Architecture of the Neural Network

The number of hidden layers is 10, with one the relationship between the targets and the
output layer. To train the network, the outputs; the smaller the value, the higher the
TRANLM backpropagation algorithm is used prediction efficiency.

to minimize the Mean Squared Error (MSE) for

improved output efficiency. The correlation Figure (8) Iillustrates the decrease in the
coefficient (R) is calculated to evaluate the network errors with increased training, as
efficiency of the network training, reflecting shown below:
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Errors = Targets - Outputs
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Figure (8): Network Errors After Training
The autocorrelation function lies within the confidence limits, indicating the efficiency of the

network training. The value of the correlation coefficient (R = 6.51106e-1) is shown in the following
f i g u r e :

Response of Qutput Element 1 for Time-Series 1
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w 12007 +  Walidation Outputs | -
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5
8 60|
=
= 400
200
D 1 1 = 1 1 1 1 1 1 1
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T
=1500 :
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Time
Figure (9): Autocorrelation Function
This figure illustrates the prediction of the dollar using neural networks, with the results
exchange rate of the Iraqi dinar against the US presented in Table (7).
observation Prediction Observation prediction observation Prediction
1592.09991 2023:01 1623.70582 2024:01 1655.61848 2025:01
1594.72182 2023:02 1626.35361 2024:02 1658.29144 2025:02
1597.34591 2023:03 1629.00353 2024:03 1660.96645 2025:03
1599.97218 2023:04 1631.65556 2024:04 1663.64353 2025:04
1602.60062 2023:05 1634.30972 2024:05 1666.32265 2025:05
1605.23122 2023:06 1636.96598 2024:06 1669.00382 2025:06
1607.86400 2023:07 1639.62435 2024:07 1671.68703 2025:07
1610.49893 2023:08 1642.28482 2024:08 1674.37227 2025:08
1613.13602 2023:09 1644.94738 2024:09 1677.05954 2025:09
1615.77525 2023:10 1647.61204 2024:10 1679.74882 2025:10
1618.41664 2023:11 1650.27877 2024:11 1682.44012 2025:11
1621.06016 2023:12 1652.94759 2024:12 1655.61848 2025:01
We observe an increase in the price for the making them an effective tool for improving
y ears 2 023 -2025. results. This is achieved by intensively training
the network to develop a more accurate and
19. Conclusions: suitable  model for predicting various

phenomena and patterns in the data.
1. Neural networks excel in handling data and
deriving appropriate models for analysis,
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2. There is an increase in the exchange rate of
the Iragi dinar using neural networks, which
explained 70% of the observations (68) for
training the network, 15% for validating the
network, and 15% for testing the architecture
of the network. Furthermore, increasing the
training of the network leads to a reduction in
the network errors, thereby providing greater
accuracy in predictions compared to the Box-
Jenkins method.

3. Neural networks become more effective as
the size of the data increases, which leads to
enhanced training, resulting in the best model
and the lowest Mean Squared Error (MSE).
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