On Some Types Of Sc-continuous Functions

And

Sc-connected Space

By

Dunya M. Hammed

Department of Mathematic, College of Education, AL-Mustansirya University

حول بعض انواع الدوال Sc-المستمرة و

الفضاءات Sc المتصلة

مقدم من قبل

دنیا محد حمید

الجامعة المستنصرية- كلية التربية- قسم الرياضيات

Abstract :

The main aim of this work is to study some new classes of Sc- Continuous function which are(S-sc- Continuous, S^*-sc- Continuous and $S^{**}-sc-$ Continuous) function and discussion the relation between these functions. As well as several properties of these functions are proved. Also, we introduce and study new class of Connected spaces called Sc- Connected spaces.

المستخلص:

الهدف الرئيسي من هذا العمل هو در اسة صف جديد من الدوال C- المستمرة تدعى الدوال (C-S-lلمستمرة ق S-S- المستمرة و **S-S- المستمرة) وناقشنا العلاقة فيما بينها . وايضاً بعض صفات تلك الدوال بر هنت . وكذلك قدمنا ودرسنا صف جديد من الفضاءات المتصلة تدعى Sc- الفضاءات المتصلة.

<u>1-Introduction:</u>

In 1963[5], Levin defined a set A of space X will be termed semi-open in topology and use these sets to study semi-continuity in topological space.

Joseph and Kwack[4] introduce the Concept of θ -semi open and using semi-open sets to improve the notation of S-closed space. Alias and Zanyar[1] introduce a new class of semi-open sets called sc-open sets, this class of sets lies strictly between the class of θ -semi open sets and semi-open sets also study its fundamental properties and compare it with some other types of sets.

In this paper, we introduce some types of Sc- Continuous functions namely [S-sc- Continuous functions, S^* -sc- Continuous functions, S^{**} -sc- Continuous functions] in topological spaces and study some of their properties. Also we study new class of connected spaces called Sc-connected spaces.

Throughout this paper (X, τ) , (Y, σ) and (Z, μ) (or simply X, Y and Z) represent non – empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a sub sets *A* of a spaces *X*. *cL*(*A*) and **int** (*A*) denote the closure of *A* and the interior of *A* respectively.

2- <u>Preliminaries:</u>

Some definition and basic concepts have been given in this section.

<u>Definition(2-1): [5]</u>

A subset A of a topological space (X, τ) is said to be *semi-open* if

 $A \subseteq c \operatorname{L}(in t(A))$ and denoted by s-open.

<u>Remark (2-2): [5]</u>

In any topological space. It is clear that every open set is s-open, but the converse is not true in general. To illustrate that consider the following example.

Example (2-1)

Consider $X = \{a, b, c\}$ with the topology

 $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$ and let A={a,c}, then A is s-open but not open set in a space X.

<u>Remark (2-3): [5],[2]</u>

In any topological space (X, τ)

- 1- The class of all s-open subsets of X. is denoted by SO(X).
- 2- The union of any collection of s-open subsets of X is s-open in X
- 3- The intersection of two s-open sets in X is not necessary to be s-open.

<u>Definition (2-4): [1]</u>

A subset A of a space X is called *sc-open* if $A \in SO(X)$ and for each $x \in A$, there exists a closed set F such that $x \in F \subseteq A$. The class of all sc-open subsets of a topological space(X, τ) is denoted by SCO(X).

<u>Proposition(2-5): [1]</u>

A subset A of a space X is sc-open if and only if A is semi-open and it is the union of closed sets, i.e, $A = \bigcup F_{\alpha}$ where A is semi-open and F_{α} is closed for each α .

<u>Remark (2-6): [1]</u>

Every sc-open subsets of a space X is semi-open, but the converse is not true in general as shown in the following example.

Example (2-2)

Consider $X = \{a, b, c\}$ with the topology $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}, \{a, b\}, \{a,$

Then the family of closed sets are: $\emptyset, X, \{b, c\}, \{a, c\}, \{c\}$, we can find easily the following families:

 $SO(X) = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\},\$

 $SCO(X) = \{X, \emptyset, \{a, c\}, \{b, c\}\}$. Then $\{a\}$ is semi-open but $\{a\}$ is not sc-open set in a topology

The next example shows that an sc-open set need not be closed.

Example (2-3) :

Consider the space R with the usual topology. Now A=(0,1] such that

 $A = (0,1] = \bigcup_{n=1}^{\infty} \left[\frac{1}{n}, 1\right]$, then A is sc- open set, but it is not closed.

<u>Remark (2-7): [1]</u>

- 1. The union of any collection of sc-open sets in a topological space (X, τ) is sc-open.
- 2. The intersection of two sc-open sets in X is not necessarily sc-open. The following example shows that:

Example (2-4):

Consider the space an in Example(2-2), there $\{a,b\} \in SCO(X)$ and $\{b,c\} \in SCO(X)$, but $\{a,b\} \cap \{b,c\} = \{c\} \notin SCO(X)$.

<u>Proposition(2-8): [1]</u>

If the family of all semi-open sets of a space X is a topology on X, then the family of scopen is also is a topology on X.

<u>Definition (2-9): [8]</u>

A topological space X is said to be *extremaly disconnected* if

cL(G) is open for every open set G of X.

<u> Proposition(2-10): [1]</u>

Let (X, τ) be a topological space . If X is extremally disconnected , then SCO(X) forms a topology on X.

Definition (2-11): [3]

A space X is called *locally indiscrete* if every open subset of X is closed.

Definition (2-12): [9]

A topological space X is T_I -space iff there exist open sets G and H such that $a \in G$, $b \notin G$ and $b \in H$, $a \notin H$. Then open sets G and H are not necessarily disjoint.

Proposition(2-13): [1]

If a space X is T_1 -space, then SO(X) = SCO(X).

<u> Proposition(2-14): [1]</u>

If a topological space (X, τ) is locally indiscrete, then SO(X) = SCO(X).

<u>Remark (2-15): [1]</u> Since every open set is semi-open, it follows that if a topological space (X, τ) is T₁-space or locally indiscrete, then $\tau \subseteq SCO(X)$.

<u>Theorem (2-16): [1],[2]</u>

Let (X, τ) be a topological space.

- 1- If $A \in \tau$ and $B \in SO(X)$, then $A \cap B \in SO(X)$.
- 2- If $A \in SCO(X)$ and B is clopen, then $A \cap B \in SCO(X)$.

Theorem (2-17): [1], [5][7]

let (Y, τ_Y) be a subspace of a space (X, τ) .

- 1. If A is a closed subset in X and $A \subseteq Y$, then A is closed in Y.
- 2. If $A \in SO(X, \tau)$ and $A \subseteq Y$, then $A \in SO(Y, \tau_Y)$.
- 3. If $A \in SCO(X, \tau_X)$ and $A \subseteq Y$, then $A \in SCO(Y, \tau_Y)$.

Corollary(2-18): [1]

Let A and Y be any subsets of a space X If $A \in SCO(X)$ and Y is clopen subset of X, then

$A \cap Y \in SCO(Y)$.

Proof:

Follows from theorem(2-16)-step2- and theorem(2-17)-step3-.

Definition (2-19): [1][5]

A function $f: X \to Y$ is called

- 1- S-continuous(semi- continuous) if the inverse image of every open set in *Y* is a s-open in *X*.
- 2- Sc- continuous if the inverse image of every open set in Y is an sc-open in X.

<u>Proposition(2-20): [1]</u>

Every Sc- continuous function is S-continuous.

<u>Definition (2-21): [6]</u>

A space *X* is said to *X* be *S*-disconnected space if there exists two non-empty s-open sets *A*, *B* in *X* satisfy:

 $1- X = A \cup B.$ $2- A \cap B = \emptyset.$

Definition (2-22):[6]

A space X is said to be S-connected Space if X is not S-disconnected.

Example (2-6):

- 1- Le $X = \{a, b, c\}$ with topology $\tau = \{X, \emptyset, \{a\}\} X$ is S-connected since $X \{a\}$ are the only open sets which are not disjoint.
- 2- Let X = {a, b, c} with topology τ = {X, Ø, {a}, {b}, {a, b}}, X is
 S-disconnected since {a} and {b, c} are disjoint s-open sets in X such that X ={a} ∪ {b, c}

<u>3- Sc- continuous function types:</u>

In this section, we introduce a new class of Sc- Continuous functions namely [S- sc-Continuous functions, S^* -sc-Continuous functions and S^{**} -sc-Continuous functions] and studying the relations between them. Also, several properties of these functions are proved.

Definition (3-1):

A function $f: X \to Y$ from a topological space X into a topological space Y is said to be S- sc-Continuous if the inverse image of every sc-open set in Y is s-open set in X.

Definition (3-2):

A function $f: X \to Y$ from a topological space X into a topological space Y is said to be S^* -sc-Continuous if the inverse image of every s-open set in Y is sc-open set in X.

Proposition(3-3):

Every S^{*}- sc- Continuous functions is S- sc- Continuous.

Proof:

Let $f: (X,\tau) \to (Y,\sigma)$ be a S^{*}- sc- Continuous function, and G be an sc-open set in Y, then by Remark(2-6) we get G is an s-open set in Y. Thus, $f^{-1}(G)$ is an sc-open set in X and by using Remark(2-6) we have $f^{-1}(G)$ is an s-open set in Y. Hence, $f: X \to Y$ is a S-sc- Continuous function.

But the converse is not true in general, as the following example show:

Example (3-1):

let $X = \{a, b, c\}$ with the topology $\tau = \{X, \emptyset\{a\}, \{a, b\}\}$. Then

 $SO(X) = \{X, \emptyset\{a\}, \{a, b\}\{a, c\}\}, SCO(X) = \{X, \emptyset\}.$

And let $Y = \{d, e, f\}$ with the topology $\sigma = \{Y, \emptyset, \{d\}, \{e\}, \{d, e\}\}$. Then

$$SO(Y) = \{Y, \emptyset\{d\}, \{e\}, \{d, e\}, \{d, f\}, \{e, f\}\}$$

$$SCO(Y) = \{Y, \emptyset, \{d, e\}, \{e, f\}\}.$$

Define $f: (X, \tau) \to (Y, \sigma)$ by f(a) = f(b) = f and

f(c) = d It is observe that f is S- sc- Continuous function but not S^{*}- sc- Continuous, since for the s-open set $G = \{d\}$ in y but $f^{-1}(G) = f^{-1}(\{d\}) = \{c\}$ is not Sc-open set in X.

Proposition(3-4):

Every S^{*}- sc- Continuous functions is Sc- Continuous.

Proof:

Let $f: (X, \tau) \to (Y, \sigma)$ be S^{*}- sc- Continuous function, and let G be an open set in Y. then by using Remark(2-2) we get G is an s-open set in Y. Thus, $f^{-1}(G)$ is an sc-open set in X. Hence, a function $f: X \to Y$ is a Sc- Continuous.

The following example shows the converse is not necessarily true:

Example (3-2):

let $X = \{a, b, c\}$ with the topology $\tau = \{X, \emptyset\{a\}, \{a, b\}\}$. Then

 $SO(X) = \{X, \emptyset\{a\}, \{b\}\{a, b\}\}, \{a, c\}, \{b, c\}\}$ and

 $SCO(X) = \{X, \emptyset, \{a, c\}\{b, c\}\}.$

Define $f: (X, \tau) \to (Y, \tau)$ by f(a) = f(c) = b and

f(b) = c It is easily seen that f is Sc- Continuous function but not

S^{*}- sc- Continuous, since for the s-open set $G = \{a, c\}$ in X but

 $f^{-1}(G) = f^{-1}(\{a,c\}) = \{b\}$ is not sc-open set in X.

<u>Corollary(3-5)</u>: Every S^{*}- sc- Continuous function is S- Continuous

Proof: Follows from proposition(3-4) and proposition(2-20).

But the converse is not necessarily true in general. It is easily seen that in **Example(3-2)**. f is S-Continuous but is not S^* - sc-Continuous.

Here in the following propositions addition the necessarily condition in order to the converse of proposition(3-3) is true:

Proposition(3-6):

If $f: X \to Y$ is a S-sc- Continuous function and X, Y are T_1 -space, then f is S^{*}-sc- Continuous.

Proof:

Let G be an s-open set in Y and since Y is T_1 -space, then by using proposition(2-13) we get G is sc-open set in Y. Thus, $f^{-1}(G)$ is an s-open set in X and since X is T_1 -space and by proposition(2-13) we have $f^{-1}(G)$ is an sc-open set in X. Hence, A function $f: X \to Y$ is a S^{*}-sc-Continuous.

Remark (3-7):

If $f: X \to Y$ be a S-sc- Continuous function, then f is not necessarily Sc- Continuous. It is easily see that in *Example (3-1)* f is S-sc- Continuous, but not sc- Continuous, since for the open set $G = \{d\}$ in y but $f^{-1}(G) = f^{-1}(\{d\}) = \{c\}$ is not sc-open set in X.

The following proposition given the necessarily condition to make Remark(3-7) is true:

Proposition(3-8):

If $f: X \to Y$ be a S-sc- Continuous function and X, Y are T₁-space, then f is sc- Continuous.

Proof:

By proposition(3-6) we get $f: X \to Y$ is a S^{*}- sc- Continuous function, and by using proposition(3-4) we have a function $f: X \to Y$ is a Sc- Continuous.

Remark (3-9) :

If $f: X \to Y$ is a Sc- Continuous function then, f is not necessarily S-sc- Continuous.

It is easily seen that from the following example:

Example (3-3): Let $X = \{a, b\}$ with the topology $\tau = \{X, \emptyset, \{a\}, \{b\}\}$. Then

 $SO(X) = SCO(X) = \{X, \emptyset, \{a\}, \{b\}\}$.Let $Y = \{a, b, c\}$ with the topology

 $\sigma = \{Y, \emptyset\{a\}, \{b\}\{a, b\}\}.SO(Y) = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}, and$

SCO $(Y) = \{Y, \emptyset, \{a, c\}, \{b, c\}\}$. Define $f: (X, \tau) \to (Y, \sigma)$ by f(a) = a, f(b) = b and f(c) = c. It is easily see that f is Sc-Continuous function. But is not S-sc- Continuous, since for the scopen set $G = \{a, c\}$ in (Y, σ) but $f^{-1}(G) = f^{-1}(\{a, c\}) = \{a, c\}$ is not s-open set in (X, τ) .

*Now, we give another type of S-sc- Continuous function is called S^{**}-sc- Continuous.*

Definition (3-10):

A function $f: X \to Y$ from a topological space X in to a topological space Y is said to be S^{**} -sc-Continuous if the inverse image of every sc-open set in Y is sc-open in X.

Proposition(3-11):

Every S^{**}-sc- Continuous function is S-sc- Continuous.

Proof:

Let $f: X \to Y$ be a S^{**}-sc- Continuous function and let G be an sc-open set in Y. Thus, $f^{-1}(G)$ is an sc-open set in X. And by using Remark(2-6) we get $f^{-1}(G)$ is an s-open set in X. Hence, $f: X \to Y$ is a S-sc- Continuous function.

But the converse of proposition (3-11) is not necessarily true. It is easily see that in Example(3-1). Since for the sc-open set $G = \{e, f\}$ in Y. But $f^{-1}(G) = f^{-1}(\{e, f\}) = \{a, b\}$ is not sc-open set in X.

Remark (3-12)

If $f: X \to Y$ be a S^{**}-sc- Continuous function, then f is not necessarily S–Continuous. It is easily seen that in *Example(3-2)*, f is S–Continuous but is not S^{**}- sc- Continuous.

Here is the following propositions addition the necessarily condition in order to the converse of proposition(3-11) and Remark(3-12) are true.

Proposition(3-13):

If $f: X \to Y$ is a S-sc- Continuous function and X is T₁-space, then f is a S^{**}-sc- Continuous.

Proof:

Let G be an sc-open set in Y. Thus, $f^{-1}(G)$ is an s-open set in X. Since X is T_1 -space, then by using proposition(2-13) we get $f^{-1}(G)$ is an sc-open set in X. Hence, a function $f: X \to Y$ is a S^{**} -sc- Continuous

Proposition(3-14):

If $f: X \to Y$ is a S^{**}-sc- Continuous function and Y is T₁-space, then *f* is S–Continuous.

Proof:

Let G be an open set in Y. Since Y is T₁-space and by Remark (2-15) we get G is an sc-open set in Y. Thus, $f^{-1}(G)$ is an sc-open set in X and by using Remark(2-2) we get $f^{-1}(G)$ is an sopen set in X. Hence, $f: X \to Y$ is a S- Continuous function.

Now the following proposition show the relation between S^{**} -sc- Continuous function and S^{*} -sc- Continuous function.

Proposition(3-15):

Every S^{*}-sc- Continuous function is S^{**}-sc- Continuous.

Proof:

Let $f: X \to Y$ be a S^{*}-sc- Continuous, and let G be an sc-open set in Y. then by using Remark(2-2) we get G is an s-open set in Y. Thus, $f^{-1}(G)$ is an sc-open set in X. Hence, a function $f: X \to Y$ s a S^{**}-sc- Continuous.

The converse of proposition(3-15) need not be true as seen from the following example:

Example (3-4):

Let $X = \{a, b, c\}$ with the topology $\tau = \{X, \emptyset, \{a\}, \{b\}\{a, b\}\}$. And let $Y = \{d, e, f\}$. With the topology $\sigma = \{Y, \emptyset\{d\}, \{d, e\}\}$. Define $f: (X, \tau) \to (Y, \sigma)$ by f(a) = e, f(b) = d and f(c) = f.

It is seen that f is S^{**}-sc- Continuous function, but is not S^{*}-sc- Continuous. Since for the s-open set $G = \{d\}$ in Y but $f^{-1}(G) = f^{-1}(\{d\}) = \{b\}$ is not sc-open set in X

Now, the following proposition addition the necessarily condition in order to the converse of proposition(3-15) is true.

Proposition(3-16):

If $f: X \to Y$ is a S^{**}-sc- Continuous function and Y is T₁-space, then f is S^{*}-sc- Continuous.

Proof:

Let G be an s-open set in Y. since Y is an T₁-space and by using proposition(2-13) we get G is an sc-open set in Y. Thus, $f^{-1}(G)$ is an sc-open set in X. Hence, a function $f: X \to Y$ is a S^{*}-sc-Continuous.

Remark (3-17)

- 1- If $f: X \to Y$ is a Sc- Continuous function, then f is not necessarily S^{**}-sc- Continuous. We can see that from *Example(3-2)*.
- 2- If $f: X \to Y$ is a S^{**}-sc- Continuous, then f is not necessarily Sc- Continuous. It is easily see that in *Example(3-4)*.

Here, in the following proposition given the necessarily condition to make every S^{**} -sc-Continuous function is Sc-Continuous.

Proposition(3-18):

If $f: X \to Y$ is a S^{**}-sc- Continuous function and Y is T₁-space or locally indiscrete, then *f* is Sc- Continuous.

Proof:

Let G be an open set in Y since Y is T₁-space or locally indiscrete and using Remark(2-15) we get G is an sc-open set in Y. Thus, $f^{-1}(G)$ is an sc-open set in X.Hence, a function $f: X \to Y$ is a Sc- Continuous.

Here, in the following diagram. It shows the relation between the S-sc- Continuous function types (without using condition), where the converse is not necessarily true.

Summarized The Relation Between S-sc- Continuous Function Types

Now we give the composition of some types of S-sc- Continuous function.

Proposition(3-19):

If a function $f: X \to Y$ is S-Sc- Continuous and function.

- 1. $g: Y \to Z$ is S^{**}-sc- Continuous, then the composition $gof: X \to Z$ is S-sc- Continuous.
- 2. $g: Y \to Z$ is S^{*}-sc- Continuous, then the composition $gof: X \to Z$ is S-sc- Continuous.

Proof:

- (1) Let G be an sc-open set in Z. Thus, g⁻¹(G) is an sc-open set in Y, since f is S-sc-Continuous function. Then f⁻¹(g⁻¹(G)) is an s-open set in X.
 But f⁻¹(g⁻¹(G)) = (g0f)⁻¹(G). Then, (g0f)⁻¹(G) is an s-open set in X. Hence g0f: X → Z is S-sc-Continuous function.
- (2) Since $g: Y \to Z$ is a S^{*}-sc- Continuous function. Then by proposition(3-15) we get $g: Y \to Z$ is a S^{**}-sc- Continuous and by proposition(3-19) step-1- we obtain $g0f: X \to Z$ is S-sc- Continuous function.

Proposition(3-20):

If a function $f: X \to Y$ is S^{**}-sc- Continuous and a function $g: Y \to Z$ is S-sc- Continuous .Then the composition $g0f: X \to Z$ is Sc – Continuous function.

Proof:

Let G be an open set in Z. Thus, $g^{-1}(G)$ is an sc-open set in Y. since $f: X \to Y$ is a S^{**}-sc-Continuous function. Then we get $f^{-1}(g^{-1}(G))$ is an sc-open set in X.

But $f^{-1}(g^{-1}(G)) = (g0f)^{-1}(G)$. Then, $(g0f)^{-1}(G)$ is an sc-open set in X.

Hence, $g0f: X \rightarrow Z$ is a Sc- Continuous function.

Proposition(3-21):

If a function $f: X \to Y$ and $g: Y \to Z$ are S^{**}-sc- Continuous, then $g0 f: X \to Z$ is S^{**}-sc-Continuous (S-sc- Continuous) respectively.

Proof:

Let G be an sc-open set in Z. Thus, $g^{-1}(G)$ is an sc-open set in Y. Then . Then we get $f^{-1}(g^{-1}(G))$ is an sc-open set in X. But $f^{-1}(g^{-1}(G)) = (g0f)^{-1}(G)$. Then, $(g0f)^{-1}(G)$ is an sc-open set in X. Hence, $g0f: X \to Z$ is S^{**}-sc- Continuous function. by proposition(3-11) we get $g0f: X \to Z$ also S-sc- Continuous function.

Corollary(3-22):

Let $X_1, X_2, X_3, \dots, X_n$, X_{n+1} be a topological spaces and if $f_1: X_1 \to X_2$, $f_2: X_2 \to X_3$,, $f_n: X_{n:\to} X_{n+1}$ are S^{**} - sc -continuous function. Then $f_n 0 f_{n-1} 0 \dots 0 f_1: X_1 \to X_{n+1}$ is

S^{**}-sc- Continuous (S-sc- Continuous) respectively.

<u>Proof :</u>

Let G be a sc-open set in X_{n+1} . [since $f_1, f_2, ..., f_n$ are S**-sc-continuous functions]. Then

 $f_n^{-1}(G)$ is sc-open in X_n . Thus, $f_{n-1}^{-1}(f_n^{-1}(G))$ is sc-open in X_{n-1} .

 $also f_{n-2}^{-1}(f_{n-1}^{-1}(f_n^{-1}(G)))$ is sc-open set in $X_{n-2},...$ and so on.

Then we have $f_1^{-1}(f_2^{-1}(\dots, f_{n-2}^{-1}(f_{n-1}^{-1}(f_n^{-1}(G))\dots)))$ is an sc-open set in X_l . But

 $f_1^{-1}(f_2^{-1}(\dots, f_{n-2}^{-1}(f_{n-1}^{-1}(f_n^{-1}(G))\dots))) = (f_n o f_{n-1} o \dots o f_1)^{-1}(G).$ Hence,

 $f_n 0 f_{n-1} 0 \dots 0 f_1 : X_1 \to X_{n+1}$ is S**-sc-continuous function,

also by proposition (3-11) we obtain $f_n 0 f_{n-1} 0 \dots 0 f_1 : X_1 \to X_{n+1}$ is a S-sc-continuous function.

The following corollary it is easy. Thus, we omitted it

Corollary(3-23):

If a function $f: X \to Y$ is S^{**}-sc- Continuous and function $g: Y \to Z$ is a

S^{**}-sc-Continuous ,then $g0f: X \to Z$ is a S^{*}-sc-Continuous [S ** -sc - Continuous and S - sc - Continuous]function respectively.

Proposition(3-24):

If a function $f: X \to Y$ is S^{*}-sc- Continuous and a function.

- 1) $g: Y \to Z$ is Sc Continuous, then $g0f: X \to Z$ is Sc-Continuous.
- 2) $g: Y \to Z$ is S-sc- Continuous, then $g0f: X \to Z$ is S^{**}-sc- Continuous (S-sc- Continuous) function respectively.

Proof:

- (1) Let G be an open set in Z. Thus g⁻¹(G) is an sc-open set in Y and by using Remark(2-6) we get g⁻¹(G) is an s-open set in Y. Since f: X → Z is S^{*}-sc- Continuous. Then, f⁻¹(g⁻¹(G))is an sc open set in X. Butf⁻¹(g⁻¹(G)) = (g0f)⁻¹(G). Then, (g0f)⁻¹(G) is an sc-open set in X. Hence, g0f: X → Z is a Sc- Continuous function.
- (2) Let G be an sc-open set in Z. Thus g⁻¹(G) is an sc-open set in Y and since f: X → Z is S^{*}-sc- Continuous function. Then, f⁻¹(g⁻¹(G)) is an sc-open set in X.But f⁻¹(g⁻¹(G)) = (g0f)⁻¹(G).Hence, g0f: X → Z is a S^{**}-sc- Continuous function, and by using proposition(3-11) we get g0f: X → Z also S-sc- Continuous function.

Proposition(3-25):

If a function $f: X \to Y$ and $g: Y \to Z$ are S^{*}-sc- Continuous, then the composition $g0f: X \to Z$ is S^{*}-sc- Continuous.

<u>**Proof:**</u> Let G be an s-open set in X. Thus $g^{-1}(G)$ is an sc-open set in ,and by using Remark (2-6) we get $g^{-1}(G)$ is an s-open set in Y. Then, $f^{-1}(g^{-1}(G))$ is an sc-open set in X.

But $f^{-1}(g^{-1}(G)) = (g0f)^{-1}(G)$. Hence, $g0f: X \to Z$ is S^{*}-sc- Continuous function.

Corollary(3-26):

Let $X_1, X_2, X_3, \dots, X_n, X_{n+1}$ be a topological spaces and if $f_1, X_1 \rightarrow X_2, f_2, X_2 \rightarrow X_3, \dots, f_n, X_{n-1} X_{n+1}$ are S* - sc -continuous function. Then $f_n 0 f_{n-1} 0 \dots 0 f_1 : X_1 \rightarrow X_{n+1}$ is

S^{*}-sc- Continuous .

<u>Proof</u>: Let G be a s-open set in X_{n+1} . [since f_n is S*-sc-continuous functions]. Then

 $f_n^{-1}(G)$ is sc-open in X_n and by Remark(2-6) we have $f_n^{-1}(G)$ is s-open in X_n . Since f_{n-1} is S*-sc-continuous functions we get $f_{n-1}^{-1}(f_n^{-1}(G))$ is sc-open in X_{n-1} , and by Remark(2-6) we obtain $f_{n-1}^{-1}(f_n^{-1}(G))$ is s-open in X_{n-1} . Also since f_{n-2} is S*-sc-continuous functions. Thus,

 $f_{n-2}^{-1}(f_{n-1}^{-1}(f_n^{-1}(G)))$ is sc-open set in X_{n-2} , and by Remark(2-6) we have $f_{n-2}^{-1}(f_{n-1}^{-1}(f_n^{-1}(G)))$ is s-open set in X_{n-2} , and so on.

Then we have $f_1^{-1}(f_2^{-1}(\dots, f_{n-2}^{-1}(f_{n-1}^{-1}(G))\dots)))$ is an sc-open set in X_l . But

$$f_1^{-1}(f_2^{-1}(\dots, f_{n-2}^{-1}(f_{n-1}^{-1}(f_n^{-1}(G))\dots))) = (f_n o f_{n-1} o \dots o f_1)^{-1}(G).$$
Hence,

 $f_n 0 f_{n-1} 0 \dots 0 f_1 : X_1 \to X_{n+1}$ is S*-sc-continuous function.

Remark (3-27)

- If *f*: *X* → *Y* is S-sc- Continuous function and *g*: *Y* → *Z* is Sc- Continuous. Then *g*0*f*: *X* → *Z* is not necessarily Sc- Continuous function.
- 2. If $f: X \to Y$ and $g: Y \to Z$ are S-sc- Continuous function. Then $g0f: X \to Z$ is not necessarily S- sc- Continuous function.
- If f: X → Y is S**-sc- Continuous function and g: Y → Z is
 S-sc-Continuous .Then g0f: X → Z is not necessarily S^{*}-sc- Continuous function.

The following proposition given the necessarily condition to make Remark(3-27) is true:

Proposition(3-28):

If a function $f: X \to Y$ S-sc- Continuous, $g: Y \to Z$ is Sc- Continuous function and X

is T₁-space. Then $g0f: X \rightarrow Z$ is Sc- Continuous.

Proof:

Let G be an open set in Z. Thus, $g^{-1}(G)$ is an sc-open set in Y Since $f: X \to Y$ is a S-sc-Continuous function. Then we get $f^{-1}(g^{-1}(G))$ is an s-open set in X. Since X is T₁-space. By proposition(2-13) we have $f^{-1}(g^{-1}(G))$ is an sc-open set in X.

But $f^{-1}(g^{-1}(G)) = (g0f)^{-1}(G)$. Hence, a function $g0f: X \to Z$ is a Sc- Continuous.

Proposition(3-29):

If $f: X \to Y$ and $g: Y \to Z$ are S-sc- Continuous function , and Y is T₁-space .

Then $g0f: X \rightarrow Z$ i S- sc- Continuous function

Proof:

Let G be an sc- open set in Z. Thus $g^{-1}(G)$ is an s-open set in Y. Since Y is T_1 -space and by proposition (2-13) we get $g^{-1}(G)$ is an sc – open set in Y. Thus $f^{-1}(g^{-1}(G))$ is an sopen set in X. But $f^{-1}(g^{-1}(G)) = (g0f)^{-1}(G)$ Hence, a function $g0f: X \to Z$ is S-sc-Continuous

Similarly, we prove the following proposition:

Proposition(3-30):

If a function $f: X \to Y S^{**}$ -sc- Continuous, $g: Y \to Z$ is S-sc- Continuous function and Y, Z are T_1 -space. Then $g0f: X \to Z$ is S^* -sc- Continuous function.

Remark (3-31):

From [1] if $f: X \to Y$ be S-sc- Continuous function, and let *A* is *clopen* csubset of *X* Then the restriction $f | A: A \to Y$ is Sc- Continuous in the subspace *A*.

Now, we give some proposition about the restriction of some S-sc- Continuous functions types.

Proposition(3-32):

Let $f: X \to Y$ be S-sc- Continuous function. If A is an open subset of X. Then $f|A: A \to Y$ is sc-Continuous functions in the subspace A.

Proof:

Let G be an sc-open set of Y. since f is S-sc- Continuous. Then $f^{-1}(G)$ is an s-open set in X. since A is an open set of X. By theorem

(2-16) step -1-, $(f|A)^{-1}(G) = f^{-1}(G) \cap A$ is an s-open subspace of A.. This shows that $f|A: A \to Y$ is a S-sc- Continuous function.

Proposition(3-33):

Let $f: X \to Y$ be S^{**} -sc- Continuous function. If A is clopen subset of X. Then $f | A: A \to Y f$ is a S^{**} -sc- Continuous in the subspace A.

Proof:

Let G be an sc-open set of Y since f is S^{**} -sc- Continuous. Then $f^{-1}(G)$ is an sc-open set in X. since A is clopen subset of X. By theorem (2-16)-step-2-, $(f|A)^{-1}(G) = f^{-1}(G) \cap A$ is an sc-open subspace of A. Hence, $f|A: A \to Y$ is a S^{**} -sc- Continuous function.

Corollary(3-34):

Let $f: X \to Y$ be S^{**}-sc- Continuous function. If A is clopen subset of X. Then f is a S-sc-Continuous function in the subspace A.

Proof:

Follows directly from proposition(3-33) and proposition (3-11).

Proposition(3-35):

Let $f: X \to Y$ be a S^{*}-sc- Continuous function. If A is clopen subset of X. Then $f|A: A \to Y$ is a S^{*}-sc- Continuous function in the subspace A.

Proof:

Let G be an s-open set of Y. since f is S^{*}-sc- Continuous. Then $f^{-1}(G)$ is an sc-open set in X. since A is clopen subset of X. By theorem (2-16)-step-2- $(f|A)^{-1}(G) = f^{-1}(G) \cap A$ is an sc-open subspace of A. Hence $f|A: A \to Y$ f is a S^{*}-sc- Continuous function.

Similarly, we prove the following corollary:

Corollary(3-36):

Let $f: X \to Y$ be S^{*}-sc- Continuous function and A is clopen subset of X. Then $f|A: A \to Y$ is a S^{**}-sc- Continuous (S-sc- Continuous) function in the subspace A respectively.

4- <u>Sc-Connected space</u>:

In this section we introduce a new class of connected space called Sc-connected space and prove some of it is properties.

Definition (4-1):

A space X is *Sc*-disconnected space iff there exists two non empty sc-open sets G , H in X satisfy:

- 1- $X = G \cup H$.
- $2- G \cap H = \emptyset.$

Otherwise X is called Sc-connected space.

Proposition(4-2):

Every S- connected space is Sc-connected.

Proof:

Let (X, τ) be a S- connected space, suppose that X is not Sc-connected space.

Then $X = A \cup B$ where A and B are disjoint nonempty sc-open sets in (X, τ) .

By Remark(2-6), A and B are s-open sets in X. Since $X = A \cup B$. Thus X is S-disconnected space [which is contradiction], since X is S- connected space. Hence X is Sc-connected.

The following example shows the converse is not necessarily true.

Example (4-3):

Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$. Then (X, τ) is a Sc- connected space but not Sconnected space, because $X = \{a\} \cup \{b, c\}$ and $\{a\} \cap \{b, c\} = \emptyset$.

<u>Remark (4-4)</u>

The following example shows that If X a connected space. Then X is not necessarily

Sc- connected space.

Example (4-5):

Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$. Then (X, τ) is a connected space but not

a Sc- connected space.

From definition (2-21), (2-22) and above discussion , we can get the following diagram it shows the relation these types of spaces.

Summarized The Relation Between Some Types Of Connected Space

Proposition(4-6):

Let $f: (X, \tau) \to (Y, \sigma)$ is Sc- continuous on to function. If X is Sc- connected space. Then Y is connected.

Proof:

Suppose that Y is disconnected space. Then there exists two disjoint non-empty open sets G and H such that $Y = G \cup H$. Since f is a Sc-continuous on to function. Then, $f^{-1}(G)$, $f^{-1}(H)$ are two sc-open sets in X such that $X = f^{-1}(Y)$

$$= f^{-1}(G \cup H) = f^{-1}(G) \cup f^{-1}(H)$$
 and $f^{-1}(G) \cap f^{-1}(H) = \emptyset$

Thus, X is Sc- disconnected space (which are contradiction), since X is Sc- connected space. Hence, Y must be connected space.

Proposition(4-7):

Let $f: (X, \tau) \to (Y, \sigma)$ is a S-sc- Continuous on to function. If X is S-connected space. Then Y is sc-connected space.

Proof:

Suppose that Y is Sc-disconnected space. Then there exists two disjoint non-empty sc- open sets G and H such that $Y = G \cup H$. Since f is a S-sc- continuous on to function .Then $f^{-1}(G)$, $f^{-1}(H)$ are two s-open sets in X such that: $X = f^{-1}(Y) = f^{-1}(G \cup H)$

$$=f^{-1}(G) \cup f^{-1}(H)$$
 and $f^{-1}(G) \cap f^{-1}(H) = \emptyset$.

Thus, is S-disconnected space (which are contradiction), since X is S- connected space .Hence, Y must be Sc-connected space.

Similarly, we prove the following two proposition.

Proposition(4-8):

Let $f: (X, \tau) \to (Y, \sigma)$ is a S^{**}-sc- Continuous on to function. If X is S-connected space. Then Y is Sc-connected space.

Proposition(4-9):

Let $f: (X, \tau) \to (Y, \sigma)$ is a S^{*}-sc- Continuous on to function. If X is S-connected space. Then Y is Sc-connected space.

Proposition(4-10):

Let $f: (X, \tau) \to (Y, \sigma)$ is a S^{**}-sc- Continuous on to function. If X isSc-connected space. Then Y is Sc-connected space.

Proof:

Suppose that Y is Sc-disconnected space. Then there exists two disjoint non-empty sc-open sets G and H such that $Y = G \cup H$. Since f is

a S^{**}-sc- continuous on to function .Then, $f^{-1}(G)$, $f^{-1}(H)$ are two sc-open sets in X such that: $X = f^{-1}(Y) = f^{-1}(G \cup H)$

$$=f^{-1}(G) \cup f^{-1}(H)$$
 and $f^{-1}(G) \cap f^{-1}(H) = \emptyset$

Thus, X is Sc-disconnected space (which are contradiction), since X is Sc- connected space. Hence, Y must be Sc-connected space.

Proposition(4-11):

Let $f: (X, \tau) \to (Y, \sigma)$ is a S^{*}-sc- Continuous on to function. If X is Sc-connected space. Then Y is Sc-connected space.

Proof:

Suppose that Y is Sc-disconnected space. Then there exists two disjoint non-empty sc-open sets G and H such that $Y = G \cup H$, and by Remark(2-6) we have G and H are s-open set in Y Since f is a S^{*-}sc- continuous on to function .Then, $f^{-1}(G)$, $f^{-1}(H)$ are two sc-open sets in X such that: $X = f^{-1}(Y) = f^{-1}(G \cup H)$

$$=f^{-1}(G) \cup f^{-1}(H)$$
 and $f^{-1}(G) \cap f^{-1}(H) = \emptyset$

Thus, X is Sc-disconnected space (which are contradiction), since X is Sc- connected space. Hence, Y must be Sc-connected space.

References

- Alias. B.K, Zanyar. A.A; ((sc-open sets and sc-continuity in topological space)), Sci, University of Duhok, Kurdistan. Iraq, vo 1.2. Issue. 3(2010),pp.87-101
- 2. Crossley.S.C., Hildebrand.S.K., ((*Semi-Closure*)), Texas.Sci, 22 (1971), 99-112
- 3. Dontchev. J., ((*Survey on preopen sets*)), The proceedings of the yatsushire Topological Con-ference, 1998, 1-18.
- Josepp. J.E, Kwack. M.H, ((*On S-closed space*)), proc. Amer. Math. Soc, 80(2), 1980, 341-348.
- 5. Levine. N., ((*Semi- open sets and Semi-continuity in Topological space*)), Amer. Math. Monthly, 70(1963). 36-41
- 6. Mustafa .H.I., ((*On connected functions*)), M.sc. thesis, University of AL-Mustansirya, (2001).
- 7. Sharma .J.N,((*Topology*)), Keishma Parkashan Mandie, (1977).
- 8. Stone .M.H, ((*Algebraic characterizations of special Boolean Rings*)), Fund. Math,(1937), 29: 223-302.
- 9. Willard. S., ((General Topology)). Addison Wesley publishing Company Reading(1970).